Powell's "Projection" Theorem for a class of U-Statistics

Theorem 1 (Lemma A. 3 in Ahn and Powell (1993), see also Lemma 3.1 in Powell, Stock and Stoker (1989)) For an iid sample $\left\{X_{i}\right\}_{i=1}^{n}$ of random variables, consider an $m^{\text {th }}$-order U-statistic of the form

$$
U_{n}=\binom{n}{m}^{-1} \sum_{c} p_{n}\left(X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{m}}\right)
$$

where the sum is taken over the set "c" of all $\binom{n}{m}$ combinations of m distinct elements $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ from the set $\{1,2, \ldots, n\}$. Without loss of generality, the function $p_{n}(\cdot)$ can be taken to be symmetric in its m arguments. Define the "projection" of this U-statistic as:

$$
\widehat{U}_{n} \equiv \theta_{n}+\frac{m}{n} \sum_{i=1}^{n}\left[r_{n}\left(X_{i}\right)-\theta_{n}\right]
$$

where

$$
r_{n}\left(X_{i}\right)=E\left[p_{n}\left(X_{i}, X_{i_{2}}, \ldots, X_{i_{m}}\right) \mid X_{i}\right], \quad \theta_{n}=E\left[r_{n}\left(X_{i}\right)\right]
$$

Note that $r_{n}\left(X_{i}\right)$ is the conditional expectation of $p_{n}(\cdot)$ with respect to its first-argument, which is irrelevant because $p_{n}(\cdot)$ is assumed symmetric: If $m=2$ for example, $p_{n}\left(X_{i}, X_{j}\right)=$ $p_{n}\left(X_{j}, X_{i}\right)$ and therefore $r_{n}\left(X_{i}\right)=E\left[p_{n}\left(X_{i}, X_{j}\right) \mid X_{i}\right]=E\left[p_{n}\left(X_{j}, X_{i}\right) \mid X_{i}\right]$.
If $p_{n}(\cdot)$ satisfies:

$$
E\left[\left\|p_{n}\left(X_{1}, \ldots, X_{m}\right)\right\|^{2}\right]=O(n)
$$

then
(i) $U_{n}=\theta_{n}+o_{p}(1)$
(ii) $U_{n}=\widehat{U}_{n}+o_{p}\left(n^{-1 / 2}\right)$

