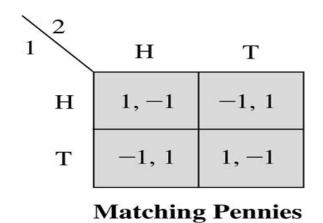
Chapter 11.- Mixed-Strategy Nash Equilibrium

- As we have seen, some games do not have a Nash equilibrium in pure strategies.
- However, existence of Nash equilibrium would follow if we extend this notion to mixed strategies.
- All we need is for each player's mixed strategy to be a best response to the mixed strategies of all other players.

 Example: Matching pennies game. We saw before that this game does not have a Nash equilibrium in pure strategies.



 Intuitively: Given the "pure conflict" nature of the matching pennies game, letting my opponent know for sure which strategy I will choose is never optimal, since this will give my opponent the ability to hurt me for sure.

• This is why randomizing is optimal.

 Consider the following profile of mixed strategies:

$$\sigma_1 = \left(\frac{1}{2}, \frac{1}{2}\right)$$
 and $\sigma_2 = \left(\frac{1}{2}, \frac{1}{2}\right)$

Note that

$$u_1(H, \sigma_2) = 1 \cdot \frac{1}{2} - 1 \cdot \frac{1}{2} = 0$$

$$u_1(T, \sigma_2) = -1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 0$$

And therefore,

$$u_1(\sigma_1, \sigma_2) = \frac{1}{2} \cdot u_1(H, \sigma_2) + \frac{1}{2} \cdot u_1(T, \sigma_2) = 0$$

- Since payoffs are symmetrical, we also have $u_2(\sigma_1, \sigma_2) = 0$
- Note that:
- Each player is *indifferent* between his two strategies (H or T) if the other player randomizes according to $\sigma_j = \left(\frac{1}{2}, \frac{1}{2}\right)$ (both H and T yield a payoff of zero). Both strategies are best responses to $\sigma_j = \left(\frac{1}{2}, \frac{1}{2}\right)$.
- Playing the mixed strategy $\sigma_i = \left(\frac{1}{2}, \frac{1}{2}\right)$ also yields a payoff of zero and therefore is also a best response to $\sigma_j = \left(\frac{1}{2}, \frac{1}{2}\right)$.

Therefore, if the other player chooses H or T with probability ½ each, then each player is perfectly content with also randomizing between H and T with probability ½.

 This constitutes a Nash equilibrium in mixed strategies. Definition: Consider a (mixed) strategy profile

$$\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n)$$

where σ_i is a mixed strategy for player i. The profile σ is a **mixed-strategy Nash equilibrium** if and only if **playing** σ_i is a best response to σ_{-i} . That is:

$$u_i(\sigma_i, \sigma_{-i}) \ge u_i(s'_i, \sigma_{-i})$$
 for each $s'_i \in S_i$

• Fact #1 about mixed-strategy Nash Equilibrium: A mixed strategy is σ_i is a best response to σ_{-i} only if σ_i assigns positive probability exclusively to strategies $s_i \in S_i$ that are best-responses to σ_{-i} .

- Facts about mixed-strategy Nash equilibria:
- 1. In any mixed-strategy Nash equilibrium $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n)$, players assign positive probability only to rationalizable strategies. That is, $\sigma_i(s_i) > 0$ only if s_i is rationalizable.
- 2. In any mixed-strategy Nash equilibrium $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n)$, the mixed strategy σ_i assigns positive probability exclusively to strategies $s_i \in S_i$ that are best-responses to σ_{-i} . That is: If $\sigma_i(s_i) > 0$, then it must be that: $u_i(s_i, \sigma_{-i}) \ge u_i(s'_i, \sigma_{-i})$ for every $s'_i \in S_i$.

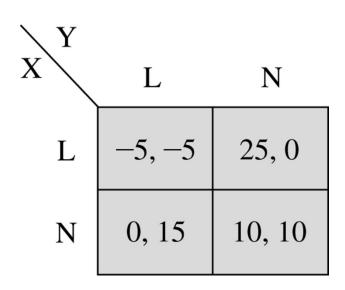
3. In any mixed-strategy Nash equilibrium $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n)$, each player i is **indifferent** between all the strategies s_i that he can play with positive probability according to σ_i . That is, for each i = 1, ..., n:

$$u_i(s_i,\sigma_{-i}) = u_i(s_i',\sigma_{-i})$$
 for all s_i,s_i' such that $\sigma_i(s_i)>0$ and $\sigma_i(s_i')>0$

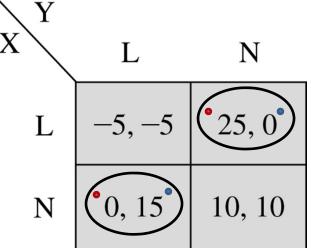
 Using these facts, we can characterize a step-by-step procedure to find mixed-strategy Nash equilibria in two player games (things get a bit more complicated in games with three or more players).

- Procedure for finding mixed-strategy equilibria in discrete, two-player games:
- **1. Step 1:** Find the set of rationalizable strategies in the game using iterated dominance.
- 2. Step 2: Restricting attention to rationalizable strategies, write equations for each player to characterize mixing distributions that make each player indifferent between the relevant pure strategies.
- **3. Step 3:** Solve these equations to determine equilibrium mixing distributions.

• Example: A lobbying game.- Suppose two firms simultaneously and independently decide whether to lobby (L) or not lobby (N) the government in hopes of trying to generate favorable legislation. Suppose payoffs are:



This game has two pure-strategy Nash equilibria: \ \ \ \ \ \



- Question: Does it also have a mixed-strategy Nash equilibrium?
- Since this game has only two players and two strategies, this question is easy to answer.
- **Step 1:** Note that both strategies are rationalizable for each player.

- Step 2: With only two players and two strategies, a profile of mixed strategies σ_1 , σ_2 is a Nash equilibrium if and only if:
- I. Player 1 is indifferent between L and N when player 2 uses σ_2 .
- II. Player 2 is indifferent between L and N when player 1 uses σ_1 .
- That is, if and only if σ_1 , σ_2 are such that:

$$u_1(L, \sigma_2) = u_1(N, \sigma_2)$$
and
$$u_2(\sigma_1, L) = u_2(\sigma_1, N)$$

 Since each player has only two strategies (L and N), any mixed strategy is fully described by

$$\sigma_i = (\sigma_i(L), 1 - \sigma_i(L))$$

• Where:

$$\sigma_i(L) = \Pr(Player \ i \ chooses \ L)$$

 $1 - \sigma_i(L) = \Pr(Player \ i \ chooses \ N)$

Therefore,

$$u_{1}(L, \sigma_{2}) = -5 \cdot \sigma_{2}(L) + 25 \cdot (1 - \sigma_{2}(L)) = 25 - 30 \cdot \sigma_{2}(L)$$

$$u_{1}(N, \sigma_{2}) = 0 \cdot \sigma_{2}(L) + 10 \cdot (1 - \sigma_{2}(L)) = 10 - 10 \cdot \sigma_{2}(L)$$

$$u_{2}(\sigma_{1}, L) = -5 \cdot \sigma_{1}(L) + 15 \cdot (1 - \sigma_{1}(L)) = 15 - 20 \cdot \sigma_{1}(L)$$

$$u_{2}(\sigma_{1}, N) = 0 \cdot \sigma_{1}(L) + 10 \cdot (1 - \sigma_{1}(L)) = 10 - 10 \cdot \sigma_{1}(L)$$

• In any mixed-strategy Nash equilibrium, we must have $u_1(L, \sigma_2) = u_1(N, \sigma_2)$. That is:

$$25 - 30 \cdot \sigma_2(L) = 10 - 10 \cdot \sigma_2(L)$$

• This will be satisfied if:

$$\sigma_2(L) = \frac{3}{4}$$

• And we also must have $u_2(\sigma_1, L) = u_2(\sigma_1, N)$. That is:

$$15 - 20 \cdot \sigma_1(L) = 10 - 10 \cdot \sigma_1(L)$$

This will be satisfied if:

$$\sigma_1(L) = \frac{1}{2}$$

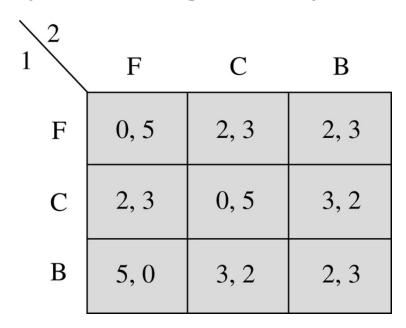
• Therefore, this game has a mixed-strategy equilibrium (σ_1, σ_2) , where:

$$\sigma_1 = \left(\frac{1}{2}, \frac{1}{2}\right)$$
and
$$\sigma_2 = \left(\frac{3}{4}, \frac{1}{4}\right)$$

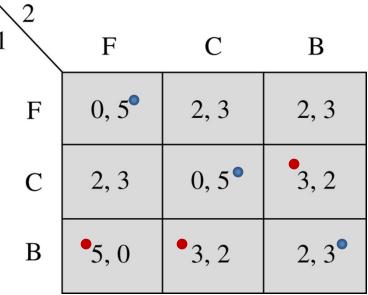
 This example also illustrates that some games may have Nash equilibria in pure strategies AND also in mixed strategies. • Example: A tennis-service game.- Consider two tennis players.

 Player 1 (the server) must decide whether to serve to the opponent's forehand (F), center (C) or backhand (B).

 Simultaneously, Player 2 (the receiver) must decide whether to favor the forehand, center of backhand side. Suppose payoffs are given by:



 We begin by noting that this game does not have any pure-strategy Nash equilibrium. To see why, note that best-responses are given
 by:



 So there is no pair of mutual best-responses in pure strategies.

- Question: Find the mixed-strategy Nash equilibria in this game.
- **Step 1:** Using iterated dominance, find the set of rationalizable strategies *R*.
 - To find the reduced game R^1 :
 - Note first that all three strategies $\{F, C, B\}$ are best-responses for player 2, so they will all survive.
 - For player 1, $\{C, B\}$ are best-responses. And we can show easily that F is dominated by a mixed strategy between $\{C, B\}$. From here, we have:

$$R^1 = \{C, B\} \times \{F, C, B\}$$

• (cont...)

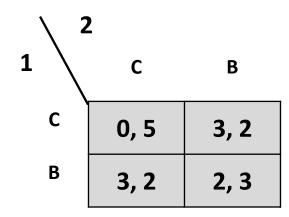
– To find R^2 , we note that in the reduced game R^1 , the only dominated strategy is F, for player 2. Player 1 does not have any dominated strategy in R^1 . Therefore,

$$R^2 = \{C, B\} \times \{C, B\}$$

– It is easy to verify that there are no dominated strategies in \mathbb{R}^2 . Therefore the game cannot be reduced any further and we have

$$R = \{C, B\} \times \{C, B\}$$

The set of rationalizable strategies is:



 To find mixed-strategy Nash equilibria, we need to look for mixing distributions:

$$\sigma_1 = (0, \sigma_1(C), 1 - \sigma_1(C))$$

$$\sigma_2 = (0, \sigma_2(C), 1 - \sigma_2(C))$$

(where each player randomizes only between "C" and "B" and play "F" with zero probability) such that both players are indifferent between C and B.

That is, we must have:

$$u_1(C, \sigma_2) = u_1(B, \sigma_2)$$
and
$$u_2(\sigma_1, C) = u_2(\sigma_1, B)$$

Expected payoffs are given by:

$$u_{1}(C, \sigma_{2}) = 0 \cdot \sigma_{2}(C) + 3 \cdot (1 - \sigma_{2}(C)) = 3 - 3 \cdot \sigma_{2}(C)$$

$$u_{1}(B, \sigma_{2}) = 3 \cdot \sigma_{2}(C) + 2 \cdot (1 - \sigma_{2}(C)) = 2 + 1 \cdot \sigma_{2}(C)$$

$$u_{2}(\sigma_{1}, C) = 5 \cdot \sigma_{1}(C) + 2 \cdot (1 - \sigma_{1}(C)) = 2 + 3 \cdot \sigma_{1}(C)$$

$$u_{2}(\sigma_{1}, B) = 2 \cdot \sigma_{1}(C) + 3 \cdot (1 - \sigma_{1}(C)) = 3 - 1 \cdot \sigma_{1}(C)$$

• Therefore, $\sigma_1(C)$ and $\sigma_2(C)$ need to satisfy:

$$3 - 3 \cdot \sigma_2(C) = 2 + 1 \cdot \sigma_2(C)$$

and
 $2 + 3 \cdot \sigma_1(C) = 3 - 1 \cdot \sigma_1(C)$

This yields:

$$\sigma_2(C) = \frac{1}{4}$$
 and $\sigma_1(C) = \frac{1}{4}$

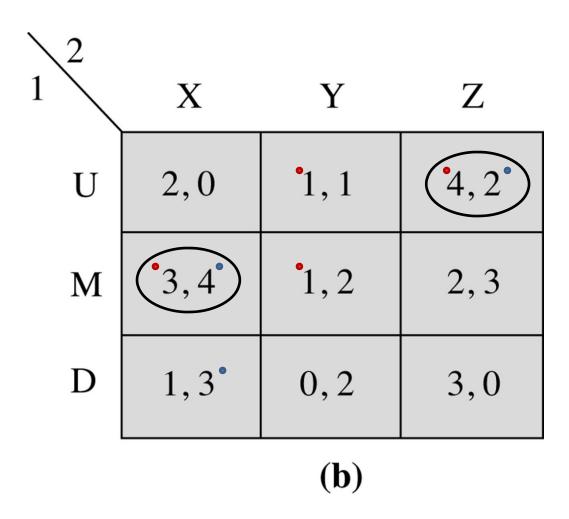
 Therefore, the mixed-strategy Nash equilibrium in this game is given by the mixing distributions:

$$\sigma_1 = \begin{pmatrix} 0, \frac{1}{4}, \frac{3}{4} \end{pmatrix}$$
and
$$\sigma_2 = \begin{pmatrix} 0, \frac{1}{4}, \frac{3}{4} \end{pmatrix}$$

• Example: Find the set of Nash equilibria (pure and mixed) in this game:

2	3 7	X 7	7
1	X	Y	\overline{Z}
U	2,0	1, 1	4,2
M	3,4	1,2	2,3
D	1,3	0,2	3,0
,		(b)	

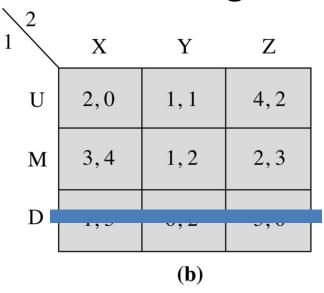
We begin with the pure-strategy equilibria:



- Mixed-strategy equilibria: first, using iterated dominance we look for the set of rationalizable strategies R
 - Player 1: "M" is a best response to "X" and "Y", while "U" is a best response to "Z". The strategy "D" is dominated by "U".
 - Player 2: "Z" is a best response to "U", "X" is a best response to "M" and "D".
 - We need to check if "Y" is a dominated strategy. Same procedure we followed in Chapter 6 shows that it is NOT a dominated strategy.
 - Therefore:

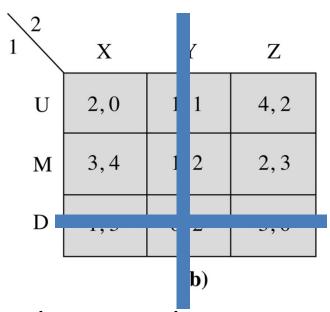
$$R^1 = \{U, M\} \times \{X, Y, Z\}$$

• Matrix form of the reduced game R^1 is:



- Player 1 has no dominated strategies in the reduced game given by R^1 .
- For Player 2, "Y" is dominated by "Z" in the reduced game given by \mathbb{R}^1 .
- Therefore, $R^2 = \{U, M\} \times \{X, Z\}$.

• $R^2 = \{U, M\} \times \{X, Z\}$. Reduced game:



- Player 1 has no dominated strategies in the reduced game given by \mathbb{R}^2 .
- Player 2 has no dominated strategies in the reduced game given by \mathbb{R}^2 .
- Therefore, no further reduction can be done and we have $R^2=R$. Therefore,

$$R = \{U, M\} \times \{X, Z\} = \{(U, X), (U, Z), (M, X), (M, Z)\}$$

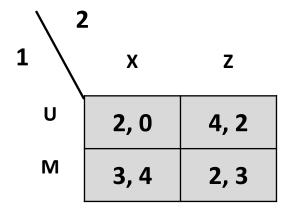
 Focusing on the rationalizable strategies R, we now need to find well-defined mixing probabilities

$$\sigma_1 = (\sigma_1(U), 1 - \sigma_1(U), 0)$$
 $\sigma_2 = (\sigma_2(X), 0, 1 - \sigma_2(X))$

such that both players are indifferent between their actions (X and Z for player 2, and U and M for player 1). That is:

$$u_1(U, \sigma_2) = u_1(M, \sigma_2)$$
and
$$u_2(\sigma_1, X) = u_2(\sigma_1, Z)$$

The reduced game R looks like this:



From here we have:

$$u_1(U, \sigma_2) = 2 \cdot \sigma_2(X) + 4 \cdot (1 - \sigma_2(X)) = 4 - 2 \cdot \sigma_2(X)$$

 $u_1(M, \sigma_2) = 3 \cdot \sigma_2(X) + 2 \cdot (1 - \sigma_2(X)) = 2 + 1 \cdot \sigma_2(X)$

• And:

$$u_2(\sigma_1, X) = 0 \cdot \sigma_1(U) + 4 \cdot (1 - \sigma_1(U)) = 4 - 4 \cdot \sigma_1(U)$$

$$u_2(\sigma_1, Z) = 2 \cdot \sigma_1(U) + 3 \cdot (1 - \sigma_1(U)) = 3 - 1 \cdot \sigma_1(U)$$

 Both players will be indifferent between their relevant strategies if and only if:

$$4 - 2 \cdot \sigma_2(X) = 2 + 1 \cdot \sigma_2(X)$$
 (for player 1)

$$4 - 4 \cdot \sigma_1(U) = 3 - 1 \cdot \sigma_1(U) \text{ (for player 2)}$$

The first condition will hold if and only if

$$\sigma_2(X) = \frac{2}{3}$$

And the second condition will hold if and only if

$$\sigma_1(U) = \frac{1}{3}$$

 Therefore, this game has one mixed-strategy Nash equilibrium where players randomize according to the distributions:

$$\sigma_1 = \left(\frac{1}{3}, \frac{2}{3}, 0\right)$$

$$\sigma_2 = \left(\frac{2}{3}, 0, \frac{1}{3}\right)$$

- Mixed-strategy Nash Equilibrium in Continuous Games: As in discrete games, the key feature is that players must randomize in a way that makes other players indifferent between their relevant strategies.
- Example: Bertrand competition with capacity constraints.
- Consider a duopoly industry of a homogenous good with two firms who compete in prices.
- Suppose the market consists of 10 consumers, each of which will purchase one unit of the good.
 Suppose that each consumer is willing to pay at most \$1 for the good.

- For simplicity, suppose the production cost is zero for both firms.
- If this setup fully describes the model, then it is a very simple case of **Bertrand competition**. As we learned previously, **the equilibrium prices** would be those that yield a profit of zero.
- Since production cost is zero, this mean that the Nash equilibrium prices would be:

$$p_1 = 0$$
 and $p_2 = 0$

as we learned previously, this would be the UNIQUE Nash equilibrium in the game.

- Suppose now that both firms have a <u>capacity</u> <u>constraint</u>. Specifically, suppose each firm can produce at most eight units of the good.
- This will change the features of the model drastically: Now the firm with the cheapest price cannot capture the entire market because of the capacity constraint.
- Conversely, the firm with the highest price can still capture two consumers.
- As a result, the Nash equilibrium properties of this model will change. As we will see, it will no longer have an equilibrium in pure strategies. Instead, it will have a unique equilibrium in mixed strategies.

- With capacity constraints, the game no longer has an equilibrium in pure strategies: We begin by noting that by setting the highest possible price $(p_i = 1)$, firm i ensures itself a profit of at least \$2 (since at the very least it will sell two units due to the capacity constraint of the opponent).
- Suppose $p_1 = p_2 > 0$. Can this be a Nash equilibrium? No, because it would be better for either firm to undercut the other firm's price by an infinitesimal amount. This will always yield a higher payoff than choosing the same price as the opponent.

- Suppose $p_1 = p_2 = 0$. Can this be a Nash equilibrium? It used to be the Nash equilibrium without capacity constraints, but not any more. Why? Because if my opponent sets a price of zero, my best response now is to set a price of \$1. This will ensure me a profit of \$2 instead of \$0, which is what I would obtain if I set my price to zero.
- Therefore, combining the two cases above, there cannot be a Nash equilibrium in pure strategies where $p_1=p_2$

- Can there be a pure-strategy Nash equilibrium in which $p_i < p_j \le 1$? First note that if one firm chooses a price higher than the other firm, then the only rational price to choose is the highest possible price (since you would have two captive costumers).
- That is, if $p_i < p_j$ in equilibrium, then it must be the case that $p_j = 1$. But if $p_j = 1$, it is not optimal for firm i to charge strictly less than 1. Firm i would like to keep raising p_i by infinitesimal amounts to become closer and closer to \$1. So the best response by i would not be well-defined.

- Therefore since there is no pure-strategy Nash equilibrium where $p_1 = p_2$ and there is no pure-strategy Nash equilibrium where $p_i < p_j$, we conclude that this game does not possess a pure-strategy Nash equilibrium.
- How about a mixed-strategy Nash equilibrium?
- Notice that the strategy space is continuous, which makes the problem a bit "trickier". Still, we can describe the mixed-strategy Nash equilibrium using the same principle as in discrete games: In equilibrium, both players must be indifferent between all their relevant strategies.