
Pollard’s Entropy Condition, Stochastic Equicontinuity, and its
implications for Weak Convergence and M-Estimation Problems

Let (X , S, µ) be a probability space, and let F be a class of real-valued
functions with domain X that is measurable for the sigma-algebra S. Let
F be the envelope for F . The envelope is assumed to satisfy µF 2 < ∞. We
equip F with the pseudometric dµ : F × F → R+ given by

dµ(f, g) =

(
µ
∣∣f − g

∣∣2
)1/2

T , where T 2 = µF 2.

The classF is Euclidean if there exist constants A, V > 0 which do not depend
on µ such that:

N(ε, dµ,F) ≤ Aε−V for all 0 < ε ≤ 1.

N(ε, dµ,F) is the covering number we defined in lecture.

As it turns out, if the class of subgraphs generated by F is a polynomial class
of sets, then F is Euclidean. This is a sufficient, but not necessary condition.
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A class of functions F is manageable if there exists a deterministic function
λ(·), called the “capacity bound” such that

(i)
∫ 1

0

√
log λ(ε)dε < ∞; and (ii) D(ε, dµ,F) ≤ λ(ε) ∀ 0 < ε ≤ 1

D(ε, dµ,F) is the packing number we defined in lecture. Clearly, all Euclidean
classes are manageable since D(2ε, dµ,F) ≤ N(ε, dµ,F) and therefore

∫ 1

0

√
log D(ε, dµ,F)dε ≤

∫ 1

0

√
−V log(ε/2) + log(A)dε < ∞.

The class of functions F satisfies Pollard’s Entropy Condition if
∫ 1

0

sup
µ

√
log N(ε, dµ,F)dε < ∞ for some envelope F .

The search for the supremum is done over the set of all measures that
concentrate on a finite set. N(ε, dµ,F) is the covering number we defined.
Euclidean classes of functions also satisfy Pollard’s entropy condition.
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Sufficient Conditions for a classFFF to satisfy Pollard’s Entropy Condition.
In practice, we do not verify that the subgraphs generated by F is of
polynomial class. We rely on sufficient conditions, easy to verify. We first
introduce the concept of Total Variation:

Total Variation: Let (X, d) be a metric space. A functon γ : [a, b] → X
is of bounded variation if there exists M such that for each partition P ={
a = t0 < t1 < · · · < tn = b

}
of [a, b],

v(γ,P) =

n∑

k=1

d
(
γ(tk), γ(tk−1)

) ≤ M.

The total variation Vγ of γ is defined by

Vγ = sup
{
v(γ,P) : P is a partition of [a, b].

}

A function γ is of bounded variation if and only if it can be expressed as the
difference between two monotonic functions. In addition, all smooth functions
are of bounded variation. We will describe three types of functions that satisfy
Pollard’s entropy condition.
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Type I Class of Functions
A class F is type-I class if it is of the form

F =
{
f : f (x) = h(x′θ) ∀ x ∈ X , where θ ∈ Θ ⊂ Rk (bounded), and h ∈ Vk,

}

where Vk is a set of functions from R → R with total variation ≤ K < ∞.
Thus, Type-I functions are transformations of linear indices with bounded
variation. This type is useful to deal with M -estimation problems with
nondifferentiable objective functions.

Type II Class of Functions
A class F is of Type-II class if

F =
{
f : f (x) = f (x, θ), where θ ∈ Θ ⊂ Rk (bounded), and

every f ∈ F satisfies a Lipschitz condition of the form∣∣f (·, θ1)− f (·, θ2)
∣∣ ≤ B(·)∥∥θ1 − θ2

∥∥ ∀ θ1, θ2 ∈ Θ.

and some function B : X → R with E[B(X)2] < ∞

Type III Class of Functions
We will discuss them later. They are relevant in semiparametric estimation.
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Theorem (Theorem 2 in Andrews 1994, Handbook of Econometrics) If F
is class I or II, then Pollard’s entropy condition holds with envelopes:

F (·) = max

{
1, sup

f∈F

∣∣f (·)|
}

for Type-I class,

F (·) = max

{
1, sup

f∈F

∣∣f (·)|, B(·)
}

for Type-II class.

There is an additional (by perhaps now redundant) result from Pakes and
Pollard (1989):

Let F be a class of real-valued functions defined on X indexed by a bounded
subset T ⊂ Rd. If there exists a constant C such that∣∣f (x, t)− f (x, t′)

∣∣ ≤ c
∣∣t− t′

∣∣ ∀ x ∈ X , t, t′ ∈ T,

then F is Euclidean for a constant envelope. (Note that this class of functions
is more restrictive than Type-II).
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Extending the properties of Euclidean, Manageable, etc. to Sequences of
classes

{Fn

}{Fn

}{Fn

}
.

The previous concepts can be extended to sequences of classes of functions
in a straightforward way. For example, the sequence of classes

{Fn

}
is

Euclidean for envelope F (which does not depend on n) if there exist A, V > 0
not depending on µ such that

sup
n

N(ε, dµ,Fn) ≤ Aε−V ∀ 0 < ε ≤ 1

The concepts of manageability and Pollard’s entropy condition are extended
in an analogous way (by taking the corresponding suprema over the sequence
Fn).

We can finally go back to our empirical process....
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Back to our Empirical Process
We defined it by

νN(τ ) =
1√
N

N∑
i=1

[
m(Xi, τ )−E[m(Xi, τ )]

]
, τ ∈ (T, d) (pseudo-metric space).

νN(τ ) is a sequence of classes of functions. Everything will be determined by
the properties of the following class of functions:

Fm =
{
m(·, τ ) : τ ∈ T

}

Theorem 1 in Andrews (1994) essentially states that if Fm is Euclidean, then
νN(τ ) is also Euclidean, and ifFm satisfies Pollard’s entropy condition, then so
does νN(τ ). A consequence of Pollard’s entropy condition is that the empirical
process νN(τ ) will also satisfy Stochastic Equicontinuity, which we define
next (before stating the theorem formally).
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Stochastic Equicontinuity of an Empirical Process
As a preamble, we first define the concept of Outer Expectation (and Outer
Probability), and the concept of Weak Convergence.

Outer Expectation: This concept helps us deal with processes that are not
measurable. We start with a probability space (Ω, S,P). For each bounded,
real-valued function H : Ω → R, we define the outer expectation E∗H as

E∗(H) = inf
{

E(h) : H ≤ h, such that h is measurable and integrable.
}

Weak Convergence: Consider a sequence of processes νN(τ ) and a process
ν(τ ) indexed by the same pseudometric space (T, dT ). Let B(T ) be the space
of functions where νN(τ ) lives. Let U(

B(T )
)

be the space of all bounded,
uniformly continuous transformations defined on B(T ). Then, the sequence
of processes νN(τ ) converges weakly to the process ν(τ ) if

E∗[f(
νN(·))] −→ E

[
f
(
ν(·))] ∀ f ∈ U(

B(T )
)

We denote this as
νN(·) ⇒ ν(·)

Note that in the definition, we assume the limiting process ν(·) to be
measurable.
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Why do we care about measurability? The processes νN(·) and ν(·) are both
random functions of τ . Coming up with a probability space in which
the process νN(·) is measurable is a difficult (many times impossible) task.
Measurability of a random function is a delicate issue. This is very different
from talking about the measurability of νN(τ0) and ν(τ0) for a fixed value of
the index at τ0.

When dealing with the processes νN(·) and ν(·) we use outer-expectations
because requiring measurability of the process νN(·) is too restrictive even in
simple cases. The typical example of this is:

T = [0, 1], m(Xi, τ ) = 1l{Xi ≤ τ}.
The question we have to address is: In what measure space is the resulting
process νN(·) measurable?
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The most obvious measure space that comes to mind is given by
(
D[0, 1],B(D[0, 1]), d

)
,

where D[0, 1] is the space of functions that are right-continuous and whose
left limits always exist (the space of cadlag functions), and B(D[0, 1]) is the
Borel-sigma field in D[0, 1]. d stands for the uniform metric

d(x, y) = sup
t∈[0,1]

∣∣x(t)− y(t)
∣∣

The definition of open sets, etc. is based upon this metric. We need this to find
B(D[0, 1]). Well, it turns out that our apparently innocuous process νN(·) is not
measurable in

(
D[0, 1],B(D[0, 1])

)
. A solution in this particular case is to drop

the uniform metric in favor of the so-called Skorohod metric. Unfortunately,
no such alternatives exist for slightly more complicated processes. This is
why we focus on outer expectations. We do not worry about this for the
limiting process ν(·) because the results that we will review focus on limiting
processes that are uniformly continuous w.p.1. This would be enough to solve
any measurability concerns.
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Stochastic Equicontinuity
We will focus on the following definition (see two other alternative, equivalent
definitions in Andrews 1994, Handbook of Econometrics): The process νN(·)
is stochastically equicontinuous if for any ε > 0 and any η > 0, there exists
δ > 0 such that

lim
N→∞

P∗
[

sup
ρ(τ1,τ2)<δ

∥∥∥νN(τ1)− νN(τ2)
∥∥∥ > η

]
< ε

lim denotes “upper limit”, which means that limTn = c if c is greater than all
but a finite number of terms of {Tn}, all of which are equal to c.

Stochastic Equicontinuity is a tremendously useful property. It can yield weak
convergence, and it can also help us find the asymptotic distribution of M-
estimators very quickly.
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Weak Convergence and Stochastic Equicontinuity
The following result can be found in Andrews (1994).

Suppose:

(i) (T, ρ) is a totally bounded pseudometric space.

(ii) Finite-dimensional convergence in distribution holds. That is: For all
finite subsets (τ1, τ2, . . . , τJ) ∈ T , the vector

(
νN(τ1), νN(τ2), . . . , νN(τJ)

)
converges in distribution.

(iii) νN(·) is stochastically equicontinuous.

Then, there exists a Borel-measurable stochastic process ν(·) with sample
paths that are uniformly continuous w.p.1, such that νN(·) ⇒ ν(·). Conversely,
if νN(·) ⇒ ν(·), with ν(·) satisfying the conditions described above, then (ii)
and (iii) hold.
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Weak convergence is a very powerful result, for example, because any con-
tinuous mapping (functional) of νN(·) will also converge to the corresponding
one for ν(·). For example,

ϕ
(
νN(·)), sup

τ

∣∣νN(τ )
∣∣,

∫

T

νN(τ )dτ

(where ϕ(·) is a continuous transformation) would converge weakly to

ϕ
(
ν(·)), sup

τ

∣∣ν(τ )
∣∣,

∫

T

ν(τ )dτ

provided that these objects are well-defined. If we characterize the limiting
process ν(·), we would be able to do inference on these functionals.

Next, we analyze the relationship between stochastic equicontinuity and M -
estimation.
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Stochastic equicontinuity and M-estimators
Take τ ∈ T ⊂ Rk and let

mN(τ ) =
1

N

N∑
i=1

m(Xi, τ )

Suppose an estimator τ̂ satisfies√
NmN(τ̂ ) = op(1), or equivalently, mN(τ̂ ) = op

(
1/
√

N
)
.

Suppose τ̂ is also consistent for τ0 (the true parameter value), so that
ρ
(
τ̂ , τ0

) p−→ 0. Let λ(τ ) ≡ E
[
mN(τ )

]
, then τ0 is defined by λ(τ0) =

0. Suppose λ(·) is a smooth function that admits the following Taylor
approximation

0 = λ(τ0) = λ(τ̂ ) +∇τλ(τ̃ )(τ0 − τ̂ ),

where τ̃ is between τ̂ and τ0. Suppose ∇τλ(τ ) is invertible in a neighborhood
of τ0, and this inverse is a continuous there. This would be enough to yield,
for sufficiently large N :√

N(τ̂ − τ0) = ∇τλ(τ̃ )−1
√

Nλ(τ̂ )

with ∇τλ(τ̃ )−1 p−→ ∇τλ(τ0)
−1 ≡ M−1.
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Therefore, the asymptotic distribution of
√

N(τ̂ − τ0) will depend on the
properties of

√
Nλ(τ̂ ). we have
√

Nλ(τ̂ ) =
√

N
(
λ(τ̂ )−mN(τ̂ )

)
︸ ︷︷ ︸

≡νN (τ̂)

+
√

NmN(τ̂ )︸ ︷︷ ︸
=op(1)

The relevant empirical process is

νN(τ ) = − 1√
N

N∑
i=1

[
m(Xi, τ )− E[m(Xi, τ )]

]
.

Adding and subtracting νN(τ0), we get
√

Nλ(τ̂ ) = νN(τ̂ )− νN(τ0) + νN(τ0) + op(1).

We will assume that the relevant conditions are satisfied, so that νN(τ0)
d−→

N (0, S). In this case, we would have
√

Nλ(τ̂ )
d−→ N (0, S) if

νN(τ̂ )− νN(τ0) = op(1).

We have the following claim...
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Claim: Given that τ̂̂τ̂τ is consistent, νN(τ̂ )− νN(τ0) = op(1)νN(τ̂ )− νN(τ0) = op(1)νN(τ̂ )− νN(τ0) = op(1) if νN(·)νN(·)νN(·) is
stochastically equicontinuous.

Proof: Fix any η > 0 and consider the following probability (recall that we
may have to use outer probabilities P ∗ here, if the process is not measurable)
for a given δ

Pr
(∣∣νN(τ̂ )− νN(τ0)

∣∣ > η, ρ(τ̂ , τ0) ≤ δ
)

+ Pr
(
ρ(τ̂ , τ0) > δ

)

These probabilities constitute an upper bound for Pr
(∣∣νN(τ̂ ) − νN(τ0)

∣∣ > η
)

for any value of δ. To see this, note that δ → ∞, these probabilities become
approximately equal to Pr

(∣∣νN(τ̂ )−νN(τ0)
∣∣ > η

)
, and if δ → 0, they become

approximately equal to 1. In particular, this means that for any η > 0, we can
find a δ > 0 such that

lim
N→∞

P
(∣∣νN(τ̂ )− νN(τ0)

∣∣ > η
)
≤ lim

N→∞
P

(∣∣νN(τ̂ )− νN(τ0)
∣∣ > η, ρ(τ̂ , τ0) ≤ δ

)

+ lim
N→∞

P
(
ρ(τ̂ , τ0) > δ

)
︸ ︷︷ ︸
=o(1), by consistency of τ̂ .
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Now, notice that
∣∣νN(τ̂ )− νN(τ0)

∣∣ > η and ρ(τ̂ , τ0) ≤ δ only if
[

sup
ρ(τ,τ0)≤δ

∣∣νN(τ )− νN(τ0)
∣∣
]

> η.

Therefore

lim
N→∞

P
(∣∣νN(τ̂ )−νN(τ0)

∣∣ > η, ρ(τ̂ , τ0) ≤ δ
)
≤ lim

N→∞
P

[
sup

ρ(τ,τ0)≤δ

∣∣νN(τ )−νN(τ0)
∣∣ > η

]

This yields

lim
N→∞

P
(∣∣νN(τ̂ )−νN(τ0)

∣∣ > η
)
≤ lim

N→∞
P

[
sup

ρ(τ,τ0)≤δ

∣∣νN(τ )−νN(τ0)
∣∣ > η

]
+o(1)

If νN(·) is stochastically equicontinuous, then the first probability on the right-
hand side goes to zero for any δ > 0. Therefore lim

N→∞
P

(∣∣νN(τ̂ ) − νN(τ0)
∣∣ >

η
)
→ 0. Since this holds for an arbitrary η > 0, we get νN(τ̂ )−νN(τ0) = op(1)

and therefore
√

Nλ(τ̂ ) = νN(τ0) + op(1), and
√

Nλ(τ̂ )
d−→ N (0, S)
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Therefore, the asymptotic distribution of τ̂ is given by
√

N(τ̂ − τ0) = ∇τλ(τ̃ )−1νN(τ0) + op(1)
d−→ N (0,M−1SM−1),

where ∇τλ(τ0)
−1 ≡ M−1.

Stochastic equicontinuity and Semiparametric Estimation (♦♦♦)
A number of semiparametric estimation problems involve a first-stage estima-
tor τ̂ for an infinite-dimensional parameter (an unknown function, or func-
tional). Using this plug-in, the econometrician estimates a finite-dimensional
parameter θ by satisfying (with respect to θ̂) a set of asymptotic pseudo-first
order conditions

√
NmN(θ̂, τ̂ ) = op(1), with mN(θ, τ̂ ) =

1

N

N∑
i=1

m(Xi; θ, τ̂ ).

In the context of semiparametric estimation problems, with a nonparametric
first-stage estimator for an infinite-dimensional parameter, we will focus here
on smooth objective functions (the extension to left-and-right differentiable
functions would not be so difficult, given our previous discussions regarding
the CLAD estimator. Extensions to discontinuous objective functions are
something else entirely, we will not cover them here due to lack of time).
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We assume mN(·, τ ) to be a smooth function of θ. A first-order Taylor
approximation yields

op(1) = mN(θ̂, τ̂ ) = mN(θ0, τ̂ ) +∇θmN(θ̃, τ̂ )(θ̂ − θ0)

We assume that ∇θmN(θ̃, τ̂ )−1 p−→ M−1. This allows us to express (for
sufficiently large N )√

N(θ̂ − θ0) = −∇θmN(θ̃, τ̂ )−1
√

NmN(θ0, τ̂ ) + op(1). (1)

Let λ(θ, τ ) = E[mN(θ, τ )]. The relevant empirical process here will be

νN(θ, τ ) =
√

N
(
mN(θ, τ )− λ(θ, τ )

)

We have√
NmN(θ0, τ̂ ) = νN(θ0, τ̂ ) +

√
Nλ(θ0, τ̂ )

= νN(θ0, τ̂ )− νN(θ0, τ0) + νN(θ0, τ0) +
√

Nλ(θ0, τ̂ )

The term νN(θ0, τ0) will have an asymptotically normal distribution. How
about the term

√
Nλ(θ0, τ̂ )? A simple case is one in which τ is some unknown

function of, say, Zi and

mN(θ0, τ̂ ) =
1

N

N∑
i=1

m(Xi, θ0, τ̂ (Zi)).
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In this case,

λ(θ0, τ̂ ) =
1

N

N∑
i=1

E
[
m(Xi, θ0, τ̂ (Zi))

]

=
1

N

N∑
i=1

E
[
m(Xi, θ0, τ0(Zi))

]

︸ ︷︷ ︸
=0

+
1

N

N∑
i=1

∇τ

(
E

[
m(Xi, θ0, τ0(Zi))

])(
τ̂ (Zi)− τ0(Zi)

)

+
1

2N

N∑
i=1

(
τ̂ (Zi)− τ0(Zi)

)′∇ττ ′
(
E

[
m(Xi, θ0, τ̃ (Zi))

])(
τ̂ (Zi)− τ0(Zi)

)

Suppose we show that

1

N

N∑
i=1

∥∥∥∇ττ ′
(
E

[
m(Xi, θ0, τ̃ (Zi))

])∥∥∥ = Op(1), sup
i

∥∥∥τ̂ (Zi)−τ0(Zi)
∥∥∥ = op(N

−1/2).

Then, we have

√
Nλ(θ0, τ̂ ) =

1√
N

N∑
i=1

∇τ

(
E

[
m(Xi, θ0, τ0(Zi))

])(
τ̂ (Zi)− τ0(Zi)

)
+ op(1)
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As it turns out, in many situations, and under appropriate assumptions
regarding the way in which τ̂ (·) is estimated, the term

1√
N

N∑
i=1

∇τ

(
E

[
m(Xi, θ0, τ0(Zi))

])(
τ̂ (Zi)− τ0(Zi)

)

can be expressed as a “U-statistic” (a higher order summation) which has
an asymptotically normal distribution plus a term that is op(1). In this case,√

Nλ(θ0, τ̂ )
d−→ N (0, B). Going back, we have√

NmN(θ0, τ̂ ) = νN(θ0, τ̂ ) +
√

Nλ(θ0, τ̂ )

= νN(θ0, τ̂ )− νN(θ0, τ0) + νN(θ0, τ0) +
√

Nλ(θ0, τ̂ ).

As before, if the process νN(·) is stochastically equicontinuous, we will have
νN(θ0, τ̂ ) − νN(θ0, τ0) = op(1), and if the above conditions are met, we will
have √

NmN(θ0, τ̂ )
d−→ N (0, C)

where C would reflect also the asymptotic covariance between νN(θ0, τ0)

and
√

Nλ(θ0, τ̂ ). Our semiparametric estimator θ̂ will have an asymptotic
distribution √

N
(
θ̂ − θ0

) d−→ N (0,M−1CM−1)

where M−1 = plim ∇θmN(θ0, τ̂ )−1
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Theorem: Pollard’s Entropy Condition and Stochastic Equicontinuity
Consider the process

νN(τ ) =
1√
N

N∑
i=1

[
m(Xi, τ )− E[m(Xi, τ )]

]

Let
Fm =

{
m(·, τ ); τ ∈ T

}

If the class Fm satisfies Pollard’s entropy condition with some envelope M(·)
such that

lim
N→∞

1

N

N∑
i=1

E
[
M(Xi)

2+δ
]

for some δ > 0,

and if the random variables {Xi} are m-dependent (this includes indepen-
dence as a special case, but also covers a family of time series), then the
process νN(·) is stochastically equicontinuous.

Thus, we can save pages of proofs for the asymptotic distribution of an
estimator if we only show that the function m(·, τ ) belongs to one of the
classes described above!
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What is the connection between the entropy of a process and stochastic
equicontinuity?
This discussion centers on Chapter 3 in Pollard (1990). We define first an the
concept of Orlicz Norm:

Orlicz Norm: Suppose Φ is a convex, increasing function in R+ with 0 ≤
Φ(0) ≤ 1. The resulting Orlicz norm of a random variable Z, denoted by∥∥Z

∥∥
Φ

is ∥∥Z
∥∥

Φ
= inf

{
c > 0 : E

[
Φ(|Z|/c)] ≤ 1

}

Loosely speaking, we can think of the Orlicz norm as being E
[
Φ(Z)

]
when

this expectation exists.

The results that follow focus on the Orlicz norm that results from the function

Ψ(x) =
1

5
exp(x2).

we will denote the resulting Orlicz norm by ‖ · ‖Ψ
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The next lemma provides a very useful result to us:

Lemma 3.2 in Pollard (1990)
For any finite collection of m random variables Z1, . . . , Zm,∥∥∥max

i≤m

∣∣Zi

∣∣
∥∥∥

Ψ
≤

√
2 + log(m) ·max

i≤m

∥∥Zi

∥∥
Ψ

The next lemma builds on this result, and provides a hint of the link between
stochastic equicontinuity and entropy (more precisely, packing numbers).

Lemma 3.4 in Pollard (1990)
If a stochastic process Z(·) has continuous sample paths and satisfies∥∥∥Z(s)− Z(t)

∥∥∥
Ψ
≤ d(s, t) ∀ s, t ∈ T,

and if there exists t0 ∈ T such that sup
t∈T

d(t, t0) = δ for some δ, then

∥∥∥∥sup
T

∣∣∣Z(t)− Z(s)
∣∣∣
∥∥∥∥

Ψ

≤
∞∑
i=0

δ

2i

√
2 + log D

(
δ/2i+1, d, T

)
,

where D stands for packing number as before.
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Proof: The proof involves a “chaining” argument, which is a “discretization”
reminiscent of Huber’s (1967) grid-construction. Since the results in Andrews
(1994) deal with bounded pseudo-metric spaces, we can safely focus on the
case δ < ∞ (the case δ = ∞ is trivial).

Step 1.- Denote

δi ≡ δ

2i
, for i = 0, 1, 2, . . ..

Now, construct a sequence of maximal sets

t0 ≡ T0, T1, T2, . . . ,

where each Ti ⊆ T is the maximal (i.e, the largest) set in T with the property
that

d(s, t) > δi if s, t ∈ Ti and s 6= t.
Maximality implies that if s /∈ Ti, then min

t∈Ti

d(s, t) ≤ δi. Note that, by

definition of packing numbers, we must have #Ti = D(δi, d, T ).
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Step 2.- For i = 1, 2, . . . , let Si ≡ Ti /∈ Ti−1. Approximate sup
T

∣∣Z(t)−Z(t0)
∣∣

with max
t∈Sm

∣∣Z(t)− Z(t0)
∣∣ for some Sm. This is a discretization of the problem

because Tm and Sm are discrete sets. Note that #Si ≤ D(δi, d, T ).

Take any t ∈ Sm. By construction, for any such t we can always find a
sequence of points leading from t to t0,

t ≡ tm, tm−1, tm−2, . . . , t1, t0

such that: (i) ti ∈ Si for each element in the sequence, and (ii) d(ti, ti−1) ≤ δi.
Using this sequence, a triangle inequality yields

max
Sm

∣∣Z(t)− Z(t0)
∣∣ ≤ max

Sm

m∑
i=1

∣∣Z(ti)− Z(ti−1)
∣∣

≤
m∑

i=1

max
Si

∣∣Z(ti)− Z(ti−1)
∣∣.
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Any well-defined norm must preserve this inequality. Going back to our
Orlicz-Norm ‖·‖Ψ, this yields (using a further round of the triangle inequality)

∥∥∥max
Sm

∣∣Z(t)− Z(t0)
∣∣
∥∥∥

Ψ
≤

m∑
i=1

∥∥∥∥max
Si

∣∣Z(ti)− Z(ti−1)
∣∣
∥∥∥∥

Ψ

Step 3.- Using the bound in Lemma 3.2 of Pollard (1990) (mentioned above),
we get∥∥∥∥max

Si

∣∣Z(ti)− Z(ti−1)
∣∣
∥∥∥∥

Ψ

≤
√

2 + log
(
#Si)×

∥∥∥∥max
Si

∣∣Z(ti)− Z(ti−1)
∣∣
∥∥∥∥

Ψ

≤
√

2 + log D(δi, t, T )×max
Si

d(ti, ti−1)

≤
√

2 + log D(δi, t, T )× δi.

Therefore,
∥∥∥max

Sm

∣∣Z(t)− Z(t0)
∣∣
∥∥∥

Ψ
≤

m∑
i=1

√
2 + log D(δi, t, T )× δi

Continuity of sample paths and a monotone-convergence argument allow us
to link this result back to

∥∥∥sup
T

∣∣Z(t)− Z(t0)
∣∣
∥∥∥

Ψ
by taking

lim
m→∞

∥∥∥max
Sm

∣∣Z(t)− Z(t0)
∣∣
∥∥∥

Ψ
.
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We get

lim
m→∞

∥∥∥max
Sm

∣∣Z(t)− Z(t0)
∣∣
∥∥∥

Ψ
≤

∞∑
i=1

δi

√
2 + log D(δi, t, T ).

To link this back to the definition of Entropy, we simply need to find an upper
bound for

∑∞
i=1 δi

√
2 + log D(δi, t, T ) in terms of an integral.

By definition of δ, we have x < δ ⇒ D(x, t, T ) ≥ 2. Now, it is easy to
verify that

√
2 + log(1 + D) < 2.2 log(D) for D ≥ 2. Using the fact that

δi = 2(δi − δi+1), we get
∞∑
i=1

δi

√
2 + log D(δi, t, T ) ≤ 4.4

∞∑
i=1

(
δi − δi+1

)√
log D(δi, t, T )

By construction, D(x, t, T ) is a decreasing function of x. Therefore,

(
δi − δi+1

)√
log D(δi, t, T ) ≤

∫ δi

δi+1

√
log D(x, t, T )dx.
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Therefore,
∞∑
i=1

δi

√
2 + log D(δi, t, T ) ≤ 4.4

∞∑
i=1

∫ δi

δi+1

√
log D(x, t, T )dx

= 4.4

∫ δ/2

0

√
log D(x, t, T )dx ≤ 4.4

∫ δ

0

√
log D(x, t, T )dx.

We arrive at an expression of the form 4.4
∫ 1

0

√
log D(x, t, T )dx by normaliz-

ing the pseudometric d by sup
t∈T

d(t, t0)
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U-Statistics and U-Processes
Let P be a distribution on a set S, let Z1, . . . , Zn an iid sample from P . Let f
denote a real-valued function defined on Sk = S ⊗ S · · · ⊗ S︸ ︷︷ ︸

k factors

with k ≥ 1. We

define the U-statistic of order kkk by

Un,kf = (nk)
−1

∑

Ik

f (Zi1, . . . , Zik)

where (n)k = n × (n − 1) × · · · × (n − k + 1), and Ik is the set of all (n)k
ordered k-tuples of distinct integers from the set {1, . . . , n}. Simply put, (n)k
denotes the number of permutations of n elements, taking k at a time.

If f (Zi1, . . . , Zik) is symmetric in its arguments, then we can re-express Un,kf
as

Un,k =

(
n

k

)−1 ∑
i1<i2<···<ik

f (Zi1, . . . , Zik)

where the summation index i1 < i2 < · · · < ik signifies the set of all
combinations of n elements, taking k at a time.
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Consider the following functional notation: Take k = 3, then
f (P, s, t) = E

[
f (z1, z2, z3)

∣∣z2 = s, z3 = t
]
;

f (P, s, P ) = E
[
f (z1, z2, z3)

∣∣z2 = s
]
;

Qf = E
[
f (z1, z2, zt)

]

Note that Q is the product measure Q = P ⊗ · · · ⊗ P︸ ︷︷ ︸
k factors

.

Suppose now that the function f is such that under the product measure
Q = P ⊗ · · · ⊗ P , the conditional expectation of f given any k − 1 of its
k arguments is identically zero. Then we say that f is PPP -degenerate, and that
Un,kfUn,kfUn,kf is P-degenerate.

Hoeffding Decomposition
Let f , P and Q be as described above. If Qf < ∞, then there exist real-valued
functions f1, . . . , fk such that for each j, fj is P−degenerate on Sj and

Un,kf = Qf + Pnf1 +

k∑
j=2

Un,jfj

where, for each z in S,

f1(z) = f (z, P, . . . , P ) + f (P, z, P, . . . , P ) + · · · + f (P, . . . , P, z)− kQf
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Asymptotic Properties of U-statistics
Hoeffding’s decomposition will prove to be a very useful result because, as we
shall see, degenerate U-statistics of higher order converge to zero “really fast”.
To see this, we characterize the expression for the variance of a U-statistic.

Variance of a U-statistic
Without loss of generality, consider a symmetric U-statistic of order k, based
on a symmetric function f (x1, x2, . . . , xk) which satisfies

E
[
f (X1, . . . , Xk)

2
]

< ∞.

Let
fc(x1, x2, . . . , xc) ≡ f (x1, x2, . . . , xc, P, P, . . . , P︸ ︷︷ ︸

k-c times

)

= E
[
f (x1, x2, . . . , xc, Xc+1, . . . , Xk)

∣∣X1 = x1, X2 = x2, . . . , Xc = xc

]
.

Define ζ0 = 0 and, for 1 ≤ c ≤ k, let

ζc = Var
[
fc(X1, X2, . . . , Xc)

]
.

It is intuitively clear that

0 = ζ0 ≤ ζ1 ≤ · · · ≤ ζk = Var
[
f (X1, . . . , Xk)

2
]
.
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Lemma (Variance of a U-statistic)
The variance of the m-th order U-statistic

Un,kf =

(
n

k

)−1 ∑
i1<i2<···<ik

f
(
Xi1, Xi2, . . . , Xik

)

is given by

Var
[
Un,kf

]
=

(
n

k

)−1 k∑
c=1

(
k

c

)(
n− k

k − c

)
ζc

Suppose our U-statistic Un,k is such that 0 ≡ ζ0 = ζ1 = · · · = ζc−1 = 0 < ζc.
The previous formula immediately yields

Var
[
Un,kf

]
=

c!
(
k
c

)2

nc
ζc + O

(
n−c−1

)

Letting θ ≡ E[Un,kf ], this yields

Var
[
nc/2

(
Un,kf − θ

)] −→ c!

(
k

c

)2

ζc,

which suggests that the random variable nc/2
(
Un,kf − θ

)
converges in

distribution to a nondegenerate distribution.
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If Un,kf is a degenerate U-statistic, all of the above simply implies

Un,kf = Op(n
−k/2)

Going back to the Hoeffding decomposition

Un,kf = Qf + Pnf1 +

k∑
j=2

Un,jfj = Qf + Op(n
−1/2) + Op(n

−1),

where f1(z) = f (z, P, . . . , P ) + f (P, z, P, . . . , P ) + · · · + f (P, . . . , P, z) −
kQf . If f is symmetric, the previous results immediately imply that if
E[f (X1, . . . , Xk)

2] < ∞, and if ζ1 > 0:

√
n
(
Un,k −Qf

)
=

k√
n

n∑
i=1

(
E[f (Xi1, Xi2, . . . , Xik)

∣∣Xi1]−Qf
)

+
√

nOp(n
−1)

d−→ N (
0, k2ζ1

)
.

This result is known as the Central Limit Theorem for U-statistics (See
Theorem 5.5.1(A) in Serfling’s book).
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If ζ1 = 0 (so that E[f (Xi1, Xi2, . . . , Xik)
∣∣Xi1] = Qf w.p.1), but ζc > 0 for

some c ≥ 2, then nc/2
(
Un,k−Qf

)
will converge in distribution (possibly to a

non-normal law).

Ahn and Powell’s Projection Theorem for U-statistics
Useful in semiparametric settings, where the function f depends on n itself,
basically through the presence of a bandwidth sequence that goes to zero as
n →∞. Suppose fn is symmetric. The Hoeffding decomposition is

Un,kfn = Qfn + Pnf1n +

k∑
j=2

Un,jfjn

=
k

n

n∑
i=1

(
E

[
fn

(
Xi1, Xi2, . . . , Xik

)∣∣Xi1

]−Qfn

)
+ Op(n

−1ζ1n)

Recall from above that 0 ≡ ζ0n ≤ ζ1n ≤ · · · ≤ ζkn = Var
[
fn

(
Xi1, Xi2, . . . , Xik

)]
.
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Therefore, if Var
[
fn

(
Xi1, Xi2, . . . , Xik

)]/√
n −→ 0, we will have

√
n
(
Un,kfn−Qfn

)
=

k√
n

n∑
i=1

(
E

[
fn

(
Xi1, Xi2, . . . , Xik

)∣∣Xi1

]−Qfn

)
+op(1).
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U-Processes
We define a U-process in the exact analogous way as an empirical process,
except that we now deal with a “higher-order” summation of terms.

As before, we have a class of functions F which produces the U-process.
The properties of the process can be determined by those of the class F . A
lot of good things happen if F has the same nice properties as we examined
before: Euclidean or, more generally, manageable.

Moment Maximal Inequalities for U-Processes
We will only cite two corollaries of his main result here, which are used to
prove the asymptotic normality of the Maximum Rank Correlation estimator:

Lemma
Let F be a class of zero-mean functions f on Sk, k ≥ 1. If F is Euclidean for
a constant envelope, then

sup
F

∣∣Un,kf
∣∣ = Op(1/

√
n).
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Lemma♣♣♣
Let F be a class of P -degenerate functions on Sk, k ≥ 1. If

(i) F contains the zero function.

(ii) F is Euclidean for the constant envelope F ,

then

(a) supF
∣∣nk/2Un,kf

∣∣ = Op(1).

(b) supF
∣∣nk/2−γUn,kf

∣∣ −→ 0 almost surely.

These maximal-inequality results (and other more elaborate extensions) prove
to be extremely useful in semiparametric estimation asymptotics. We illumi-
nate this by studying the Maximum-Rank Correlation estimator.
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Heuristics of Asymptotic Normality of Maximum Rank Correlation
(MRC) Estimator
Suppose all we know about Y and X is that E[Y |X ] is a monotonic, strictly
increasing transformation F0(·)of the linear index X ′β. The exact functional
form of F0(·) is unknown except for some invertibility assumptions.

Consider the objective function given by the following U-statistic:

Gn(β) = (n)−1
2

∑

i 6=j

1l{Yi > Yj}1l{X ′
iβ > X ′

jβ}

The maximizer is Han’s Maximum Rank Correlation (MRC) estimator.

It bears that name because the estimator maximizes the correlation between
the relative ranks of Y1, Y2, . . . , Yn and the linear indices X1, X2, . . . , Xn.

Please read the handout titled “Moment Maximal Inequalities for U-processes
and Asymptotic Normality of Maximum Rank Correlation Estimator” to see,
step-by-step, the proof that β̂ is

√
n-consistent, asymptotically normal.

40



Key to the asymptotic distribution results of the MRC estimator is a stronger
version of Lemma♣♣♣ (above), which characterizes a special case in which the
Op(·) can be replaced with op(·):

Lemma (Sherman)
Suppose all the conditions of the “Moment Maximal Inequalities Lemma”
(above) hold and suppose that there exists β0 ∈ Θ such that f (·, β0) ≡ 0. If
the parameterization is L2(Q)-continuous at β0, that is, if∫ ∣∣f (·, β)

∣∣2dQ −→ 0 as β −→ β0

then
nk/2Un,kf (·, β) = op(1)

uniformly over op(1) neighborhoods of β0.
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Asymptotic Distribution Results for Degenerate U-Statistics
From above, we concluded that if Un,kf is a degenerate U-statistic of order
k, then nk/2Un,k should converge in distribution to a nondegenerate law. We
present two results for second-order U-statistics:

Serfling (1980), Theorem 5.5.2
Let

{
Xi

}n

i=1
be an iid sample with Xi ∼ F . Let h(Xi1, . . . , Xik) be

symmetric in all its k arguments, satisfying E
[
h(Xi1, . . . , Xik)

]
= 0 and

E
[
h2(Xi1, . . . , Xik)

]
< ∞. Let h2(x1, x2) = E

[
h(Xi1, . . . , Xik)

∣∣Xi1 =
x1, Xi2 = x2

]
. For any squared-integrable function g define the linear

operator Ag(x) =
∫∞
−∞ hx(x, u)g(u)dF (u). For this operator, define the

associated eigenvalues λ1, λ2, . . . to be the real numbers associated to the
distinct solutions g1, g2, . . . , of the equation Ag − λg = 0. Let h1(x) =
E

[
h(Xi1, . . . , Xik)

∣∣Xi1 = x
]
. Then, if Var

[
h1(Xi)

]
= 0, then

nUn,kh
d−→ k(k − 1)

2
Y ,

where Y is a random variable of the form

Y =

∞∑
j=1

λj

(
χ2

1j
− 1

)
, where χ2

11
, χ2

12
, . . . are independent χ2

1 r.vs
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The following theorem focuses on cases where the function h(·) depends on
the sample size n. It presents a result for degenerate, second-order U-statistics

Hall (1984), Theorem 1
Assume hn(Xi, Xj) is symmetric, and E

[
hn(Xi, Xj)

∣∣Xi

]
= 0 almost surely,

and E
[
h2

n(Xi, Xj)
]

< ∞ for each n. Define Gn(x1, x2) = E
[
hn(Xi, x1)hn(Xi, x2)

]
.

If
E

[
G2

n(Xi, Xj)
]

+ n−1E
[
h4

n(Xi, Xj)
]

E
[
h2

n(Xi, Xj)
] → 0,

then n · Un,2hn
d−→ N

(
0, 2E

[
h2

n(Xi, Xj)
])

.

The previous result is especially useful when the function hn(·) involves a
bandwidth sequence. Often, choosing the appropriate rate of convergence for
such bandwidth will ensure the condition in the theorem is met. Extensions of
this result to higher-order U-statistics can be found in Fan and Li (1996) and
the references cited there.
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Kernel-based Nonparametric Estimation

In a nutshell, this is an estimation technique that is very popular to estimate
unknown densities or conditional moments that depend on a vector of random
variables. In particular, it helps us deal with continuously-distributed random
vectors. The aim is to estimate these unknown functions pointwise, for a given
realization of these r/v’s. Throughout we assume an iid sample

{
Xi

}n

i=1
.

Density estimation
Consider the case of a real-valued random variable X , continuously dis-
tributed with density fX(·) and support S(X). Suppose fX(·) is continuously
differentiable and uniformly bounded in R (we will add more smoothness
assumptions soon). Let K : R→ R denote a symmetric function that satisfies
(we will add more conditions soon):∫ ∞

−∞
K(ψ)dψ = 1,

∫ ∞

−∞

∣∣ψK(ψ)
∣∣dψ < ∞, sup

ψ∈R

∣∣K(ψ)
∣∣ ≤ K < ∞

Let hn denote a bandwidth sequence satisfying hn → 0 (we will add more
conditions soon).
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Fix a value x ∈ S(X). A kernel estimator for fX(x) is given by

f̂X(x) =
1

nhn

n∑
i=1

K

(
Xi − x

hn

)
.

With our assumptions so far, this density estimator is biased, but its bias
disappears asymptotically:

E
[
f̂X(x)

]
=

1

hn

E

[
K

(
Xi − x

hn

)]
=

1

hn

∫ ∞

−∞
K

(
u− x

hn

)
fX(u)du.

A change of variable helps here. Let ψ ≡ u−x
hn

. The integral becomes (recall
that K(·) is symmetric)

E
[
f̂X(x)

]
=

∫ ∞

−∞
K(ψ)fX(hnψ + x)dψ =

∫ ∞

−∞
K(ψ)

[
fX(x) + hnψfX(h̃nψ + x)

]
dψ

= fX(x) + hn

∫ ∞

−∞
ψK(ψ)fX(h̃nψ + x)dψ = fX(x) + hnO(1)︸ ︷︷ ︸

=o(1)

−→ fX(x).
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Ultimately, we will need to address much more than this. Next, let us take a
look at Var

[
f̂X(x)

]
:

Var
[
f̂X(x)

]
=

1

n
× 1

h2
n

Var

[
K

(
Xi − x

hn

)]
=

1

nhn

× 1

hn

Var

[
K

(
Xi − x

hn

)]

︸ ︷︷ ︸
Convenient grouping

.

we have

Var

[
K

(
Xi − x

hn

)]
= E

[
K

(
Xi − x

hn

)2
]
−

{
E

[
K

(
Xi − x

hn

)2
]}2

= hn

∫ ∞

−∞
K2(ψ)fX(hnψ + x)dψ − h2

n

{∫ ∞

−∞
K(ψ)fX(hnψ + x)dψ

}2

= hnO(1),

The last equality is obtained by adding the requirement that
∫

K2(ψ)dψ < ∞.
Therefore

Var
[
f̂X(x)

]
=

1

nhn

O(1).

Consistency of f̂X(x) will immediately require as a necessary condition that:

nhn →∞.
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The usual Chebyshev-Inequality argument will yield

f̂X(x)
p−→ E

[
f̂X(x)

] p−→ fX(x) if nhn →∞.

How about establishing a rate of convergence, or equivalently, a Central Limit
Theorem? The previous results will yield (via Liapunov’s Central Limit
Theorem)

√
nhn

(
f̂X(x)− E

[
f̂X(x)

]) d−→ N
(

0, fX(x)

∫
K2(ψ)dψ

)

In order to obtain the stronger result
√

nhn

(
f̂X(x) − fX(x)

)
, we will need

to ensure that
√

nhn

(
E

[
f̂X(x)

] − fX(x)
)
−→ 0. A way to achieve this

is through the use of “higher order” or “bias-reducing kernels”, plus
additional smoothness assumptions about fX(·).
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The symmetric (around zero) function K : R → R is a bias-reducing kernel
of order M if:∫ ∞

−∞
K(ψ)dψ = 1,

∫ ∞

−∞
ψjK(ψ)dψ for j = 1, . . . , M − 1,

and
∫∞
−∞

∣∣ψMK(ψ)
∣∣dψ < ∞. A bias-reducing kernel must take negative

values. A quick way to construct one would be, for example, to combine a
symmetric, continuous pdf with a polynomial. For example, a fifth-order bias
reducing kernel:

K(ψ) =
[
a0 + a1ψ

2 + a2ψ
4
]
φ(ψ)

the coefficients a0, a1 and a2 would be picked to force
∫∞
−∞K(ψ)dψ = 1,∫∞

−∞ ψ2K(ψ)dψ = 0 and
∫∞
−∞ ψ4K(ψ)dψ = 0. We will have

∫∞
−∞ ψjK(ψ)dψ =

0 for any odd-number j by virtue of the symmetry of K(ψ).
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Suppose we strengthen our assumptions and assume that fX(·) is M -times
differentiable with bounded derivatives. An M th-order Taylor approximation
yields

E
[
f̂X(x)

]
=

∫ ∞

−∞
K(ψ)

[
fX(x) +

M−1∑
j=1

(hnψ)jf
(j)
X (x) + (hnψ)jf

(M)
X (h̃nψ + x)

]
dψ

= fX(x) + hM
n

O(1).

Therefore, if nhn →∞, and
√

nhnh
M
n
→ 0, we will have

√
nhn

(
f̂X(x)− fX(x)

)
d−→ N

(
0, fX(x)

∫
K2(ψ)dψ

)
.

Next, conditional moment estimators...
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Conditional Moment Estimators
Let us continue for the moment assuming that X ∈ R (real-valued). Suppose
Y is also a real-valued random variable (the extension to multivariate Y is
immediate, since we would apply the following analysis element-wise to each
component of Y ).

Suppose (Yi, Xi)
n
i=1 ∼ FY,X(·, ·) iid. Let E[Yi|Xi = x] ≡ µ(x) be well-defined

for x ∈ S(X). We have

µ(x) =

∫ ∞

−∞
yf

Y |X(y|x)dy =

∫∞
−∞ yf

Y,X
(y, x)dy

f
X
(x)

≡ R(x)

f
X
(x)

.

We estimate µ(x) by using kernel-weighed analog objects to those described
above.

R̂(x) =
1

nhn

n∑
i=1

YiK

(
Xi − x

hn

)
, f̂

X
(x) =

1

nhn

n∑
i=1

K

(
Xi − x

hn

)
, µ̂(x) =

R̂(x)

f̂
X
(x)

We would also arrive at this expression if we choose µ̂(x) to minimize:
n∑

i=1

(
Yi − µ̂(x)

)2

K

(
Xi − x

hn

)
(a kernel-weighed sum of squared residuals)
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We have already studied the properties of f̂X(·). Those of R̂(x) can be studied
in the exact same way. First, note that

E
[
R̂(x)

]
=

1

hn

E

[
µ(Xi)K

(
Xi − x

hn

)]
=

∫ ∞

−∞
K(ψ)µ

(
hnψ+x

)
f

X

(
hnψ+x

)
dψ.

Now, in addition to smoothness assumptions for f
X
(·), we will need smooth-

ness assumptions for µ(·). If both µ(·) and f
X
(·) are M -times differentiable

with bounded derivatives, and M th-order bias reducing kernel will yield (using
a Taylor approximation)

E
[
R̂(x)

]
= f

X
(x)µ(x) + hM

n
O(1) −→ f

X
(x)µ(x) ≡ R(x)

Let µ2(x) ≡ E
[
Y 2

i

∣∣Xi = x
]
. Then, if nhn → ∞ and

√
nhnh

M
n
→ 0, we will

have
√

nhn

(
R̂(x)−R(x)

)
d−→ N

(
0, µ2(x)f

X
(x)

∫
K2(ψ)dψ

)
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To find the asymptotic distribution of µ̂(x), take a simple, second-order Taylor
approximation:

µ̂(x) = µ(x) +
R̂(x)−R(x)

f
X
(x)

− µ(x)

[
f̂

X
(x)− f

X
(x)

f
X
(x)

]
+ Op

(
1

nhn

)

= µ(x) +
R̂(x)− µ(x)f̂

X
(x)

f
X
(x)

+ Op

(
1

nhn

)
.

Therefore,

µ̂(x)− µ(x) =
1

nhn

n∑
i=1

[
Yi − µ(x)

]

f
X
(x)

K

(
Xi − x

hn

)
+ Op

(
1

nhn

)
.

If µ(x) and f
X
(x) are M -times differentiable with bounded derivatives, and

we use an M th-order bias reducing kernel, we have

1√
nhn

n∑
i=1

[
Yi − µ(x)

]

f
X
(x)

K

(
Xi − x

hn

)
d−→ N

(
0,

σ2(x)

f
X
(x)

∫ ∞

−∞
K2(ψ)dψ

)

where σ2(x) = Var
[
Yi

∣∣Xi = x
]
.
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Therefore
√

nhn

(
µ̂(x)− µ(x)

)
d−→ N

(
0,

σ2(x)

f
X
(x)

∫ ∞

−∞
K2(ψ)dψ

)

Higher-dimensional vectors and the “Curse of Dimensionality”
Suppose now that XXX i ∈ RL is a vector of jointly continuously distributed rv’s.
A way to deal with this is to use an Lth-dimensional kernel K : RL → R. The
simplest such kernel would be multiplicative:

K(Ψ) = K(ψ1)×K(ψ2)× · · · × ×K(ψL).

Density estimation
We would estimate f

X
(xxx) by

f̂
X
(xxx) =

1

nhL
n

n∑
i=1

K

(
XXX i − xxx

hn

)
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Its expectation would be given by the Lth-dimensional integral

E
[
f̂

X
(xxx)

]
=

1

hL
n

∫
K

(
uuu− xxx

hn

)
f

X
(uuu)duuu =

∫
K

(
ΨΨΨ)f

X

(
hnΨΨΨ + xxx

)
dΨΨΨ,

where ΨΨΨ =
(
ψ1, ψ2, . . . , ψL

)
, with ψj =

(
uj − xj)

/
hn. An M th-order bias-

reducing kernel is now a symmetric (around zero) function K : RL → R that
satisfies, for any vector ΨΨΨ ≡ (

ψ1, ψ2, . . . , ψL

)

∫
K(ΨΨΨ)dΨΨΨ = 1,

∫
ψq1

1 ψq2
2 · · ·ψqL

L K(ΨΨΨ)dΨΨΨ = 0 ∀ {qj}L
j=1 :

L∑
j=1

qj ≤ M − 1

and
∫ ∥∥ΨΨΨ

∥∥M∣∣K(ΨΨΨ)
∣∣dΨΨΨ < ∞.

If f
X
(·) has bounded cross-partial derivatives up to order M , then we will have

an extension of the result in the one-dimensional case:

E
[
f̂

X
(xxx)

]
= f

X
(xxx) + hM

n
O(1)

The “curse of dimensionality” becomes apparent when we analyze Var
[
f̂

X
(xxx)

]
.
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We will have
Var

[
f̂

X
(xxx)

]
=

1

nhL
n

O(1).

Therefore, under the smoothness conditions above, and using a bias-reducing
kernel of order M :

if nhL
n
→∞, and

√
nhL

n
hM

n
→ 0,

√
nhL

n

(
f̂

X
(xxx)− f

X
(xxx)

)
d−→ N (

0, V
)
.

The rate of convergence of f̂
X
(xxx) decreases with L.

Conditional Moment Estimators
Suppose Yi ∈ R. We want to estimate µ(xxx) = E

[
Yi

∣∣XXX i = xxx
]
. We proceed as

before, by generalizing what we did in one dimension

R̂(xxx) =
1

nhL
n

n∑
i=1

YiK

(
XXX i − xxx

hn

)
, f̂

X
(xxx) =

1

nhn

n∑
i=1

K

(
XXX i − xxx

hn

)
, µ̂(xxx) =

R̂(xxx)

f̂
X
(xxx)

Under the smoothness assumptions, we can obtain a generalization of the one-
dimensional result

µ̂(xxx)− µ(xxx) =
1

nhL
n

n∑
i=1

[
Yi − µ(xxx)

]

f
X
(xxx)

K

(
XXX i − xxx

hn

)
+ Op

(
1

nhL
n

)
. (2)
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Uniform Linear-representation Results and Semiparametric Estimation
Suppose that we are able to establish that, for any compact set X ∈ S(X) such
that inf

x∈X
f

X
(x) ≥ f > 0,

µ̂(xxx)− µ(xxx) =
1

nhL
n

n∑
i=1

[
Yi − µ(xxx)

]

f
X
(xxx)

K

(
XXX i − xxx

hn

)
+ ξn(xxx),

where sup
x∈X

∣∣ξn(xxx)
∣∣ = Op

(
1

n1−δhL
n

)
for any δ > 0.

Let us go back to section (♦) (“Stochastic equicontinuity and semiparametric
estimation”). Consider the estimator θ̂ that satisfies θ̂

p−→ θ0 and

√
NmN(θ̂, µ̂) = op(1), with mN(θ, µ̂) =

1

N

N∑
i=1

m(Xi; θ, µ̂(Wi))1l{Wi ∈ W}.

denote µ0(w) = E
[
Yj

∣∣Wj = w
]

(we use the subscript µ0(·) to follow the
notation used in the empirical-process sections), and the set W is such that

µ̂(www)− µ0(www) =
1

NhL
N

N∑
i=1

[
Yi − µ0(www)

]

f
W

(www)
K

(
WWW i −www

h
N

)
+ ξ

N
(www),
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where sup
w∈W

∣∣ξ
N
(www)

∣∣ = Op

(
1

N1−δhL
N

)
for any δ > 0.

The function m(·) was assumed to be smooth enough, so that we could
approximate (see Eq. 1)√

N(θ̂ − θ0) = −∇θmN(θ̃, µ̂)−1
√

NmN(θ0, µ̂) + op(1). (3)

Let λ(θ, µ) = E[mN(θ, µ)]. The relevant empirical process here will be

νN(θ, µ) =
√

N
(
mN(θ, µ)− λ(θ, µ)

)

We determined that if the process νN(θ, µ) was stochastically equicontinuous,
then √

NmN(θ0, µ̂) = νN(θ0, µ0) +
√

Nλ(θ0, µ̂)

Suppose we show that, for any
{
µ̃(Wi)

}N

i=1
such that µ̃(Wi) is between µ̂(Wi)

and µ0(Wi) for each i, we have

1

N

N∑
i=1

∥∥∥∇µµ′
(
E

[
m(Xi, θ0, µ̃(Wi))

])∥∥∥ = Op(1).
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Suppose also that we choose the bandwidth h
N

such that N 1/2
/(

N 1−δhL
N

) → 0
for some δ > 0. This, and the uniform linear representation result from above
would yield

sup
i

∥∥∥µ̂(Wi)− µ0(Wi)
∥∥∥

2

= op(N
−1/2).

Then, we have

√
Nλ(θ0, µ̂) =

1√
N

N∑
i=1

∇µ

(
E

[
m(Xi, θ0, µ0(Wi))

])(
µ̂(Wi)−µ0(Wi)

)
+op(1)

We have to examine the term

1

N

N∑
i=1

∇µ

(
E

[
m(Xi, θ0, µ0(Wi))

])(
µ̂(Wi)− µ0(Wi)

)

=
1

N

N∑
i=1

∇µ

(
E

[
m(Xi, θ0, µ0(Wi))

])
[

1

NhL
N

N∑
j=1

[
Yj − µ0(Wi)

]

f
W

(Wi)
K

(
Wi −Wj

h
N

)

+ ξ
N
(Wi)

]
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Abbreviate ϕ(Xi,Wi) ≡ ∇µ

(
E

[
m(Xi, θ0, µ0(Wi))

])
. We can split the

previous term as

K(0)

NhL
N

× 1

N

N∑
i=1

ϕ(Xi,Wi)

[
Yi − µ0(Wi)

]

f
W

(Wi)︸ ︷︷ ︸
=Op(1)︸ ︷︷ ︸

=Op

(
1/(NhL

N
)
)

+
(N − 1)

2N
×

(
N

2

)−1 ∑
i<j

[
ϕ(Xi,Wi)

[
Yj − µ0(Wi)

]

hL
N
f

W
(Wi)

+ ϕ(Xj,Wj)

[
Yi − µ0(Wj)

]

hL
N
f

W
(Wj)

]
K

(
Wi −Wj

h
N

)

+
1

N

N∑
i=1

ϕ(Xi,Wi)ξN
(Wi)

︸ ︷︷ ︸
≤sup

i

∣∣ξ
N

(Wi)
∣∣× 1

N

∑N
i=1

∥∥ϕ(Wi,Xi)
∥∥=op(N−1/2)
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So it all comes down to the symmetric, second-order U-statistic
(

N

2

)−1 ∑
i<j

[
ϕ(Xi,Wi)

[
Yj − µ0(Wi)

]

hL
N
f

W
(Wi)

+ϕ(Xj,Wj)

[
Yi − µ0(Wj)

]

hL
N
f

W
(Wj)

]
K

(
Wi −Wj

h
N

)

We have

E

[
ϕ(Xi,Wi)

[
Yj − µ0(Wi)

]

hL
N
f

W
(Wi)

K

(
Wi −Wj

h
N

)∣∣∣∣∣Xi,Wi, Yi

]

= E

[
ϕ(Xi,Wi)

[
µ0(Wj)− µ0(Wi)

]

hL
N
f

W
(Wi)

K

(
Wi −Wj

h
N

)∣∣∣∣∣Xi,Wi, Yi

]

If µ0(·) and f
W

(·) are M -times differentiable with respect to W with bounded
derivatives, then a Taylor expansion and the use of an M th-order kernel will
yield

E

[
ϕ(Xi,Wi)

[
Yj − µ0(Wi)

]

hL
N
f

W
(Wi)

K

(
Wi −Wj

h
N

)∣∣∣∣∣Xi,Wi

]
= hM

N

ϕ(Xi,Wi)

f
W

(Wi)
R1

N
(Wi)

where sup
i

∣∣R
N
(Wi)

∣∣ ≤ R
1
< ∞
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We have

E

[
ϕ(Xj,Wj)

[
Yi − µ0(Wj)

]

hL
N
f

W
(Wj)

K

(
Wi −Wj

h
N

)∣∣∣∣∣Xi,Wi, Yi

]

= E

[
E

[
ϕ(Xj,Wj)

∣∣Wj

]
︸ ︷︷ ︸

≡Σ(Wj)

[
Yi − µ0(Wj)

]

hL
N
f

W
(Wj)

K

(
Wi −Wj

h
N

)∣∣∣∣∣Xi,Wi, Yi

]

=

∫
Σ(u)

[
Yi − µ0(u)

]

hL
N
f

W
(u)

K

(
Wi − u

h
N

)
f

W
(u)du

If Σ(·) is M -times differentiable with bounded derivatives, a Taylor approxi-
mation produces

E

[
ϕ(Xj,Wj)

[
Yi − µ0(Wj)

]

hL
N
f

W
(Wj)

K

(
Wi −Wj

h
N

)∣∣∣∣∣Xi,Wi, Yi

]

= Σ(Wi)
[
Yi − µ0(Wi)

]
+ hM

N
R(2)

N (Wi)

61



The last step before using Hoeffding’s decomposition to our advantage is to
verify that the variance of our U-statistic disappears sufficiently fast. In order
to safely ignore the second-order degenerate U-statistic in the decomposition,
it is enough if:

√
N

1

N
E

{[
ϕ(Xi,Wi)

[
Yj − µ0(Wi)

]

hL
N
f

W
(Wi)

+ ϕ(Xj,Wj)

[
Yi − µ0(Wj)

]

hL
N
f

W
(Wj)

]2

K

(
Wi −Wj

h
N

)2
}

goes to zero as N −→∞. It all comes down to showing that

1√
NhL

N

E

{
1

hL
N

[
ϕ(Xi,Wi)

[
Yj − µ0(Wi)

]

f
W

(Wi)
+ϕ(Xj,Wj)

[
Yi − µ0(Wj)

]

f
W

(Wj)

]2

K

(
Wi −Wj

h
N

)2
}

goes to zero. As long as the expectations involved exist, we only need√
NhL

N
−→ ∞. This strengthens the previous condition that NhL

N
−→ ∞.
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The projection of our U-statistic yields

1

N

N∑
i=1

∇µ

(
E

[
m(Xi, θ0, µ0(Wi))

])(
µ̂(Wi)− µ0(Wi)

)

=
1

N

N∑
i=1

Σ(Wi)
[
Yi − µ0(Wi)

]
+ hM

N

1

N

N∑
i=1

[R1
N(Wi) +R(2)

N (Wi)
]

︸ ︷︷ ︸
=Op(hM

N
)

+op(N
−1/2)

therefore, as long as
√

NhM
N
−→ 0, our semiparametric estimator will satisfy

√
N

(
θ̂ − θ0

)
= M−1 1√

N

N∑
i=1

[
m

(
Xi, θ0, µ0(Wi)

)
+ Σ(Wi)

[
Yi − µ0(Wi)

]]
+ op(1)

≡ 1√
N

N∑
i=1

ψi + op(1)

ψi is the influence function for θ̂.

Many examples of existing semiparametric estimators can be studied in this
fashion (or some variation). A nice list of examples can be found in Chapter 5
of Pagan and Ullah’s book.
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Semiparametric Efficiency Bounds

Suppose we have an estimation problem based on a model that is assumed
to satisfy a set of semiparametric assumptions. The sample we observe
is assumed to come from a data generating process that satisfies these
assumptions.

Being more precise, we can think of the data as being generated by a particular
parametric model that satisfies the semiparametric assumptions. That is, the
data we observe comes from a (parametric) submodel that contains the truth.

Examples of parametric submodels: Suppose we are interested in the
parameter β0 = E[Z], where the distribution of Z is unknown. A parametric
submodel would consist of any likelihood function f (z|θ) such that f (z|θ0) is
the true distribution of Z.
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A second example could be a partially linear model, given by

Y = X ′β0 + g0(V ) + ε,

where both X and V are observable to the econometrician, but the exact
functional form of g0(·) is unknown. If the joint density h(X,V, ε) is also
unknown, then a parametric submodel would be any h(x, v, ε; η) and g0(v, γ).
The parameters of any parametric submodel are θ = (β, η, γ). The true data
generating process corresponds to the case θ = θ0.

Smooth Parametric Submodel: The exact definition is found in Appendix
A. Definition A.1, in Newey (1990) (Journal of Applied Econometrics).
Basically, it requires f (z|θ) to be continuously-differentiable (z denotes
observable data), with squared-integrable derivative on an open set Θ. The
score and information matrix for a smooth parametric submodel is given by

Sθ, and Eθ

[
SθS

′
θ

]

A regular parametric submodel is one that is smooth and has a nonsingular
information matrix.
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Clearly, one can always express the parameter of interest as β(θ). In the first
example, this is β(θ) =

∫
zf (z|θ)dz, while on the second case, β is simply a

subvector of θ.

The asymptotic variance of any semiparametric estimator is no smaller
than the supremum of the Cramer-Rao lower bounds (Eθ

[
SθS

′
θ

]−1) for all
parametric submodels. We denote this lower bound by V.

Efficiency rankings is only meaningful for estimators that are regular in a sense
shared by MLE:

Regular Estimators: A Local Data Generating Process (LDGP) is one such
that, for each sample size n, the data is distributed according to θn, where√

n(θn − θ0) is bounded. An estimator β̂ is regular in a parametric submodel
if the limiting distribution of

√
n
(
β̂ − β(θn)

)
is the same for any LDGP. An

estimator is regular if it is regular in any regular parametric submodel.
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Theorem 2.1 in Newey (1990) If β̂ is regular, then the limiting distribution of√
n(β̂ − β0) is equal to the distribution of Y + U , where Y is distributed as

N (0, V ) and U is some random vector independent of Y .

Thus, the asymptotic variance of β̂ is V +E[UU ′]. A semiparametric estimator
is efficient if its limiting distribution is N(0, V ) and it is regular.

Asymptotically Linear Estimator: An estimator β̂ is asymptotically linear if
it is asymptotically equivalent to a sample average with mean zero:

√
n
(
β̂−β0

)
=

1√
n

n∑
i=1

ψi+op(1), E
[
ψ

]
= 0, E

[
ψψ′

]
finite and nonsingular.

we call ψ the Influence Function of β̂.

The efficiency bound applies to regular estimators. The next result provides
sufficient and necessary conditions for asymptotically linear estimators.
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Theorem 2.2 in Newey (1990) Suppose β̂ is an asymptotically linear estima-
tor with influence function ψ, and for all regular parametric submodels β(θ) is
differentiable and Eθ

[‖ψ‖2
]

exists and is continuous on a neighborhood of θ0.
Then β̂ is regular if and only if, for all regular parametric submodels,

∂β(θ0)

∂θ
= E

[
ψS ′θ

]
.

Example: M-Estimators (e.g, Huber 1967) We saw in our extensive
discussions about M-estimators that satisfy

∑n
i=1 m(zi, β̂) = op(n

−1/2) that
they have influence function given by

ψ(z) = −M−1m(z, β0), where M =
∂E

[
m(z, β)]

∂β

∣∣∣∣
β=β0

To see that M-estimators are regular, note that the definition of β0 is that:
Eθ

[
m(z, β(θ))

]
= 0. This equality must hold for all θ ∈ Θ. Direct

differentiation yields

M × ∂β(θ0)

∂θ
+ E

[
m(z, β0)S

′
θ

]
= 0,

or equivalently, ∂β(θ0)
∂θ = E

[
ψS ′θ

]
. This is the so-called “Generalized

Information Matrix Equality”.
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Efficiency Bounds and Influence Function of Regular Estimators
Fix a regular parametric submodel and suppose β(θ) is differentiable. Let θ̂ be
the MLE, and let β̂ = β(θ̂). This way, β̂ would be the more efficient estimator
of β (for this submodel), and using the Delta Method its variance is given by

Vθ =
∂β(θ0)

∂θ

(
E

[
SθS

′
θ

])−1∂β(θ0)

∂θ

′
= E

[
ψS ′θ

](
E

[
SθS

′
θ

])−1

E
[
Sθψ

′].
This result immediately shows that Vθ is the efficiency bound for any regular
estimator of β(θ) because

E
[
ψψ′

]− Vθ = E
[(

ψ − ASθ

)(
ψ − ASθ

)′]

with A = E
[
ψS ′θ

](
E

[
SθS

′
θ

])−1

.

Computing the semiparametric efficiency bound would involve searching for
the supremum of Vθ over all regular submodels. We briefly describe the issues
involved next...
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Finding the Semiparametric Efficiency Bound
We say that β(θ) is a differentiable parameter if it is differentiable for all
smooth parametric submodels and if there exists a q × 1 (q is the dimension
of β) random vector d such that E

[
dd′

]
is finite, and for all regular parametric

submodels:
∂β(θ0)

∂θ
= E

[
dS ′θ

]

From above, we know that if there exists a regular, asymptotically linear
estimator β̂ with influence function ψ, then the above requirement will be
satisfied with d = ψ. Note that d is not unique. We can add any u that
is orthogonal to Sθ, and it would serve as well. In particular, we can add any
constant to d (because Sθ has expected value equal to zero). From our previous
discussions, the Cramer-Rao lower bound for a parametric submodel is now
given by

Vθ = E
[
dS ′θ

](
E

[
SθS

′
θ

])−1

E
[
Sθd

′] = E
[
dθd

′
θ

]
,

where dθ = E
[
dS ′θ

](
E

[
SθS

′
θ

])−1

Sθ. By looking closely at dθ, it becomes
clear that it is the orthogonal projection of d on Sθ (it is the “population
regression” of d on Sθ).
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So Vθ, the Cramer-Rao lower bound for β(θ) for a parametric submodel
is given by the variance of the orthogonal projection of d on Sθ. The
semiparametric efficiency bound cannot be smaller than the worst possible
case for all (regular) parametric submodels. How can we look for this
supremum?

Take a collection of parametric submodels j = 1, . . . , J . Let Sθj
denote the

score for the jth submodel. Then, the variance of the projection of d onto
any individual Sθj

cannot be greater (in a matrix sense) than the variance of
the projection of d onto the linear space spanned by Sθ1, Sθ2, . . . , SθJ

. This is
equivalent to adding more variables to a regression: It will never decrease the
variance (in a matrix sense) of the resulting predicted values.

Using this intuition, an automatic upper bound for Vθ for any parametric
submodel could result from projecting d onto the linear space spanned by
a “sufficiently large” number of parametric scores for different parametric
submodels. We focus only on smooth parametric submodels (see definition
above).
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This notion is formalized by taking the orthogonal projection of d on to a
Hilbert space. We define the tangent set S as

S =

{
s ∈ Rq : E

[∥∥s
∥∥2

]
< ∞, and ∃ {Aj}J

j=1 : lim
J→∞

E
[∥∥∥s−

J∑
j=1

AjSθj

∥∥∥
2]

= 0

}

each Aj is a matrix of constants with q rows, conformable with Sθj
. The

tangent set S is the mean-squared closure of all q-dimensional linear combi-
nations of Sθ for smooth parametric submodels.

The orthogonal projection of d on S is called the efficient score. Denote it
by δ, which satisfies (by definition of orthogonal projection)

δ ∈ S, E
[
(d− δ)′s

]
= 0 for all s ∈ S

Theorem 3.1 in Newey (1990) Suppose the parameter is differentiable, S is
linear and E[δδ′] is nonsingular, where δ is the projection of d on S. Then the
semiparametric efficiency bound is V = E[δδ′].
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Therefore, to find the efficiency bound of a semiparametric estimator, one
must first characterize the tangent set S, and then find the projection of d (any
d that satisfies the requirement of a differentiable parameter will yield the same
projection) on to S.

Characterizing S will reflect all the restrictions placed on the scores Sθ that
are placed by whatever semiparametric assumptions we impose.

If we have a regular, asymptotically linear estimator β̂ with influence function
ψ and we find that ψ ∈ S , then this estimator achieves the efficiency bound.

An excellent paper which presents a clear methodology to find efficiency
bounds is Severini and Tripathi (2001). Several examples are also included
in Newey (1990).
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Implications of Efficiency Bounds for Semiparametric Estimators
We begin by stating the next result:

Theorem 3.2 in Newey (1990) If f (z|β) is smooth with score Sβ, S is
linear, and the residual S of the projection of Sβ on S is such that E

[
SS ′

]
is nonsingular, then β is a differentiable parameter and has efficient influence
function (

E[SS ′]
)−1

S, with V =
(
E[SS ′]

)−1.
Infinite efficiency bounds and nonexistence of

√
n-consistent estimators

Chamberlain (1986) showed that if the bound is infinitely large (e.g, if E[SS ′]
is singular, or in general, if the bound involves taking the inverse of a singular
matrix), then no

√
n-consistent estimator exists. This could be the result of

an ill-defined problem in which the parameter β is nonidentified, but it may
also arise in cases where the parameter IS identified, but the semiparametric
assumptions are not enough to yield a finite efficiency bound. The best
example is Manski’s Maximum Score estimator, which focuses on a binary
choice problem Yi = 1l{X ′

iβ0 + εi ≥ 0} under the sole assumption that εi has
median zero conditional on Xi. It is known that a n1/3-consistent estimator for
β exists in this case, and it has a non-normal asymptotic distribution.
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Construction of Efficient Estimators
For semiparametric models with a parametric and a nonparametric component,
some researchers (see Section 5 in Newey, 1990) have suggested that an
efficient estimator can be constructed starting from a

√
n-consistent estimator

β̃ by using

β̂ = β̃ +
1

n

n∑
i=1

d̂(zi, β̃), (♣)

where d̂(zi, β̃) is an estimator of the efficient influence function. The key
for such a construction to work is that the fact that the efficient score itself
is estimated should not affect the asymptotic distribution of β̂. This will be
true if the estimated efficient score converges at a sufficiently fast rate. Other
methods involve nonparametric-type maximum likelihood. See Section 5 in
Newey (1990) for the specifics.
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