Chapter 11.- Mixed-Strategy Nash
Equilibrium
 As we have seen, some games do not have a Nash
equilibrium in pure strategies.

* However, existence of Nash equilibrium would
follow if we extend this notion to mixed
strategies.

* All we need is for each player’s mixed strategy to
be a best response to the mixed strategies of all
other players.



 Example: Matching pennies game.- We saw before
that this game does not have a Nash equilibrium in

pure strategies.
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Matching Pennies

* |ntuitively: Given the “pure conflict” nature of the

matching pennies game, letting my opponent know
for sure which strategy | will choose is never
optimal, since this will give my opponent the ability

to hurt me for sure.
e This is why randomizing is optimal.



e Consider the following profi
strategies:
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Since payoffs are symmetrical, we also have
Uy (0-11 0-2) =0
Note that:

Each player is indifferent between his two

strategies (H or T) if the other player randomizes
according to g = (%,%) (both H and T yield a
payoff of zero). Both strategies are best

1 1
responses to o; = (— —).
p J 2’2

Playing the mixed strategy og; = (%,%) also
vields a payoff of zero and therefore is also a

1 1
best response to g; = (—,—).
2’2



 Therefore, if the other player chooses Hor T
with probability 2 each, then each player is
perfectly content with also randomizing
between H and T with probability 7.

e This constitutes a Nash equilibrium in mixed
strategies.



e Definition: Consider a (mixed) strategy profile
o = (04,05, ...,0)
where g; is a mixed strategy for player i. The
profile o is a mixed-strategy Nash equilibrium if

and only if playing o; is a best response to o_;.
That is:

u;(o;,0_;) = u;(s’;,0_;) foreach s’; € §;

* Fact #1 about mixed-strategy Nash Equilibrium: A
mixed strategy is o; is a best response to g_; only
if o; assigns positive probability exclusively to
strategies s; € S5; that are best-responses to o_;.



e Facts about mixed-strategy Nash equilibria:

1.

In any mixed-strategy Nash equilibrium

o = (04,0, ...,0,,), players assign positive
probability only to rationalizable strategies. That
is, 0;(s;) > 0 only if s; is rationalizable.

In any mixed-strategy Nash equilibrium
o = (04, 0y, ..., 0y,), the mixed strategy g; assigns
positive probability exclusively to strategies
s; € §; that are best-responses to o_;. That is:
If 0;(s;) > 0, then it must be that:

u;(s;,0_;) = u;(s';,0_;) forevery s'; € S;.



3. In any mixed-strategy Nash equilibrium o =
(04,0, ...,0y,), each player i is indifferent between all
the strategies s; that he can play with positive
probability according to g;. That is, for each
(=1, ..,n:

u’i(si; O-—l') — ui(slil O-—l')
forall s;,s’; suchthat g;(s;) > 0andg;(s’;) >0

e Using these facts, we can characterize a step-by-step
procedure to find mixed-strategy Nash equilibria in two
player games (things get a bit more complicated in
games with three or more players).



* Procedure for finding mixed-strategy
equilibria in discrete, two-player games:

1. Step 1: Find the set of rationalizable
strategies in the game using iterated
dominance.

2. Step 2: Restricting attention to rationalizable
strategies, write equations for each player to
characterize mixing distributions that make
each player indifferent between the relevant
pure strategies.

3. Step 3: Solve these equations to determine
equilibrium mixing distributions.



e Example: A lobbying game.- Suppose two firms
simultaneously and independently decide whether
to lobby (L) or not lobby (N) the government in
hopes of trying to generate favorable legislation.
Suppose payoffs are:

X L N

L |5-5]| 25,0

N | 0,15 | 10, 10




This game has two pure-strategy Nash
equilibria: Y
X L N

Question: Does it also have a mixed-strategy
Nash equilibrium?

Since this game has only two players and two
strategies, this question is easy to answer.

Step 1: Note that both strategies are
rationalizable for each player.




e Step 2: With only two players and two
strategies, a profile of mixed strategies g4, 05 is
a Nash equilibrium if and only if:

l.  Player 1 is indifferent between L and N when
player 2 uses og,.

Il. Player 2 is indifferent between L and N when
player 1 uses og;.

e Thatis, if and only if g1, 0, are such that:
uq (L, 03) = uy (N, 03)

and
U (0-1) L) — Uy (0-1) N)



e Since each player has only two strategies (L and N), any
mixed strategy is fully described by

o; = (0;(L),1 —o;(L))
e Where:
0;(L) = Pr(Player i chooses L)
1 —0;(L) = Pr(Player i chooses N)

e Therefore,

u;(L,05) = =5-0,(L) +25- (1 — 0,(L)) =25—30"0,(L)
u;(N,0,) =0-0,(L) + 10 (1 —0,(L)) =10 —10-0,(L)
uy(oy,L) = =5-07(L) + 15 (1 — 64(L)) =15—20-0,(L)
uy(01,N) =0-0,(L) +10- (1 —07(L)) =10 —10- o1 (L)



In any mixed-strategy Nash equilibrium, we
must have u(L, 0,) = u;(N, 0,). That is:

25—-30-0,(L) =10—-10"-0,(L)
This will be satisfied if:

3
0,(L) = 4

And we also must have u,(o¢,L) = u,(o{, N).
That is:
15 —20-0,(L) = 10 — 10 - o (L)

This will be satisfied if:

1
o1(L) = 5



 Therefore, this game has a mixed-strategy
equilibrium (oq, 0, ), where:

(11
17127

and
3 1
2=\33

 This example also illustrates that some games
may have Nash equilibria in pure strategies AND
also in mixed strategies.



e Example: A tennis-service game.- Consider
two tennis players.

e Player 1 (the server) must decide whether to

serve to the opponent’s forehand (F), center
(C) or backhand (B).

e Simultaneously, Player 2 (the receiver) must
decide whether to favor the forehand, center
of backhand side.



e Suppose payoffs are given by:

2
1 F C B

F 0,5 255 3

C s 0,5 3,2

B 5,0 3,2 2.3

 We begin by noting that this game does not
have any pure-strategy Nash equilibrium.



* To see why, note that best-responses are given
by: 2

1 F C B

F| 05 | 2,3 2.3

cl 23 | 05°| %2

B|®%0 |°®32 2,3°

e So there is no pair of mutual best-responses in
pure strategies.



 Question: Find the mixed-strategy Nash
equilibria in this game.

e Step 1: Using iterated dominance, find the set
of rationalizable strategies R.

— To find the reduced game R*:

— Note first that all three strategies {F,C, B} are
best-responses for player 2, so they will all
survive.

— For player 1, {C, B} are best-responses. And we
can show easily that F is dominated by a mixed

strategy between {C, B}. From here, we have:
R! = {C,B} x {F, C, B}



e (cont...)

— To find R?%, we note that in the reduced game R?,
the only dominated strategy is F, for player 2.

Player 1 does not have any dominated strategy in
R!. Therefore,

R* = {C,B} x {C, B}
— |t is easy to verify that there are no dominated

strategies in R?. Therefore the game cannot be
reduced any further and we have

R ={C,B} x{C, B}



 The set of rationalizable strategies is:

2
1 C B

¢ 0,5 3,2

B 3,2 2,3

* To find mixed-strategy Nash equilibria, we need
to look for mixing distributions:

01 = (0» 01(C), 1 — 01((:))
g, = (0,0,(C), 1 — 0,(0))

(where each player randomizes only between “C”
and “B” and play “F” with zero probability) such
that both players are indifferent between C and B.



e Thatis, we must have:

uy (€, 02) = uqy(B,03)
and
U (0-1) C) — Uy (0-1) B)

 Expected payoffs are given by:

uy(C,02) =0
u(B,0y) =3+
u,(04,C) =5+
u,(oy,B) =2+

0,(C)+3-(1-0,(C))=3-3"
0,(C)+2-(1-0,(C))=2+1"
c1(C)+2-(1—0y(C))=2+3-
0(C)+3-(1—0y(C))=3—-1-

a,(C)
0, (C)
01(C)
01(C)



e Therefore, g,(C) and 0, (C) need to satisfy:

3—3-0,(C)=2+1"-0,(C)
and
2+3-0¢(C)=3—-1-0,(C)
e This yields:
1

1
0-2(6) — Z and O-l(C) — Z



 Therefore, the mixed-strategy Nash equilibrium
in this game is given by the mixing distributions:

1 3
=13



e Example: Find the set of Nash equilibria (pure
and mixed) in this game:

2
1 X Y Z

Ul 2,0 1,1 4,2

M| 3,4 52 2,3

D 1,3 0,2 3,0

(b)



 We begin with the pure-strategy equilibria:

2
1 X Y Z

ul 2.0 | 1.1
M 1,2 2.3

D 1,3° 0,2 3,0

(b)



 Mixed-strategy equilibria: first, using iterated
dominance we look for the set of rationalizable
strategies R

— Player 1: “M” is a best response to “X” and “Y”, while
“U” is a best response to “Z”. The strategy “D” is
dominated by “U”.

— Player 2: “Z” is a best response to “U”, “X” is a best
response to “M” and “D”.

— We need to check if “Y” is a dominated strategy. Same
procedure we followed in Chapter 6 shows that it is
NOT a dominated strategy.

— Therefore:
R ={U, M} x {X,Y,Z}



e Matrix form of the reduced game R! is:
p

1 X Y y4
Ul 2,0 1,1 4,2
M| 3,4 1,2 2,3
D s S

(b)

— Player 1 has no dominated strategies in the reduced
game given by R'.

— For Player 2, “Y” is dominated by “Z” in the reduced
game given by R'.

— Therefore, R* = {U, M} x {X, Z}.



e R? ={U,M} x {X,Z}. Reduced game:

1 X Z
Ul 2,0 1 4,2
M| 3.4 2 2.3

— Player 1 has no dominated strategies in the reduced
game given by R?.

— Player 2 has no dominated strategies in the reduced
game given by R?.

— Therefore, no further reduction can be done and we
have R? = R. Therefore,

R={UM}x{X Z}={UX),(U,Z),M,X),(M,Z)}



* Focusing on the rationalizable strategies R, we
now need to find well-defined mixing
probabilities

01 = (O-l(U)J 1— O-l(U)I O)
0, = (02(X), 0,1 — 0, (X))

such that both players are indifferent between
their actions (X and Z for player 2, and U and
M for player 1). That is:

u, (U, 02) = uy (M, 03)

and
U (0-1) X) = Uy (0-11 Z)



 The reduced game R looks like this:

2
1 X y4

U 2,0 4,2

M 3,4 2,3

* From here we have:
u(U,05) =2-0,(X)+4-(1—0,(X)) =4 —2-05,(X)
u;(M,0,) =3-0,(X)+2-(1—0,(X)) =2+ 1-0,(X)
e And:
U(01,X)=0-0,(U) +4-(1—0,(U)) =4 —4-0,(U)
uy(01,2) =2-0,(U) +3-(1—0,(U)) =3 —1-0,(U)



 Both players will be indifferent between their
relevant strategies if and only if:

4 —2-0,(X)=2+1-0,(X) (for player 1)
4 —4-0,(U)=3—-1-04U) (forplayer 2)
e The first condition will hold if and only if

() =2
) — 3
 And the second condition will hold if and only

if
(U) = -
01 = 3



 Therefore, this game has one mixed-strategy
Nash equilibrium where players randomize
according to the distributions:

(12,
0-1_ 3)3)



Mixed-strategy Nash Equilibrium in Continuous
Games: As in discrete games, the key feature is
that players must randomize in a way that makes
other players indifferent between their relevant
strategies.

Example: Bertrand competition with capacity
constraints.

Consider a duopoly industry of a homogenous
good with two firms who compete in prices.

Suppose the market consists of 10 consumers,
each of which will purchase one unit of the good.
Suppose that each consumer is willing to pay at
most $1 for the good.



e For simplicity, suppose the production cost is
zero for both firms.

e If this setup fully describes the model, then it is
a very simple case of Bertrand competition. As
we learned previously, the equilibrium prices
would be those that yield a profit of zero.

e Since production cost is zero, this mean that the
Nash equilibrium prices would be:

p1 =0 and p, =0
as we learned previously, this would be the
UNIQUE Nash equilibrium in the game.



Suppose now that both firms have a capacity
constraint. Specifically, suppose each firm can
produce at most eight units of the good.

This will change the features of the model
drastically: Now the firm with the cheapest price
cannot capture the entire market because of the
capacity constraint.

Conversely, the firm with the highest price can still
capture two consumers.

As a result, the Nash equilibrium properties of this
model will change. As we will see, it will no longer
have an equilibrium in pure strategies. Instead, it

will have a unique equilibrium in mixed strategies.



 With capacity constraints, the game no longer
has an equilibrium in pure strategies: We begin
by noting that by setting the highest possible
price (p; = 1), firm i ensures itself a profit of at
least S2 (since at the very least it will sell two
units due to the capacity constraint of the
opponent).

e Suppose p; = p, > 0. Can this be a Nash
equilibrium? No, because it would be better for
either firm to undercut the other firm’s price by
an infinitesimal amount. This will always vyield a
higher payoff than choosing the same price as
the opponent.



e Suppose p; = p, = 0. Can this be a Nash
equilibrium? It used to be the Nash
equilibrium without capacity constraints, but
not any more. Why? Because if my opponent
sets a price of zero, my best response now is
to set a price of S1. This will ensure me a
profit of $2 instead of SO, which is what |
would obtain if | set my price to zero.

 Therefore, combining the two cases above,
there cannot be a Nash equilibrium in pure
strategies where p; = p,



e Can there be a pure-strategy Nash equilibrium in
which p; < p; < 17 First note that if one firm
chooses a price higher than the other firm, then
the only rational price to choose is the highest

possible price (since you would have two captive
costumers).

* Thatis, if p; < pj in equilibrium, then it must be
the case that p; = 1. Butif p; = 1, it is not
optimal for firm i to charge strictly less than 1.
Firm i would like to keep raising p; by
infinitesimal amounts to become closer and

closer to S1. So the best response by i would not
be well-defined.



 Therefore since there is no pure-strategy Nash
equilibrium where p; = p, and there is no pure-
strategy Nash equilibrium where p; < p;, we

conclude that this game does not possess a pure-
strategy Nash equilibrium.

e How about a mixed-strategy Nash equilibrium?

 Notice that the strategy space is continuous,
which makes the problem a bit “trickier”. Still, we
can describe the mixed-strategy Nash equilibrium
using the same principle as in discrete games: In
equilibrium, both players must be indifferent
between all their relevant strategies.



