4: Beliefs, Mixed Strategies and Expected Payoffs

- In a strategic-interaction setting players must try to anticipate the actions that others in the game will choose.
- We model this with the assumption that players construct beliefs about the strategies of others.
- A formal mathematical representation of decision making requires a well-defined notion of beliefs.
- Beliefs for player i are summarized by a **probability** distribution over S_{-i} .
- That is, when constructing his beliefs, player i assigns a probability to each of the profiles $s_{-i} \in S_{-i}$

• The textbook represents **beliefs for player** i using the Greek letter "theta", as θ_{-i} .

• θ_{-i} is an element of ΔS_{-i} , the space of all probability distributions defined over S_{-i} .

• If S_{-i} is finite (more rigorously, if it is *countable*), then for each profile $s_{-i} \in S_{-i}$, the corresponding belief $\theta_{-i}(s_{-i})$ represents player i's assessment of the probability that all other players in the game will select the profile s_{-i} .

• If S_{-i} is finite, then since θ_{-i} is a well-defined probability distribution, it must satisfy:

$$\theta_{-i}(s_{-i}) \ge 0$$
 for each $s_{-i} \in S_{-i}$,

and

$$\sum_{S_{-i} \in S_{-i}} \theta_{-i}(s_{-i}) = 1$$

- Mixed strategy: A mixed strategy for player i is given by a probability distribution over the space of his own actions, S_i .
- More formally, a mixed strategy is the act of choosing actions over S_i according to a probability distribution.
- The book uses the Greek letter sigma to denote mixed strategies, as σ_i .
- Since mixed strategies are well-defined probability distributions, they belong to ΔS_i , the space of probability distributions over S_i .

- Strategies where a player does not randomize and instead chooses a given action with probability one are called **pure strategies** (they are just a special case of mixed strategies, with a degenerate probability distribution).
- Expected Payoff: Suppose player i is uncertain about the actions the other players will choose but has formed beliefs θ_{-i} . The expected payoff to player i of choosing a particular action s_i is computed as the expected value of u_i if i chooses s_i and the rest of the players played according to the distribution θ_{-i} .

This expected payoff is therefore given by:

$$u_i(s_i, \theta_{-i}) = \sum_{s_{-i} \in S_{-i}} \theta_{-i}(s_{-i}) \cdot u_i(s_i, s_{-i})$$

• **Example:** Consider the following matrix-form

game:

• Next consider the following belief for player 1, labeled as θ_2 :

$$\theta_2(L) = 1/2, \theta_2(M) = 1/4, \theta_2(R) = 1/4$$

- According to these beliefs, player 1 thinks that player 2 will choose "L" with probability ½, "M" with probability ¼ and "R" with probability ¼.
- Given these beliefs, we can compute the expected payoff for player 1 of choosing each one of his actions: U, C and D.

• We have:

$$u_{1}(U, \theta_{2})$$

$$= u_{1}(U, L) \cdot \theta_{2}(L) + u_{1}(U, M) \cdot \theta_{2}(M)$$

$$+ u_{1}(U, R) \cdot \theta_{2}(R)$$

$$= 8 \cdot \frac{1}{2} + 0 \cdot \frac{1}{4} + 4 \cdot \frac{1}{4} = 5$$

Similarly,

$$u_1(C, \theta_2) = 3 \cdot \frac{1}{2} + 1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} = \frac{7}{4} = 1.75$$

$$u_1(D, \theta_2) = 5 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 8 \cdot \frac{1}{4} = \frac{20}{4} = 5$$

According to these beliefs, choosing either "U" or "D" yields a higher expected payoff than choosing "C".
 Player 1 would be indifferent between "U" and "D" (in an expected-payoff sense).

• Computing the expected payoff for a mixed strategy: Let us generalize the construction of expected payoffs. Suppose player i has beliefs θ_{-i} and wants to compute the expected payoff of a mixed strategy σ_i . This is given by:

$$u_i(\sigma_i,\theta_{-i}) = \sum_{s_i \in S_i} u_i(s_i,\theta_{-i}) \cdot \sigma_i(s_i)$$

• Example (cont): Consider the same set of beliefs θ_2 as in the previous example. We had figured out that:

$$u_1(U, \theta_2)=5, \ u_1(C, \theta_2)=1.75, \ u_1(D, \theta_2)=5$$

• Consider now a **mixed strategy** σ_1 for player 1 given by:

$$\sigma_1(U) = \frac{1}{2}$$
, $\sigma_1(C) = \frac{1}{8}$, $\sigma_1(D) = \frac{3}{8}$

 The expected payoff for this mixed strategy is with these beliefs is:

$$u_1(\sigma_1, \theta_2) = u_1(U, \theta_2) \cdot \sigma_1(U) + u_1(C, \theta_2) \cdot \sigma_1(C) + u_1(D, \theta_2) \cdot \sigma_1(D) = 5 \cdot \frac{1}{2} + 1.75 \cdot \frac{1}{8} + 5 \cdot \frac{3}{8} = 4.59$$

Similarly, we will let

$$u_i(\sigma_i,\sigma_{-i})$$

Denote the expected payoff of player i of choosing the mixed strategy σ_i if all other players are using the mixed strategy σ_{-i} .

- We compute $u_i(\sigma_i, \sigma_{-i})$ analogously to $u_i(\sigma_i, \theta_{-i})$, simply replacing θ_{-i} with σ_{-i} .
- Also, we will abbreviate mixed strategies simply by listing the numerical probabilities used in each one of the strategies.

For example, consider the following game:

• Then the mixed strategy $\sigma_1 = (\frac{1}{8}, \frac{1}{4}, \frac{1}{4}, \frac{3}{8})$ refers to the mixing distribution:

$$\sigma_1(OA) = \frac{1}{8}, \sigma_1(OB) = \frac{1}{4}, \sigma_1(IA) = \frac{1}{4}, \sigma_1(IB) = \frac{3}{8}$$

 Compute the following expected payoffs for the previous game:

a)
$$u_1(\sigma_1, I)$$
 for $\sigma_1 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{10}, \frac{7}{30})$.

b)
$$u_2(\sigma_1, 0)$$
 for $\sigma_1 = (\frac{1}{8}, \frac{1}{4}, \frac{1}{4}, \frac{3}{8})$.

c)
$$u_1(\sigma_1, \sigma_2)$$
 for $\sigma_1 = (\frac{1}{16}, \frac{1}{4}, \frac{1}{2}, \frac{3}{16})$ and $\sigma_2 = (\frac{1}{3}, \frac{2}{3})$

d)
$$u_2(\sigma_1, \sigma_2)$$
 for $\sigma_1 = (\frac{1}{16}, \frac{1}{4}, \frac{1}{2}, \frac{3}{16})$ and $\sigma_2 = (\frac{1}{3}, \frac{2}{3})$

a) $u_1(\sigma_1, I)$ for $\sigma_1 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{10}, \frac{7}{30})$. This is player 1's expected payoff if player 2 chooses strategy "I" with probability one, and player 1 uses a mixed strategy where:

$$\sigma_1(OA) = \frac{1}{3}, \sigma_1(OB) = \frac{1}{3}, \sigma_1(IA) = \frac{1}{10},$$

$$\sigma_1(IB) = \frac{7}{30}$$

• Using the definition of expected payoff, we have: $u_1(\sigma_1, I)$

$$= u_1(OA, I) \cdot \sigma_1(OA) + u_1(OB, I) \cdot \sigma_1(OB) + u_1(IA, I) \cdot \sigma_1(IA) + u_1(IB, I) \cdot \sigma_1(IB) = 2 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} + 4 \cdot \frac{1}{10} + 3 \cdot \frac{7}{30} = \frac{73}{30} = 2.43$$

b) $u_2(\sigma_1, 0)$ for $\sigma_1 = (\frac{1}{8}, \frac{1}{4}, \frac{1}{4}, \frac{3}{8})$. This is player 2's expected payoff if player 2 chooses strategy "O" with probability one, and player 1 uses a mixed strategy where:

$$\sigma_1(OA) = \frac{1}{8}, \sigma_1(OB) = \frac{1}{4}, \sigma_1(IA) = \frac{1}{4},$$

$$\sigma_1(IB) = \frac{3}{8}$$

• Using the definition of expected payoff, we have: $u_2(\sigma_1, 0)$

$$= u_2(OA, O) \cdot \sigma_1(OA) + u_2(OB, O) \cdot \sigma_1(OB) + u_2(IA, O) \cdot \sigma_1(IA) + u_2(IB, O) \cdot \sigma_1(IB) = 2 \cdot \frac{1}{8} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{4} + 3 \cdot \frac{3}{8} = \frac{21}{8} = 2.62$$

c) $u_1(\sigma_1, \sigma_2)$ for $\sigma_1 = (\frac{1}{16}, \frac{1}{4}, \frac{1}{2}, \frac{3}{16})$ and $\sigma_2 = (\frac{1}{3}, \frac{2}{3})$. This is <u>player 1's</u> expected payoff if player 2 chooses the mixed strategy σ_2 , and player 1 uses the mixed strategy σ_1

$$\sigma_1(OA) = \frac{1}{16}, \sigma_1(OB) = \frac{1}{4}, \sigma_1(IA) = \frac{1}{2},$$

$$\sigma_1(IB) = \frac{3}{16}$$

and

$$\sigma_2(I) = \frac{1}{3}, \qquad \sigma_2(O) = \frac{2}{3}$$

• We know how to compute this expected payoff. It is given by:

$$u_{1}(\sigma_{1}, \sigma_{2})$$

$$= u_{1}(OA, \sigma_{2}) \cdot \sigma_{1}(OA) + u_{1}(OB, \sigma_{2}) \cdot \sigma_{1}(OB)$$

$$+ u_{1}(IA, \sigma_{2}) \cdot \sigma_{1}(IA) + u_{1}(IB, \sigma_{2}) \cdot \sigma_{1}(IB)$$

$$= u_{1}(OA, \sigma_{2}) \cdot \frac{1}{16} + u_{1}(OB, \sigma_{2}) \cdot \frac{1}{4} + u_{1}(IA, \sigma_{2}) \cdot \frac{1}{2}$$

$$+ u_{1}(IB, \sigma_{2}) \cdot \frac{3}{16}$$

- Therefore, we first need to compute:
 - $u_1(OA, \sigma_2)$
 - $u_1(OB, \sigma_2)$
 - $u_1(IA, \sigma_2)$
 - $u_1(IB, \sigma_2)$

• We have:

$$u_{1}(OA, \sigma_{2})$$

$$= u_{1}(OA, I) \cdot \sigma_{2}(I) + u_{1}(OA, O) \cdot \sigma_{2}(O)$$

$$= 2 \cdot \frac{1}{3} + 2 \cdot \frac{2}{3} = 2$$

$$u_{1}(OB, \sigma_{2})$$

$$= u_{1}(OB, I) \cdot \sigma_{2}(I) + u_{1}(OB, O) \cdot \sigma_{2}(O)$$

$$= 2 \cdot \frac{1}{3} + 2 \cdot \frac{2}{3} = 2$$

$$u_{1}(IA, \sigma_{2}) = u_{1}(IA, I) \cdot \sigma_{2}(I) + u_{1}(IA, O) \cdot \sigma_{2}(O)$$

$$= 4 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = 2$$

$$u_{1}(IB, \sigma_{2}) = u_{1}(IB, I) \cdot \sigma_{2}(I) + u_{1}(IB, O) \cdot \sigma_{2}(O)$$

$$= 3 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{5}{3}$$

• Therefore,

$$u_1(\sigma_1,\sigma_2)$$

$$= u_1(OA, \sigma_2) \cdot \frac{1}{16} + u_1(OB, \sigma_2) \cdot \frac{1}{4}$$

$$+ u_1(IA, \sigma_2) \cdot \frac{1}{2} + u_1(IB, \sigma_2) \cdot \frac{3}{16}$$

$$= 2 \cdot \frac{1}{16} + 2 \cdot \frac{1}{4} + 2 \cdot \frac{1}{2} + \frac{5}{3} \cdot \frac{3}{16} = \frac{93}{48}$$

$$= 1.93$$

d) $u_2(\sigma_1, \sigma_2)$ for $\sigma_1 = (\frac{1}{16}, \frac{1}{4}, \frac{1}{2}, \frac{3}{16})$ and $\sigma_2 = (\frac{1}{3}, \frac{2}{3})$. This is <u>player 2's</u> expected payoff for the same mixed strategies as in the previous part. It is given by:

$$u_{2}(\sigma_{1}, \sigma_{2}) = u_{2}(\sigma_{1}, I) \cdot \sigma_{2}(I) + u_{2}(\sigma_{1}, 0) \cdot \sigma_{2}(0)$$

$$= u_{2}(\sigma_{1}, I) \cdot \frac{1}{3} + u_{2}(\sigma_{1}, 0) \cdot \frac{2}{3}$$

- So now we have to compute:
 - $-u_2(\sigma_1,I)$
 - $-u_2(\sigma_1, 0)$

• We have:

$$u_{2}(\sigma_{1}, I)$$

$$= u_{2}(OA, I) \cdot \sigma_{1}(OA) + u_{2}(OB, I) \cdot \sigma_{1}(OB)$$

$$+ u_{2}(IA, I) \cdot \sigma_{1}(IA) + u_{2}(IB, I) \cdot \sigma_{1}(IB)$$

$$= 2 \cdot \frac{1}{16} + 2 \cdot \frac{1}{4} + 2 \cdot \frac{1}{2} + 4 \cdot \frac{3}{16} = \frac{38}{16} = 2.37$$

$$u_{2}(\sigma_{1}, 0)$$

$$= u_{2}(0A, 0) \cdot \sigma_{1}(0A) + u_{2}(0B, 0) \cdot \sigma_{1}(0B)$$

$$+ u_{2}(IA, 0) \cdot \sigma_{1}(IA) + u_{2}(IB, 0) \cdot \sigma_{1}(IB)$$

$$= 2 \cdot \frac{1}{16} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{2} + 3 \cdot \frac{3}{16} = \frac{43}{16} = 2.68$$

Finally, from here we obtain:

$$u_2(\sigma_1, \sigma_2) = u_2(\sigma_1, I) \cdot \frac{1}{3} + u_2(\sigma_1, O) \cdot \frac{2}{3}$$
$$= \frac{38}{16} \cdot \frac{1}{3} + \frac{43}{16} \cdot \frac{2}{3} = \frac{124}{48} = 2.58$$

• Example: Cournot-duopoly model.- Let us go back to the Cournot duopoly example described in the previous chapter, where market price is given by:

$$p = 100 - 2 \cdot q_1 - 2 \cdot q_2$$

And total costs for each firm are:

$$20 \cdot q_i \text{ for } i = 1,2.$$

 When we introduced this example, we showed that payoff (profit) functions are given by:

$$u_1(q_1, q_2) = (80 - 2 \cdot q_1 - 2 \cdot q_2) \cdot q_1$$

$$u_2(q_1, q_2) = (80 - 2 \cdot q_1 - 2 \cdot q_2) \cdot q_2$$

- Now consider the following **beliefs for player 1**, where he conjectures that: Player 2 will produce $q_2 = 10$ with probability 1/4, $q_2 = 12$ with probability 1/2, $q_2 = 15$ with probability 1/8, and $q_2 = 20$ with probability 1/8.
- Given these beliefs, compute player 1's expected payoff of producing q₁ units.
- Note that player 1's beliefs about player 2 are given by the probability distribution:

$$\theta_2(10) = \frac{1}{4}, \theta_2(12) = \frac{1}{2}, \theta_2(15) = \frac{1}{8}, \theta_2(20) = \frac{1}{8}$$
 and
$$\theta_2(q_2) = 0 \text{ for all } q_2 \neq 10,12,15,20$$

• Given these beliefs, player 1's expected payoff of producing q_1 units is given by:

$$u_{1}(q_{1}, \theta_{2}) = u_{1}(q_{1}, 10) \cdot \theta_{2}(10) + u_{1}(q_{1}, 12) \cdot \theta_{2}(12)$$

$$+u_{1}(q_{1}, 15) \cdot \theta_{2}(15) + u_{1}(q_{1}, 20) \cdot \theta_{2}(20)$$

$$= (80 - 2 \cdot q_{1} - 2 \cdot 10) \cdot q_{1} \times \theta_{2}(10)$$

$$+(80 - 2 \cdot q_{1} - 2 \cdot 12) \cdot q_{1} \times \theta_{2}(12)$$

$$+(80 - 2 \cdot q_{1} - 2 \cdot 15) \cdot q_{1} \times \theta_{2}(15)$$

$$+(80 - 2 \cdot q_{1} - 2 \cdot 20) \cdot q_{1} \times \theta_{2}(20)$$

$$= (80 - 2 \cdot q_{1} - 2 \cdot 10) \cdot q_{1} \times \frac{1}{4}$$

$$+(80 - 2 \cdot q_{1} - 2 \cdot 15) \cdot q_{1} \times \frac{1}{8}$$

$$+(80 - 2 \cdot q_{1} - 2 \cdot 20) \cdot q_{1} \times \frac{1}{8}$$

$$+(80 - 2 \cdot q_{1} - 2 \cdot 20) \cdot q_{1} \times \frac{1}{8}$$

Grouping terms we have:

$$u_1(q_1, \theta_2) = (80 - 2 \cdot q_1) \times \left(\frac{1}{4} + \frac{1}{2} + \frac{1}{8} + \frac{1}{8}\right)$$

$$-2 \cdot q_1 \times \left(10 \cdot \frac{1}{4} + 12 \cdot \frac{1}{2} + 15 \cdot \frac{1}{8} + 20 \cdot \frac{1}{8}\right)$$

$$= (80 - 2 \cdot q_1) - \left(\frac{206}{8}\right) \cdot q_1 = \left(80 - \frac{206}{8} - 2 \cdot q_1\right) \cdot q_1$$

$$= (54.25 - 2 \cdot q_1) \cdot q_1$$

• That is, the expected payoff function for player 1 of producing q_1 units given the beliefs described above is:

$$u_1(q_1, \theta_2) = (54.25 - 2 \cdot q_1) \cdot q_1$$

- Uncertainty and the ordinal nature of payoffs: When we focused on pure strategies only (previous two chapters), we argued that payoffs only needed to reflect the ordinal preferences of players over <u>outcomes</u>.
- In the general case where there can be mixed strategies and uncertainty about others' choices, payoffs should reflect the ordinal preferences of players over distributions of outcomes.
- Assigning numerical payoffs is straightforward in games where these payoffs have a monetary interpretation.
 Otherwise we should always keep in mind that the numerical payoffs in a game represent more than just ordinal preferences over outcomes.