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This article extends the pairwise difference estimators for various semilinear
limited dependent variable models proposed by Honoré and Powell (Identifica-
tion and Inference in Econometric Models. Essays in Honor of Thomas Rothen-
berg Cambridge: Cambridge University Press, 2005) to permit the regressor ap-
pearing in the nonparametric component to itself depend upon a conditional
expectation that is nonparametrically estimated. This permits the estimation ap-
proach to be applied to nonlinear models with sample selectivity and/or endo-
geneity, in which a “control variable” for selectivity or endogeneity is nonpara-
metrically estimated. We develop the relevant asymptotic theory for the proposed
estimators and we illustrate the theory to derive the asymptotic distribution of
the estimator for the partially linear logit model.

1. INTRODUCTION

Using an analogy between the partially linear regression model (Engle et al.,
1986; Robinson, 1988) and linear panel data models with fixed effects, Honoré and
Powell (2005) showed how partially linear versions of several limited dependent
variable models (e.g., logit, censored, and Poisson regression models) could be
constructed using the corresponding estimators for panel data versions of these
models with individual fixed effects. The resulting estimation method involved
“pairwise differences” of observations for which the regressors in the nonpara-
metric component of the regression function are approximately equal, in an anal-
ogy of first-differencing to eliminate fixed effects in panel data models. Assuming
the regressors in the nonparametric component were either known or linear in
parametrically estimated coefficients, the paper derived conditions under which
the proposed estimators of the parameters of interest were root-n consistent and
asymptotically normal.

Recent work on semiparametric and nonparametric “control function” esti-
mation of nonlinear models with selectivity or endogenous regressors has shown
how such models can often be recast as partially linear regression models with
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“control variables” for selection or endogeneity in the nonparametric component
of the regression function; these “control variables” are either conditional expec-
tations (e.g., the conditional probability of selection, or “propensity score”, as in
Ahn and Powell, 1993, to control for selection bias) or residuals from conditional
expectations (e.g., first-stage residuals to control for endogenous regressors, as in
Newey et al., 1999; Blundell and Powell, 2004) or both (Das et al., 2003). Thus,
an obvious approach to estimation of these models would extend the “pairwise
difference” estimation method of Honoré and Powell (2005) to accommodate
nonparametric estimation methods of the “control variables” appearing in the
nonparametric component. This article makes this extension and illustrates how
the approach would specialize to a logit model with endogenous regressors.

2. MOTIVATION AND EXAMPLES

Before describing the econometric model of interest, let us denote the vector of
observable covariates for the ith observation by zi ≡ (vi, wi ), where vi ∈ R

M and
wi ∈ R

L may have some elements in common. The rationale behind this partition
will become clear below. We will assume throughout that we have an i.i.d. sample
(zi)n

i=1 from the population to be described below. The type of econometric models
we study have two general features. The first feature is that there is a finite-
dimensional parameter of interest β ∈ R

K and two nuisance parameters: a finite-
dimensional vector γ ∈ R

D and an unknown function µ(wi , γ ), effectively an
infinite-dimensional nuisance parameter. The parameter γ is either known or can
be estimated by the econometrician. We refer to µ as the “control function,” which
can be real or vector-valued. We will letβ0 andγ 0 denote the true parameter values.
The second feature of the models of interest here is the existence of a function
s(vi, vj; β)—which is either known or estimable by the econometrician—such that
β0 is identified as the unique solution to the following problem:

Min
β

E[s(vi , v j ; β) | µ(wi , γ0) − µ(w j , γ0) = 0].

The specific features of s(·) depend on the model in question. Honoré and Powell
(2005) studied the case in which µ(wi , γ ) = µ(wi

′γ ). This article relaxes this as-
sumption and studies the general case. We now present a series of examples that
fit this general framework. As we shall see, the control function µ may arise natu-
rally in very different contexts including (not necessarily known) transformations
of partially linear index models, nonlinear models with endogeneity, as well as
some game-theoretic models.

2.1. Partially Linear Model. One of the most basic examples of the family of
models studied here is a partially linear model, described by yi = β ′xi + g(wi ) +
ui, where g(·) is an unknown function and ui is unobserved but satisfies E[ui | xi,
wi ] = 0 almost surely. This yields yi − E[yi | wi ] = β ′(xi − E[xi | wi ]) + ui a.s. If xi

has full rank and is not deterministic conditional on wi , it is a well-known result
(e.g., Robinson, 1988) that β can be

√
n-consistently estimated by
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β̃ =
[

n∑
i=1

(xi − Ê[xi | wi ])(xi − Ê[xi | wi ])′
I(wi )

]−1

×
n∑

i=1

(xi − Ê[xi | wi ])(yi − Ê[yi | wi ])I(wi ),

(1)

where Ê[xi | wi ] is a nonparametric estimator and I(wi ) is a trimming function,
introduced to make the bias of Ê[xi | wi ] disappear uniformly at the same rate.
Alternatively, we could reformulate this problem by noting that under the same set
of identifying restrictions, with probability one wi = w j implies yi − yj = β ′(xi −
xj) + ui − uj and therefore E[(yi − yj − β ′(xi − xj ))2 | wi − w j = 0] is uniquely
minimized at β = β0. This calls for an estimator of the form

β̂ = argmin
b

∑
i< j

K
(

wi − w j

h

) [
(yi − yj ) − b′(xi − xj )

]2
,(2)

for an appropriately chosen kernel k and bandwidth h. This yields a convenient
closed-form estimator,

β̂ =
[∑

i< j

K
(

wi − w j

h

)

xij
xij

′
]−1 ∑

i< j

K
(

wi − w j

h

)

xij
yij,

where 
ξij = ξi − ξ j .

(3)

Note that, unlike (1), the estimator proposed requires no trimming function.
This is because in this particular example, the control function used (wi ) has a
trivial functional form.2 We will study situations in which the control function
used in the procedure analogous to (1) must be estimated in a first stage and
wi is replaced with its estimate ŵi in a generalized version of (2). For example,
the role of wi could be played by a nonparametric conditional expectation or
residual that is not observed but can be uniformly consistently estimated semi or
nonparametrically.

2.2. Other Partially Linear Models. We now discuss briefly some extensions
to the model in Section 2.1. These examples were considered in a more restrictive
setting in Honoré and Powell (2005). For illustrative purposes we include here
only the partially linear logit and Tobit models. We stress that all the examples
mentioned in Section 2 of Honoré and Powell are amenable to the methodology
described here. These include the partially linear Poisson regression model and
partially linear duration models.

2.2.1. Partially linear logit model. The partially linear logit model is given by
yi = 1l{x′

iβ + g(wi ) + εi ≥ 0}, where εi is unobserved, independent of zi ≡ (xi, wi )
with logistic distribution. We have

2 If we knew the true functional form for µ, we could reduce the “curse of dimensionality” issues
that are present in (3)
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Pr(yi = 1 | zi , zj , yi + yj = 1, wi − w j = 0) = exp{(xj − xi )′β0}
1 + exp{(xj − xi )′β0} ,(4)

which calls for an estimator of the form

β̂ = argmin
b

∑
i< j

yi �=yj

K
(

wi − w j

h

) [
yi ln(1 + exp{(xj − xi )′b})

+ yj ln(1 + exp{(xi − xj )′b})].

(5)

As we mentioned above, we shall focus on the case in which wi is not observed
and must be estimated semi or nonparametrically prior to the estimation described
in (5).

2.2.2. Partially linear Tobit model. The partially linear Tobit model is given
by yi = max{x′

iβ + g(wi ) + εi }. Using the identification insight and results from
Honoré (1992) in the context of panel data Tobit models with fixed effects, the
framework in Honoré and Powell (2005) suggests an estimator of the form

β̂ = argmin
b

∑
i< j

K
(

wi − w j

h

)
q
(
yi , yj , (xi − xj )′b

)
,(6)

where q(·) is based on a convex-loss function of the type described in Honoré
(1992).

2.3. Rational Expectations and Interaction-based Models. Examples of mod-
els amenable to our methods also arise in the context of some structural models
involving rational expectations with or without strategic interaction across eco-
nomic agents. We present two examples here.

2.3.1. Incomplete information games. Aradillas-Lopez (2006) studies a 2 ×
2 simultaneous game with incomplete information where two players labeled
p = 1, 2 can choose two actions, labeled yp ∈ {1, 0}. Take x1 ∈ R

L1 , x2 ∈ R
L2

and denote x = x1 ∪ x2. Players’ expected payoffs of choosing yp = 1 are
given by E[U1 | y1 = 1] = x′

1δ1 + α1Pr[Y2 = 1 | x] − ε1 and E[U2 | y2 = 1] = x′
2δ2 +

α2Pr[Y1 = 1 | x] − ε2, where εp is independent of (x1, x2) with an unknown, but
everywhere strictly increasing cdf given by Fp(·). Let Fp(x) = Pr(yp = 1 | x). Play-
ers’ beliefs are assumed unobserved to the econometrician. However, if players
are expected utility maximizers, Bayesian–Nash equilibrium choice probabilities
are3

µ1(x) = F1(x′
1δ1 + α1µ2(x)); µ2(x) = F2(x′

2δ2 + α2µ1(x)).(7)

Lack of knowledge of Fp(·) requires further parameter normalization. First, we
will only be able to estimate (δ p, α p) up to a proportionality constant. In addition,

3 Multiple equilibria concerns are addressed in the paper. We will ignore them here.
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an intercept would not be identified. The following normalization will be conve-
nient here. For p = 1, 2 we will split xp = (wp, vp), where the coefficient of wp will
be normalized to one. Let βp = (δp, αp), z1 = (v′

1, µ2(x)) and z2 = (v′
2, µ1(x)). We

can rewrite (7) as

µ1(x) = F1(w1 + z′
1β1); µ2(x) = F2(w2 + z′

2β2).(8)

Denote µp,i = µp(xi). Using the invertibility properties of the unknown cdf
Fp(·), Aradillas-Lopez provides additional conditions on xp such that E[((xp,i −
xp, j )′δp)2 | µp,i = µp, j ] is uniquely minimized at δp = δp0 = (1, βp0 ). Such condi-
tions involve a simple exclusion restriction and the existence of a continuously
distributed covariate with nonzero coefficient. This model has the peculiarity that
both the control function µp,i and the linear index x′

p,iδ p involve unknown func-
tions (recall that x′

pδ p =wp + z′
pβ p, where zp includes a nonparametric conditional

probability). Let µ̂p(xi ) ≡ µ̂1,i denote a nonparametrically estimator of µp,i and
denote µ̂2(Xi ) ≡ µ̂2,i and let ẑ1,i ≡ (v′

1,i , µ̂2,i ) and ẑ2,i ≡ (v′
2,i , µ̂1,i ). Based on the

identification condition stated above, the proposed estimator is

β̂ p = argmin
b

∑
i< j

K
(

µ̂p,i − µ̂p, j

h

)
[(wp,i − wp, j ) + (ẑp,i − ẑp, j )′b]2φ(xi )φ(xj ),(9)

where φ(·) is a trimming function. Note that the control function arises naturally
in this model as a consequence of invertibility conditions of Fp(·), the otherwise
unknown transformation of the partially linear index wp + z′

pβ p. Notice also that
the control functions used in (9) are one-dimensional, regardless of the dimension
of x. This estimation procedure can be extended to general index models, whose
identification conditions are essentially perfectly compatible with the assumptions
used in this model.

2.3.2. Dynamic optimization models. Consider a model in which agent i solves
a dynamic optimization problem of the form

Max
{qit}t

E

[ ∞∑
t=0

δtU(xit, sit, qit; θ)
∣∣ {qit}t

]
subject to xit+1 = µ(xit, qit) + ξit+1.(10)

Using the terminology of dynamic programming models, qit is agent i’s control
(not to be confused with the “control function”) and xit is the stock. U(·, ·, ·; θ) is
agent i’s per-period utility function and sit is an idiosyncratic shock unobserved by
the econometrician, i.i.d. across time and agents, with cdf Fs(·;γ ) assumed to be
known up to the finite-dimensional parameter γ . The agent must choose qit be-
fore knowing the realization of sit. The accumulation equation xit+1 = µ(xit, qit) +
ξ i t+1 describes the evolution of the stock variable, with µ(·) being an unspeci-
fied (for the moment) function, increasing in both arguments. ξ i t+1 is a shock
that is i.i.d. across time and individuals and is unobserved at time t. We will
assume here that ξ i t+1 is independent of all other covariates in the model.
This model was analyzed in detail by Hong and Shum (2004), who assume a
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deterministic accumulation equation of the form xit+1 = xit + qit . Our assumptions
imply

xit+1 | xit, qit ∼ xit+1 | µ(xit, qit),(11)

conditional on µ(xit, qit), xit+1 is independent of xit, qit. Note that the evolution
shock ξ i t does not enter the per-period utility function U(·, ·, ·; θ). In a stationary
setting, agents’ optimal policy functions solve the following Bellman equation for
t = 1, 2, 3, . . . :

Max
q

U(xit, sit, q; θ) + δ · E[V(xt+1, st+1; θ, γ ) | xit, sit, ξit, q], where

V(xt+1, st+1; θ, γ ) = Max
{qiτ }τ

E

[ ∞∑
τ=t+1

δτ−t−1U(xi,τ , si,τ , qτ ; θ)
∣∣ {qiτ }τ , xt+1, st+1

]
.

(12)

Note that this function does not depend on ξ t+1 because E[U(xiτ , siτ , qτ ; θ) |
{qiτ }τ , xt+1, st+1, ξt+1] = E[U(xiτ , siτ , qτ ; θ) | {qiτ }τ , xt+1, st+1] for all τ ≥ t + 1. We
have

E[V(xt+1, st+1; θ, γ ) | xt , st , ξt , q] = E[V(xt+1, st+1; θ, γ ) | xt , st , q]

= E
[∫

V(xt+1, s; θ, γ ) dFs(s) ds | xt , q
]

= E
[∫

V(xt+1, s; θ, γ ) dFs(s) ds | µ(xt , q)
]

≡ V̄(µ(xt , q); θ, γ ),

(13)

so agent i’s optimal policy can be expressed compactly as

q(xit, sit; θ, γ ) = argmax
q

U(xit, sit, q; θ) + δV̄(µ(xit, q); θ, γ ).(14)

As in Hong and Shum (2004), the optimal policy function q(xt, st; θ , γ ) will be
nondecreasing in st conditional on xt if U(x, s, q; θ) is supermodular in (q, s)
given x. This is a useful result because it enables us to recover sit by inverting
conditional quantiles of qit given xit. More precisely, for every quantile τ ∈ [0, 1]
we have (q | x)τ = sτ . Therefore, we can estimate sit by ŝit(γ ) = F−1

s (F̂(qit | xit); γ ),
where F̂(q | x) is a nonparametric estimator of the conditional cdf of qt given xt.
Interior solutions to (12) (i.e., those with q > 0) satisfy

U(3)(xit, sit, q; θ) + δV̄(1)(µ(xit, q); θ, γ )µ(2)(xit, q) = 0,(15)

where f (k) denotes the partial derivative of f with respect to its kth argument.
Now let us define g(x, q) = (µ(x, q), µ(2)(x, q)). Notice from (15) that if qit > 0
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and qjt > 0, then g(xit, qit) = g(xjt, qjt) implies U(3)(xit, sit, qit; θ) − U(3)(xjt, sjt, qjt;
θ) = 0 when θ = θ0. The (vector-valued) control function g(x, q) can be estimated
nonparametrically by noting that, given our assumptions,

µ(x, q) = E[xit+1 | xit = x, qit = q], and µ(2)(x, q) = ∂ E[xit+1 | xit = x, qit = q]
∂q

.

(16)

Both objects can be estimated nonparametrically. Following the notation in Hong
and Shum, let θ1 denote the subvector of θ that “survives” after we take the
difference U(3)(xit, sit, qit; θ) − U(3)(xjt, sjt, qjt; θ) for two observations such that
g(xit, qit) = g(xjt, qjt). We have a problem now: Both x and q are scalars. If µ is left
completely unspecified, then in general x and q could be deterministic conditional
on µ(x, q) and µ(2)(x, q). Consequently, s would be deterministic too. Whenever
g(xit, qit) = g(xjt, qjt), we would have U(3)(xit, sit, qit; θ) − U(3)(xjt, sjt, qjt; θ) = 0
for any θ . For this reason we need to add structure to µ. We will assume that µ(x,
q) = α1x + α2q, with µ̂(x, q) = α̂1x + α̂2q being the estimated control function,
which can be estimated based on (16) (note that µ(2)(x, q) is simply a constant
now). Letting β = (θ1, γ ), the above discussion calls for an estimator of the form4

β̂ = argmin
γ,θ1

T∑
t=1

∑
i< j
qit>0
qjt>0

K
(

µ̂(xit, qit) − µ̂(xjt, qjt)
h

)

× [U(3)(xit, ŝit(γ ), qit; θ1) − U(3)(xjt, ŝjt(γ ), qjt; θ1)]2.

(17)

Pairwise-differencing allows us to estimate (at least a subset of) θ and γ without
having to estimate the value function V̄ , which is usually a complex computational
task. One would have to undertake this in a second step in order to estimate any
parameters that might be in θ \ θ1 (if there are any such parameters). Hong and
Shum describe procedures to do this.

2.4. The Effect of Pairwise Differencing on Identification. The discussion at
the end of Section 2.3.2 highlights an important issue in pairwise-difference es-
timation procedures. This is the fact that conditioning on the control variable
might effectively “wipe out” some of the parameters of interest from the moment
condition used for estimation. This is particularly clear in closed-form estimators
like the ones described in Sections 2.1. and 2.3.1. In both cases, simple exclusion
restrictions will salvage identification of the entire parameter vector of interest.
As we noted above, this issue also arises in nonlinear models and might destroy
identification of the entire parameter vector of interest. Conditions that would
prevent this from happening are specific to the model at hand, and would go from
conditions on the structure of the control function itself (as in Section 2.3.2 to

4 We may still have θ1 ⊂ θ if taking the difference U(3)(xit , sit , qit ; θ) − U(3)(xjt , sjt , qjt ; θ) always
eliminates a subset of parameters.
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exclusion restrictions). In general, the effect of pairwise differencing on identifi-
cation is analogous to panel data fixed effects models, where differencing for a
particular individual across time eliminates the unobserved fixed effect but it also
wipes out any covariate that is fixed over time. As in our framework, only a subset
of parameters would be identified.

2.5. On the Presence of Semi or Nonparametric Control Functions in Economet-
ric Models. The control functions described in Section 2.3 showed up naturally
as a result of the primitive assumptions of the underlying economic models. With-
out further structure, the presence of control functions in Sections 2.1. and 2.2
appears to be artificially introduced into the models described there. We will ar-
gue here that these control functions would appear naturally in the econometric
model as propensity scores—in models with some selection mechanism—or in
cases where endogeneity is modeled in a particular way.

2.5.1. Control functions in models with selection. This general notion was
studied in a semi or nonparametric context for example in Ahn and Powell (1993)
and Honoré and Powell (1994). Suppose y∗

i = x′
iβ + εi , di = 1l{w′

iγ + ηi > 0} and
yi = diy∗

i . If (εi , νi ) are independent of (xi, wi ), Then we can express yi =
x′

iβ + g(w′
iγ ) + νi , where g(w′

iγ ) = E[εi | w′
iγ + ηi > 0] and E[νi | xi, wi ] = 0.

The parameter vector γ could be estimated using index-model methods without
having to assume a particular functional form for the distribution of νi —as long as
it has unbounded support and an everywhere-increasing distribution function. Al-
ternatively, we could assume di = 1l{φ(wi ) + ηi > 0}, where φ(wi ) is an unknown
function. This yields E[di | wi ] = Fη(−φ(wi )), where ηi ∼ Fη is only assumed to
be everywhere increasing. Let g(φ(wi )) = E[εi | φ(wi ) + ηi > 0]; invertibility of
Fη implies that we can express the model as yi = x′

iβ + g̃(E[di | wi ]) + νi , where
g̃(z) = g(−F−1

η (z)). An intermediate case is one where di = 1l{φ(w′
iγ ) + ηi > 0}.

Under appropriate assumptions about the otherwise unknown function φ(·), the
linear index γ ′xi can be consistently estimated. If the econometrician observes
only yi, xi, and wi , all these cases yield special cases of the partially linear model
described in Section 2.1. A control function also arises naturally in the context
of a Tobit model with selection. Let y∗

i = max{0, x′
iβ + εi }, di = 1l{φ(wi ) + ηi > 0}

and yi = diy∗
i . Suppose we can express5 εi = E[εi | di , wi ] + νi ≡ g1(φ(wi ), di ) + νi ,

where E[νi | wi , xi, di] = 0, and obtain y∗
i = max{0, x′

iβ + g(φ(wi ), di ) + νi }. If
di is observed by the econometrician, then we can use the condition E[
yij −

x′

ijβ0 | zi , zjφ(wi ) − φ(w j ) = 0] = 0. The control function φ(wi ) can be estimated
nonparametrically from E[di | wi ] = Fη(−φ(wi )) if we assume that Fη is invertible
everywhere. We can show that if di is observed only when yi > 0, we would have
to proceed by using the entire vector wi as the control function.

2.5.2. Control function and endogeneity. Consider the model yi =
1l{x′

iβ + εi ≥ 0} and partition xi = (x1i , x2i ), where x1i is suspicious of endogeneity.
Let wi = (x1i , w2i ), where x2i is included in w2i . In the spirit of Blundell and Powell

5 Note that E[εi | di, wi ] depends on wi only through φ(wi ).
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(2004), suppose the “reduced form” of the model can be described as follows6:
x1i = φ(w′

2iγ ) + νi , with E[νi | w2i ] = 0, and εi = E[εi | νi ] + ζ i ≡ g(νi ) + ζ i , where
ζ i is independent7 of wi , xi. The model becomes yi = 1l{x′

iβ + g(νi ) + ζi ≥ 0}. If
ζi ∼ logistic, we obtain the partially linear logit model of Section 2.2.1. Under
appropriate Index-model assumptions, the control function νi can be estimated
semiparametrically (e.g., Ichimura and Lee, 1991) as a residual. Let µi ≡ E [yi | xi,
wi ]. If Fη is only assumed to be strictly increasing with unknown functional
form, the model could be approached by noting that µi = µ j and νi = ν j imply
E[(xi − xj)′δ0 | µi − µ j = 0, νi − ν j = 0] = 0, where δ is the vector of identified
parameters in this case. Following the discussion in Section 2.4, identification
would be completely destroyed in this case if µi = µ j and νi = ν j implies xi = xj.
This immediately imposes a dimensionality constraint on the vector of covariates
xi. Using these same arguments it is easy to see how the partially linear Tobit
model from Section 2.2.2 could arise in the context of endogeneity. Further
examples where control functions have been used to control for endogeneity
include Newey et al. (1999) and Das et al. (2003), where control functions also
appear as propensity scores in the context of selection.

3. LARGE SAMPLE THEORY FOR THE PROPOSED ESTIMATION PROCEDURE

3.1. Setup. We will assume throughout that we have an i.i.d. sample {si}n
i=1

of size n on an observable vector zi; letting wi ≡ (w1i , w2i )′ ∈ R
L1 × R

L2 be a given
subvector of zi, and γ0 ∈ R

D be a vector of nuisance parameters, our “nonparamet-
ric control variable” is defined to be a vector-valued function µ : R

L2 × R
D −→ R

L

of the form

µ(wi , γ0) = τ (wi , γ0) − E[η(wi , γ0) | w2i ],

where the functional forms for τ (·) and η(·) are known, but the exact expression
for µ(·) is unknown due to lack of knowledge about the conditional distribution of
wi given w2i . For example, for censored selection models with a binary indicator
variable di for the uncensored observations, the control variable ζ i = ζ (wi , γ 0)
might be the propensity score ζ i = E[di | w2i ], with w2i being a vector of regressors
in the selection equation, as in Ahn and Powell (1993); for this application, we
would have wi ≡ (di, w2i ), τ (wi , γ 0) ≡ 0, and η(wi , γ 0) ≡ −di. Alternatively,
in applications with endogenous regressors, µi might be the difference between
the endogenous regressor xi and its conditional mean given some instrumental
variables w2i , as in Blundell and Powell (2004) and the application discussed in
Section 4 below (with τ (wi , γ 0) ≡ xi ≡η(wi , γ 0)). The nuisance parameter γ 0 might
appear in applications in which some semiparametric structure (e.g., a single index
restriction) is imposed on the control variable.

Now let vi = (yi, xi) be another subvector of zi; denoting the vector of parameters
of interest by β0, suppose there exists a function s(vi, vj; β) with the property that
the function

6 As before, a linear index model is not required. We can have in general x1i = φ(w2i ) + νi .
7 More generally, we could simply assume that εi | xi, νi ∼ εi | νi .
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T(γ0, β) ≡ E[s(vi , v j ; β) | µ(wi , γ0) − µ(w j , γ0) = 0]

is uniquely minimized at β = β0. In terms of identification, the parameter vector
β0 includes only those that “survive” the pairwise-differencing procedure (see
Section 2.4, above). For simplicity, we will focus here on the case where s(vi, vj; β)
is known up to β. We stress however that our methods can be extended to cases
where s(vi, vj; β) includes unknown functions (as in the examples in Section 2.3) or
“generated regressors”; for details, see, for example, Aradillas-Lopez (2006). As
we illustrated in Section 2 and further examples analyzed in Honoré and Powell
(2005), such criterion functions s(·) are available for a number of different nonlin-
ear models, including the partially linear logit, censored regression, and Poisson
regression models and the censored regression model with selectivity, in which
the control function appears in the nonparametric component of the partially lin-
ear regression function. We also showed in Section 2 that further examples have
been found in the context of rational expectations and interactions-based models.
Following Honoré and Powell (2005), we study the properties of estimators of β0

defined by minimizing an estimator of T(γ 0, β) of the form

Tn(γ̂ , b) =
(n

2

)−1 ∑
i< j

rn(zi , zj ; γ̂ , b), with

rn(zi , zj ; γ̂ , b) = 1
hL

n
K

(
µ̂n(w2i , γ̂ ) − µ̂n(w2 j , γ̂ )

hn

)
s(vi , v j ; b),

(18)

where K(·) is a kernel function and µ̂n(·) is a nonparametric estimator of µ(·).
In the following sections, we will provide conditions under which the resulting

estimator β̂ is consistent and asymptotically normal. We assume that the con-
ditioning vector w2i is continuously distributed, and, in our estimation method,
realizations near the boundary of its support will be trimmed out in order to avoid
the resulting bias on µ̂n(·), the nonparametric estimator of µ(·). We study carefully
the implications of trimming on the consistency of our estimators and provide a set
of sufficient conditions that ensure the appropriate rate of uniform convergence of
the estimator µ̂n(·) to achieve

√
n-consistency of β̂. We also provide conditions un-

der which trimming may disappear asymptotically. Following Honoré and Powell
(2005), we propose the use of a simple jackknife procedure as an alternative to
the use of a bias-reducing kernel K(·) in (18), which would render the objective
function nonconvex and require compactness of the parameter space for uniform
consistency. Bias-reducing kernels will be used only in the estimation of µ̂n(·), the
control function.

3.2. Some Preliminary Results. Suppose wi ≡ (w1i , w2i )′ ∈ R
L1 × R

L2 is a
random vector and let fw2 (w2) denote the marginal density of w2. Given two con-
stant vectors γ ∈ R

D and ω = (ω1, ω2) ∈ R
L1 × R

L2 , the function η : R
L1 × R

L2 ×
R

D → R
L, a kernel H : R

L2 → R, and a bandwidth sequence bn : N → R++, let
Hbn (t) = H(t/bn) and define
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Rn(ω2, γ ) = 1

nhL2
n

n∑
i=1

η(w1i , ω2, γ )Hbn (w2i − ω2),

f̂ w2n
(ω2) = 1

nhL2
n

n∑
i=1

Hbn (w2i − ω2).

Let µ(ω, γ ) = τ (ω, γ ) − E[η(wi , γ ) | w2i = ω2] and µ̂n(ω, γ ) = τ (ω, γ ) −
[Rn(ω2, γ )/ f̂ w2n

(ω2)]. Denote M = L + L2 + 3, and let S(ω) denote the support
of a random variable ω. Consider the following assumptions:

ASSUMPTION 1.

i. w2i is absolutely continuous with respect to Lebesgue measure;
ii. The density fw2 (w2) is bounded, M times differentiable with respect to w2

with bounded Mth derivative everywhere in S(w).

ASSUMPTION 2. There exists W2 ⊂ interior{S(w2)} with infw2∈W2 fw2 (w2) > 0,
and � ⊂ R

D where the following conditions hold:

i. µ(ω, γ ) is M times differentiable with respect to ω and γ with bounded Mth
derivatives for every ω ∈ S(ω) and γ ∈ �;

ii. There exists a function η̄ : R
L1 → R+ such that ‖η(w1i , w2, γ )‖ ≤ η̄(w1i )

w.p.1 for all w1i ∈ S(w1), w2 ∈ W2, and γ ∈ � that satisfies the following:
E[η̄(w1i )2 | w2i = w2] exists and is a continuous function of w2 for all
w2 ∈ S(w2), and E[η̄(w1i )4] < ∞;

iii. There exists a function η̄1 : R
L1 → R+ and ϕ1 such that ‖η(w1i , u, γ ) −

η(w1i , u′, γ )‖ ≤ η̄1(w1i )‖u − u′‖ϕ1 w.p.1 for all w1i ∈ S(w1), u, u′ ∈ W2,

γ ∈ �, with E[η̄1(w1i )] < ∞;
iv. There exists a function η̄2 : R

L1 → R+ and ϕ2 such that ‖η(w1, u, γ ) −
η(w1, u, γ ′)‖ ≤ η̄2(w1)‖γ − γ ′‖ϕ2 w.p.1 for all w1 ∈ S(w1), u ∈ W2, γ, γ ′ ∈
�, and E[η̄2(w1)] < ∞.

Assumption 1 can be relaxed to permit discrete components of w2i , in which
case L2 would be the number of continuously distributed components. Assump-
tions 2(iii) and 2(iv) can be seen as “in probability” Lipschitz conditions—see, for
example, lemma 2.9 in Newey and McFadden (1994). They would be immediately
satisfied, for example, if η(w1, u, γ ) is assumed to be differentiable with respect
to u and γ with bounded derivatives in W2 and �.

ASSUMPTION 3.

i. Define H ≡ {t ∈ R
L2 : H(t) �= 0}; then H ⊂ R

L2 is compact. H(·) is
bounded and symmetric about zero, with

∫
H(t) dt = 1. Denote t =

(t1, . . . , tL2 )′; then
∫ ‖t‖M|H(t)| dt < ∞ and

∫
(tq1

1 · · · t
qL2
L2

)H(t) dt1 . . .

dtL2 = 0 for all 0 < q1 + · · · + qL2 < M. There exist ϕ ∈ (0, M) and
cH < ∞ such that |H(t) − H(t ′)| ≤ cH‖t − t ′‖ϕ ∀ t, t ′.

ii. bn satisfies bn = o(1), ln nb−2L2
n = o(n), b2M

n = o(n−1) and b−L2−2ϕ
n =

o(n1−σ ) for some σ > 0.
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iii. The sets W2 and H, and the bandwidth bn are such that bnt + w2 ∈
interior {S(w2)}∀ t ∈ H, w2 ∈ W2, n ∈ N.

The following result will be useful.

THEOREM 1. If Assumptions (1)–(3) are satisfied, then

(a) supω∈W2
γ ∈�

(n1−δbL2
n )1/2‖µ̂n(ω, γ ) − µ(ω, γ )‖ = Op(1) for any δ > 0.

(b) µ̂n(ω, γ ) − µ(ω, γ ) = 1
fw2 (ω)

1
nb

L2
n

∑n
i=1[τ (ω, γ ) − η(w1i , ω2, γ ) − µ(ω, γ )]×

Hbn (w2i − ω) + ξn(ω, γ ),

where supω∈W2
γ ∈�

‖ξn(ω, γ )‖ = Op(nδ−1b−L2
n ) for any δ > 0.

Note that τ (ω, γ ) − µ(ω, γ ) = E[η(w1i , ω2, γ ) | w2i = ω2], so the linear represen-
tation in part (b) of Theorem 1 depends only on η(wi , γ ) − E[η(wi , γ ) | w2i = ω2].
Theorem 1 is a special case of a more general result shown in Aradillas-Lopez
(2005). It will be crucial for the main results presented below. The next result is
an immediate consequence:

COROLLARY 1. Suppose we strengthen the condition ln nb−L2
n = o(n) to

n1−δb−2L2
n = o(1) for some δ > 0. Let ξn(ω, γ ) be as defined in Theorem 1; then

supω∈W2
γ ∈�

‖ξn(ω, γ )‖ = op(N−1/2).

3.3. Estimation. We will examine the case in which the pairwise difference
estimator depends on the unknown function µ(ω, γ ), which was defined in Sec-
tion 3.2. Because this function is unknown, we will use its nonparametric estima-
tor µ̂n(ω, γ ), which was also defined above. We assume w2i to be continuously
distributed. Thus, in order to avoid the influence of points in the boundary of
S(w2)—which would introduce a bias on µ̂n(w2, γ ), we will analyze a trimmed
version of the objective function in Equation (18). We will denote zi = (yi, xi, wi )
and vi = (yi, xi), where wi = (w1i , w2i ), and wi is as described in Section 3.2. We
will use W2 as the trimming set, where W2 satisfies Assumptions (1) and (2). Let

rn(zi , zj ; γ, b) = 1
hL

n
K

(
µ̂n(wi , γ ) − µ̂n(w j , γ )

hn

)
s(vi , v j ; b) · a(w2i )a(w2 j ),

where a(·) is the trimming function described as

a(w2) =
{

φ(w2) > 0 if w2 ∈ W2,

0 otherwise.

The function φ(u) is bounded, continuous, and strictly positive for all u ∈ R
L2 . We

will describe the properties of the function s(vi, vj; b) below. Define
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Tn(γ, b) =
(n

2

)−1 ∑
i< j

rn(zi , zj ; γ, b),(19)

where µ̂n(ω, γ ) is as defined in Section 3.2.

ASSUMPTION 4.

i. E[s(vi , v j ; b)2] < ∞;
ii. E[‖µ(wi , γ ) − µ(w j , γ )‖2] < ∞;

iii. µ(wi , γ 0) is continuously distributed with bounded density, fµ(w,γ0)(·),
which is a continuous function;

iv. Denote κs(a1, a2, b) = E[s(vi , v j ; b) | zi = a1, µ(w j , γ0) = a2]; then κs(·)
exists and is a continuous function of each of its arguments;

v. Let ρ(µ(wi , γ0)) = E[a(w2i ) | µ(wi , γ0)]. Then ρ(µ(wi , γ 0)) is continu-
ous and strictly positive for all µ(wi , γ 0) such that w2i ∈ W2. Denote
�s(a1, a2, b) = κs(a1, a2, b)ρ(a2) fµ(w,γ0)(a2); then |�s(a1, a2, b)| ≤ c1(a1, a2,
b) with E[c1(vi, µ(wi , γ 0), b)] < ∞ for all b;

vi. {zi, i = 1, . . . , n} is an i.i.d. sample.

The use of trimming in the objective function could have an ad-
verse effect on the consistency of β̂ if the value of β that maximizes
E[a(w2i )a(w2 j )s(vi , v j ; β) | µ(wi , γ0) − µ(w j , γ0) = 0] differs from the one that
corresponds to E[s(vi , v j ; β) | µ(wi , γ0) − µ(w j , γ0) = 0]. Typically, this issue
would be addressed by introducing some form of exclusion restriction. Suppose all
we know is that E[s(vi , v j ; β) | µ(wi , γ0) − µ(w j , γ0) = 0] is uniquely minimized
when β = β0. The next assumption describes an exclusion restriction that would
eliminate any potential trimming bias.

ASSUMPTION 5. E[s(vi , v j ; b) | vi , w2 j , µ(w j , γ0)] = E[s(vi , v j ; b) | vi , µ(w j , γ0)].

In essence, what we require is that, conditional on vi, s(vi, vj; b) is
mean-independent of w2 j conditional on µ(w j , γ 0). The worst-case scenario
would be one in which all we have to work with is the assumption that
E[s(vi , v j ; β) | µ(wi , γ0) − µ(w j , γ0) = 0] is uniquely minimized when β = β0,
and Assumption 5 does not hold. In Section 3.9, we present a solution to
that case. There, we describe an alternative trimming methodology based on
a sequence of trimming functions an(·) and a sequence of trimming sets W2n

and we describe conditions under which E[an(w2i )an(w2 j )s(vi , v j ; β) | µ(wi , γ0) =
µ(w j , γ0)]

p−→ E[s(vi , v j ; β) | µ(wi , γ0) = µ(w j , γ0)] uniformly in B. If such con-
ditions are satisfied, and the alternative trimming methodology is used, then con-
sistency of the resulting estimator β̂ would rely exclusively on the assumption
that E[s(vi , v j ; β) | µ(wi , γ0) − µ(w j , γ0) = 0] is uniquely minimized when β =
β0 regardless of whether or not Assumption 5 is satisfied. Basically, what we
would need is for the properties of W2 in Assumptions 1 and 2 to be satisfied
by any arbitrary compact set in the interior of S(w2), the sequence of trimming
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functions an(w2) to converge to a positive constant c with probability one, and
the tails of fw2 (·) to converge to zero at an appropriate rate relative to the one at
which W2n converges to S(w2). We will describe the set of conditions in detail in
Section 3.9.

ASSUMPTION 6. We have hn = o(1). Let bn be the bandwidth used in the estimation
of µ(·). We will strengthen Assumption 3(ii) and assume that n1−2δbL2

n h2(L+2)
n → ∞

for some δ > 0 and nb2M
n h−2(L+1)

n → 0.

ASSUMPTION 7. K is bounded and symmetric about zero with
∫

K(u) du = 1 and
‖u‖ · |K(u)| → 0 as ‖u‖ → ∞. K(·) is twice differentiable with bounded derivatives.
Denote its gradient by K(1)(·) ∈ R

L; then K(1)(t) = −K(1)(−t) for all t.

ASSUMPTION 8. We assume γ 0 ∈ �, which is described in Theorem 1. We allow
the use of an estimator γ̂ of γ 0 if necessary. Then, either

i. γ̂ = γ0 ∈ � or
ii. ‖γ̂ − γ0‖ = Op(n−1/2), and γ̂ ∈ � for all n.

ASSUMPTION 9. |s(vi, vj; b1) − s(vi, vj; b2)| ≤ Bij‖b1 − b2‖α for some α > 0, where
E[B2

ij] < ∞.

Our estimator β̂ is defined as

β̂ = argmin
b

Tn(γ̂ , b).(20)

We first analyze the limiting objective function.

3.3.1. Pointwise convergence to limiting objective function. Define

T(γ0, b) = E[a(w2i )�s(vi , µ(wi , γ0), b)],

where κs(·) and g(·) are described in Assumptions 4(iv) and 4(vi)—above. Then,
if Assumptions 1–8 hold, Tn(γ̂ , b) → T(γ0, b).

PROOF. Define

Tn(γ0, b) =
(n

2

)−1 ∑
i< j

1
hL

n
K

(
µ(wi , γ0) − µ(w j , γ0)

hn

)
s(vi , v j ; b)a(w2i )a(w2 j ).

First we show that Tn(γ 0, b) → T(γ 0, b). Note that if Assumption 7 is satisfied,
then
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E[Tn(γ0, b)]

= E
[

1
hL

n
K

(
µ(wi , γ0) − µ(w j , γ0)

hn

)
s(vi , v j ; b)a(w2i )a(w2 j )

]
= E

[
1

hL
n

K
(

µ(wi , γ0) − µ(w j , γ0)
hn

)
a(w2i )ρ(µ(w j , γ0))κs(vi , µ(w j , γ0); b)

]
= E

[
a(w2i )

∫
K(ψ)ρ(hnψ + µ(wi , γ0))κs(vi , hnψ + µ(wi , γ0); b)

× fµ(hnψ + µ(wi , γ0)) dψ

]
→ E[a(w2i )ρ(µ(wi , γ0))κs(vi , µ(wi , γ0), b) fµ(µ(wi , γ0))]

= E
[

fµ(µ(wi , γ0))ρ(µ(wi , γ0))2 E[κs(vi , µ(wi , γ0), b) | µ(wi , γ0)]
]
,

where the next-to-last line follows from Assumptions 4(iv)–4(vi), 5, and 6, and the
last line follows once again from Assumption 5. Using Assumptions 4(i), 6, 7, and
the properties of a(·), we have

E

[{
1

hL
n

K
(

µ(wi , γ0) − µ(w j , γ0)
hn

)
s(vi , v j ; b)a(w2i )a(w2 j )

}2
]

= O(n),

which satisfies lemma A.3 of Ahn and Powell (1993). Consequently, Tn(γ0, b) →
E[Tn(γ0, b)] → T(γ0, b). Next we show that Tn(γ̂ , b) → Tn(γ0, b):

|Tn(γ̂ , b) − Tn(γ0, b)|

≤
(n

2

)−1 ∑
i< j

1
hL

n

∣∣∣∣∣K
(

µ̂n(wi , γ̂ ) − µ̂n(w j , γ̂ )
hn

)
− K

(
µ̂n(wi , γ0) − µ̂n(w j , γ0)

hn

)∣∣∣∣∣
×|s(vi , v j ; b)|a(w2i )a(w2 j ).

We have∣∣∣∣K (
µ̂n(wi , γ̂ ) − µ̂n(w j , γ̂ )

hn

)
− K

(
µ̂n(wi , γ0) − µ̂n(w j , γ0)

hn

)∣∣∣∣
≤ 2L

hn

∥∥K(1)(d∗
ij

)∥∥ ·
[

max
i

‖µ̂n(wi , γ̂ ) − µ(wi , γ̂ )‖ + max
i

‖µ̂n(wi , γ0) − µ(wi , γ0)‖

+ max
i

‖µ(wi , γ̂ ) − µ(wi , γ0)‖
]

|s(vi , v j ; b)|a(w2i )a(w2 j ).

By Theorem 1, a(·), and Assumption 8, we have maxi‖µ̂n(wi , γ̂ ) − µ(wi , γ̂ )‖ =
Op(n1−δbL2

n )−1/2 for every δ > 0. The same result holds for maxi‖µ̂n(wi , γ0) −
µ(wi , γ0)‖. By Assumption 2(i), there exists a C1 > 0 such that maxi‖µ(wi , γ̂ ) −
µ(wi , γ0)‖ ≤ C1‖γ̂ − γ0‖ = Op(n−1/2)—using Assumption 8. From Assumption 7,
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there exists C2 > 0 such that ‖K(1)(t)‖ ≤ C2 for all t. Combining all this and letting
C = 2LC1C2, we have

|Tn(γ̂ , b) − Tn(γ0, b)| ≤ C

hL+1
n

[
Op

(
n1−δbL2

n

)−1/2 + Op(n−1/2)
](n

2

)−1

×
∑
i< j

|s(vi , v j ; b)|a(w2i )a(w2 j )

for all δ > 0. Therefore, Assumption 6 yields h−L−1
n Op(n1−δbL2

n )−1/2 = op(1) and
h−L−1

n Op(n−1/2) = op(1). Combining this with Assumptions 4(i), 6, and the prop-
erties of a(·), we have |Tn(γ̂ , b) − Tn(γ0, b)| = op(1), and therefore Tn(γ̂ , b) →
T(γ0, b), which proves the claim. �

Suppose that the following modified version of Assumption 5 holds:

ASSUMPTION 5′. E[s(vi , v j ; b) | vi , xj , w2 j , µ(w j , γ0)] = E[s(vi , v j ; b) | vi , xj ,

µ(w j , γ0)].

Based on this condition, we can modify Assumption 4 accordingly:

ASSUMPTION 4′. Maintain 4(i), 4(ii), and 4(vi) but modify 4(iii)–4(v) to assume
that

iii. Let f µ|x(µ; x) be the conditional density of µ(w j , γ 0) given xj = x. Then
f µ|x(µ; x) is a continuous function of its first argument.

iv. Define κ̄s(a1, a2, a3) = E[s(vi , v j ; b) | zi = a1, xj = a2, µ(w j , γ0) = a3].
Then κ̄s(a1, a2, a3) exists and is a continuous function of each of its
arguments;

v. Let ρ̄(a2, a3) = E[a(w2 j ) | xj = a2, µ(w j , γ0) = a3]. Then ρ̄(a2, a3) is
a continuous function of its second argument and is strictly posi-
tive for all µ(w j , γ 0) such that w2 j ∈ W2. Define �̄s(a1, a2, a3, b) =
ρ̄(a2, a3)κ̄s(a1, a2, a3) fµ|x(a3; a2); then |�s(a1, a2, a3, b)| < c̄1(a1, a2, a3,

b), with E[c̄1(a1, a2, a3, b)] < ∞ for all b.

Define

T̄(γ0, b) = E[a(w2i )�̄s(vi , xj , µ(wi , γ0))].

Then, if Assumptions 1–3, 4′, 5′, and 6–8 hold, Tn(γ̂ , b) → T̄(γ0, b). The proof
follows the same steps as above, replacing Assumptions 4 and 5 with 4′ and 5′,
respectively.

3.4. Uniform Convergence to Limiting Objective Function. Let B be the pa-
rameter space for β. If B is compact, then supb∈B |Tn(γ̂ , b) − T(γ0, b)| = op(1).

PROOF. Using Assumption 9 and following steps parallel to those used to show
that supb∈B |Tn(γ0, b) − T(γ0, b)| = op(1). Take b1, b2 ∈ B. Using the same steps
as the ones used in the pointwise convergence proof, we can show that
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|Tn(γ̂ , b1) − Tn(γ0, b2)|

≤ C

hL+1
n

[
Op

(
n1−δbL2

n

)−1/2 + Op(n−1/2)
] (n

2

)−1

×
∑
i< j

|s(vi , v j ; b1) − s(vi , v j ; b1)|a(w2i )a(w2 j )

≤ C

hL+1
n

[
Op

(
n1−δbL2

n

)−1/2 + Op(n−1/2)
] (n

2

)−1 ∑
i< j

Bija(w2i )a(w2 j )‖b1 − b2‖α,

for all δ > 0, and using Assumptions 6, 9, and the compactness of B,
we get supb∈B |Tn(γ̂ , b) − Tn(γ0, b)| = op(1), and consequently supb∈B |Tn(γ̂ , b) −
Q(γ0, b)| = op(1), which establishes uniform convergence. �

As with pointwise convergence, a parallel result holds if we replace Assump-
tions 4 and 5 with 4′ and 5′, respectively. In this case, we have supb∈B |Tn(γ0, b) −
T̄(γ0, b)| = op(1).

3.5. Identification. As we mentioned above, trimming is done to avoid bias
of µ̂n(·) that would be caused by points on the boundary of S(w2). Given this need,
we chose W2 as the trimming set to take advantage of the results of Theorem 1.
Without additional assumptions, trimming may cause bias of β̂ in this setting. The
purpose of Assumptions 4(vi), 4(vii), and 5 is to avoid the presence of such bias.
As we stated above, if Assumptions 1–3 hold for any compact set in the interior
of S(w2) and if fw2 (·) satisfies some additional assumptions (see Assumption 18,
below), we could make the trimming disappear asymptotically and leave the rate
of convergence of our estimator unchanged. This would allow us to relax Assump-
tions 4(vi), 4(vii), and 7. Below, we will present conditions under which this can
be done.

If Assumption 5 is satisfied, the limiting objective function T(γ 0, b) is given
by

T(γ0, b) = E[a(w2i )�s(vi , µ(wi , γ0), b)]

= E
[

fµ(µ(wi , γ0))ρ(µ(wi , γ0))2 E[s(vi , v j , b) | µ(w j , γ0) = µ(wi , γ0)]
]
,

where the last equality comes from Assumption 5. T(γ 0, b) is uniquely minimized
at β0 if the following condition holds:

ASSUMPTION 10. E[s(vi , v j ; b) | µ(w j , γ0) = µ(wi , γ0)] is uniquely minimized at
b = β0.

If Assumption 5′ is satisfied, the limiting objective function T̄(γ0, b) is

T̄(γ0, b) = E[a(w2i )�̄s(vi , xj , µ(wi , γ0))]

= E[a(w2i )ρ̄(xj , µ(wi , γ0)) fµ|x(µ(wi , γ0); xj )

× E[s(vi , v j , b) | xi , xj , µ(w j , γ0) = µ(wi , γ0)]]
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The last equality being a consequence of Assumption 5′. T̄(γ0, b) is uniquely min-
imized at β0 if the following condition holds:

ASSUMPTION 10′. E[s(vi , v j ; b) | xi , xj , µ(wi , γ0) − µ(w j , γ0) = 0] is uniquely
minimized at b = β0.

As it is the case with extremum estimators, Assumption 10 (or 10′) yields iden-
tification and, along with the convergence results of Sections 3.3.1 and 3.4, it will
also yield consistency of β̂. We present the results now.

3.5.1. Consistency theorem. Let β̂ be the minimizer of Tn(γ̂ , b) over the pa-
rameter space of β, denoted by B. We have the following results:

THEOREM 2. Let Khn (t) ≡ K(t/hn). If Khn (µ(wi , γ ) − µ(w j , γ ))s(vi , v j , b) ×
a(w2i )a(w2 j ) is a continuous and convex function of b and B is a convex set with

the true value β0 in its interior, then β̂
p−→ β0 under Assumptions 1–8 and 10. This

result remains true if we replace Assumptions 4, 5, and 10 with 4′, 5′, and 10′,
respectively.

PROOF. Follows from the result in Section 3.3.1 and theorem 2.7 in Newey and
McFadden (1994). �

THEOREM 3. Let Khn (t) ≡ K(t/hn). If Khn (µ(wi , γ ) − µ(w j , γ ))s(vi , v j , b) ×
a(w2i )a(w2 j ) is a continuous function of b, and B is a compact set that includes the

true value β0 as an interior point; then β̂
p−→ β0 under Assumptions 1–10. This result

remains true if we replace Assumptions 4, 5, and 10 with 4′, 5′, and 10′, respectively.

PROOF. Follows from the result in Section 3.4 and Theorem 2.1 along with
lemma 2.9 in Newey and McFadden (1994). �

3.6. Asymptotic Normality. Let βh be the minimizer of
E[h−L

n Khn (µ(wi , γ ) − µ(w j , γ ))s(vi , v j , b)a(w2i )a(w2 j )]. The same arguments

that lead to the consistency of β̂ imply that βh
p−→ β0. Also note that βh is non-

stochastic. In this section we will derive the limiting distribution of
√

n(β̂ − βh),
where β̂ is the minimizer of Tn(γ̂ , b). In all the applications considered in this
article, the function s(vi, vj; β) is left and right differentiable with respect to each
component of β. Let

vn(zi , zj ; γ, β) = 1
hL

n
K

(
µ̂n(wi , γ ) − µ̂n(w j , γ )

hn

)
t(vi , v j , β)a(w2i )a(w2 j )

pn(zi , zj ; γ, β) = 1
hL

n
K

(
µ(wi , γ ) − µ(w j , γ )

hn

)
t(vi , v j , β)a(w2i )a(w2 j )
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and define

Ĝn(γ, β) =
(n

2

)−1 ∑
i< j

vn(zi , zj ; γ, β) and Gn(γ, β) =
(n

2

)−1 ∑
i< j

pn(zi , zj ; γ, β),

where t(vi, vj, β) is a convex combination of the left and right derivatives of s(vi,
vj; β) with respect to each component of β. Since β̂ is the minimizer of Tn(γ̂ , b),
the object of interest is Ĝn(γ̂ , β). Below, we will characterize the relationship
between Ĝn(γ̂ , β) and Gn(γ̂ , β), which will determine the asymptotic distribution
of

√
n(β̂ − βh). We will add the following assumptions:

ASSUMPTION 11. The derivative function {t(·, ·; β) : β ∈ B} is Euclidean for an
envelope F, i.e.,

sup
n,β

|t(zi , zj ; β)| ≤ F(zi , zj ),

satisfying

E
[
F(zi , zj )2] < ∞ and sup

γ∈�

E
[‖F(zi , zj )[τ (wi , γ ) − η(wi , γ ) − µ(w j , γ )]‖2] < ∞.

The set B need not be the whole parameter space, but could be some other set
with β0 in its interior.

ASSUMPTION 12. The function φ(·), in the definition of the trimming function
a(·), is M times differentiable with bounded derivatives.

ASSUMPTION 13. Define

Bn(w2i ; γ, β) = E
[

1

hL+1
n

K(1)
(

µ(wi , γ ) − µ(w j , γ )
hn

)
t(vi , v j , β)a(w2 j )

∣∣ w2i

]
;

then Bn(w2i ; γ , β) is M times differentiable with respect to w2i with bounded deriva-
tives everywhere in �, B.

Note that if Assumption 7 is satisfied, then
∫

K(1)(t) dt = 0. We will now
strengthen Assumption 2(iii), one of the “in probability” Lipschitz conditions
for η(·):

ASSUMPTION 14. With probability one in S(w1), the function η(w, γ ) is M times
differentiable with respect to w2 with bounded Mth derivatives for all w2 ∈ W2 and
γ ∈ �.

ASSUMPTION 15. The true parameter β0 is in the interior of the parameter space.

Define the projection functions

p1n(zi ; γ, β) = E[pn(zi , zj ; γ, β) | zi ] − E[pn(zi , zj ; γ, β)],

p0n(γ, β) = E[pn(zi , zj ; γ, β)],

and let p̃n(zi , γ, β) = p0n(γ, β) + 2p1n(zi ; γ, β).
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ASSUMPTION 16.

i. p̃n(zi , γ, β) satisfies the following:

(a) p̃n(zi , γ, β) is continuously differentiable in (γ ,β) with a derivative

 p̃n(zi , γ, β) with the property that for any sequence (γ ∗, β∗) that
converges in probability to (γ0, β0), 
 p̃n(zi , γ

∗, β∗) converges to
a matrix 
 p̃0(γ0, β0). Let 
 p̃β

0 (γ0, β0) and 
 p̃γ

0 (γ0, β0) denote the
parts that correspond to the differentiation with respect to β and
γ , respectively. Then 
 p̃β

0 (zi , γ0, β0) is nonsingular.
(b) There exists a function p1(zi; γ 0, β0) with E[‖p1(zi ; γ0, β0)‖2] < ∞

such that

1√
n

n∑
i=1

p̃n(zi ; γ0, βh) − 1√
n

n∑
i=1

p1(zi ; γ0, β0) = op(1).

ii. η(wi , γ ) and Bn(w2i ; γ , β) are continuously differentiable in γ and (γ , β),
respectively, with derivatives 
γ η(wi , γ ) and 
Bn(w2i ; γ , β) respectively—
the first assumption strengthens the “in probability” Lipschitz condition
2(iv).

iii. Let D̃n(wi ; γ, β) = Bn(w2i ; γ, β)[τ (wi , γ ) − η(wi , γ ) − µ(wi , γ )]a(w2i ).
The previous condition, along with Assumption 2(i) imply that D̃n(wi ; γ, β)
is continuously differentiable in (γ , β); denote this derivative by

D̃n(wi ; γ, β). We assume that 
D̃n(wi ; γ, β) has the property that for any
sequence (γ ∗, β∗) that converges in probability to (γ0, β0), 
D̃n(wi ; γ ∗, β∗)
converges in probability to a matrix 
D̃0(γ0, β0). Let 
D̃β

0 (γ0, β0) and

D̃γ

0 (γ0, β0) be the parts that corresponds to β and γ , respectively.
iv. For some function D(wi ; γ 0, β0) with E[‖D(wi ; γ0, β0)‖2] < ∞,

1√
n

n∑
i=1

D̃n(wi ; γ0, βh) − 1√
n

n∑
i=1

D(wi ; γo, β0) = op(1).

Note that E[D̃n(wi ; γ, β)] = 0 and 
Dn(wi ; γ , β) = 0 for any γ and β.
Thus, we must have E[D(wi ; γ0, β0)] = 0 and 
D̃β

0 (γ0, β0) = 0. Let 
 p̃γ

0 (γ0, β0),

 p̃β

0 (γ0, β0), and p1(zi; γ 0, β0) be as defined in Assumption 16(i). The following
is the main asymptotic normality theorem in this section.

THEOREM 4. Suppose β̂ is a consistent estimator of β,
√

n(γ̂ − γ0) =
n−1/2 ∑n

i=1 υi + op(1) and Ĝn(γ̂ , β̂) = op(n−1/2). If Assumptions 1–3, 6, 7, and 11–
16 are satisfied, then

√
n
(
β̂ − βh

) = 1√
n

n∑
i=1

ψi + op(1),
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where

ψi = −
 p̃β

0 (γ0, β0)−1 × [(

D̃γ

0 (γ0, β0) + 
 p̃γ

0 (γ0, β0)
)
υi + 2p1(zi ; γ0, β0)

+ 2D(wi ; γ0, β0)
]
.

Furthermore, assuming υ i , p1(zi; γ 0, β0), and D(wi ; γ 0, β0) are jointly i.i.d. with
E[υ i ] = 0 and E[‖υi‖2] < ∞,

√
n(β̂ − βh)

d−→ N (0, E[ψiψ
′
i ]).

PROOF. In the Appendix, we show that if Assumptions 1–3, 6, 7, and 11–14 are
satisfied and {zi, i = 1, . . . , n} is an i.i.d. sample,

Ĝn(γ, β)

= Gn(γ, β) + 2(n − 2)
n

1
n

n∑
i=1

Bn(w2i ; γ, β)[τ (wi , γ ) − η(wi , γ ) − µ(wi , γ )]a(w2i )

+ ẽn(zi , zj ; γ, β)

≡ Gn(γ, β) + 2(n − 2)
n

1
n

n∑
i=1

D̃n(wi ; γ, β) + ẽn(zi , zj ; γ, β),

where supB,� |ẽn(zi , zj ; γ, β)| = op(n−1/2). Note that E[D̃n(wi ; γ, β)] = 0 for any
γ and β. Therefore, supB,� |E[Ĝn(γ, β)] − E[Gn(γ, β)]| = op(n−1/2). This shows
that the additional bias on β̂ introduced by having to estimate the unknown func-
tion µ(·) nonparametrically is at most of order op(n−1/2), a consequence of using
bias-reducing kernels in the construction of µ̂n(·). This allows us to center the
distribution of β̂ around βh. By the usual projection–decomposition, we have

Gn(γ, β) ≡
(n

2

)−1 ∑
i< j

pn(zi , zj ; γ, β)

= p0n(γ, β) + 2
n

∑
i

p1n(zi ; γ, β) +
(n

2

)−1 ∑
i< j

p2n(zi , zj ; γ, β),

where p2n is defined implicitly above. By Assumptions 11 and 16, {p2n(zi, zj; γ ,
β)} is Euclidean in a set of the form !c ≡ {(γ, β) : ‖(γ − γ0, β − β0)‖ ≤ c} for
some constant c, and satisfies E[sup!c p2n(zi , zj ; γ, β)2] < ∞. Applying theorem 3
of Sherman (1994) to the function hLp2n(zi, zj; γ , β) we obtain

sup
!c

(n
2

)−1 ∑
i< j

hL
n p2n(zi , zj ; γ, β) = Op

(
1
n

)
.
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Consequently,

Ĝn(γ, β)

= p0n(γ, β) + 2
n

∑
i

p1n(zi ; γ, β) + 2(n − 2)
n

1
n

n∑
i=1

D̃n(wi ; γ, β) + ˜̃en(zi , zj ; γ, β)

≡ 1
n

∑
i

p̃n(zi ; γ, β) + 2(n − 2)
n

1
n

n∑
i=1

D̃n(wi ; γ, β) + Op

(
1

nhL
n

)
+ op(n−1/2),

where the last equality follows from Assumption 6 and the Euclidean property.
Denote θ ≡ (β, γ )′. A first-order approximation yields

√
n(β̂ − βh) = −

(
1
n

∑
i


 p̃β
n

(
zi ; θ∗) + 1

n

∑
i


D̃β
n

(
zi ; θ∗∗))−1

×
[(

1
n

∑
i


 p̃γ
n

(
zi ; θ∗) + 1

n

∑
i


D̃γ
n

(
zi ; θ∗∗)) √

n(γ̂ − γ0)

+ 2√
n

∑
i

p1n(zi , γ0, βh) + 2(n − 2)
n

1√
n

n∑
i=1

D̃n(wi ; γ0, βh)

+ op(1) − √
nĜn(γ̂ , β̂)

]
.

Note that p0n(zi, γ 0, βh) = 0 by definition of βh. Given this, the result follows by
noting that 1

n

∑
i 
D̃β

n (zi ; θ∗∗)
p−→ 
D̃β

0 (γ0, β0) = 0. �

Under additional assumptions, Lemma 3—below—provides more precise ex-
pressions for the asymptotic variance described above. In a number of applications
the true value of γ is known. If this is the case, the following result follows imme-
diately from Theorem 4.

COROLLARY 2. If the true value of γ is known—e.g., if µ(w, γ ) = τ (w) −
E[η(w) | w2], with τ (·) and η(·) known, then if β̂ is a consistent estimator of
β, Gn(β̂) = op(n−1/2) and Assumptions 1–3, 6, 7, and 11–16 are satisfied, we have

√
n(β̂ − βh)

d−→ N (0, E[ψiψ
′
i ]),

where ψi = −2
 p̃β

0 (β0)−1 p1(zi ; β0) − 2
 p̃β

0 (β0)−1 D(wi ; β0).

3.7. Verifying Some of the Conditions. Theorem 4 makes some high level
assumptions. In this section, we present some results that are useful in verifying
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these assumptions. The following lemma, which follows immediately from lemma 1
in Honoré and Powell (1994), is useful for verifying that Ĝn(γ̂ , β̂) = op(n−1/2).

LEMMA 1. If the true parameter value β0 ∈ R
K is an interior point in the parameter

space, and

i. S(vi, vj, β) is left-and-right differentiable in each component of β in some
open neighborhood of the true parameter β0,

ii. in an open neighborhood B0 of β0,

sup
β∈B0

∑
i< j

1l
{

∂−s(vi , v j , β)
∂β�

�= ∂+s(vi , v j , β)
∂β�

}
= Op(1); � = 1, . . . , K,

iii. in an open neighborhood of β0,

∣∣∣∣∂−s(vi , v j , β)
∂β�

− ∂+s(vi , v j , β)
∂β�

∣∣∣∣ ≤ h(vi , v j ); � = 1, . . . , K,

for some function h with E[h(vi , v j )1+δ] < ∞ for some δ; and
iv. K is bounded, then

Ĝn(γ̂ , β̂) = op
(
n−2+2/(1+δ)h−L

n

)
.

Next we provide some sufficient conditions under which Assumption 16 is satisfied.
We will employ the usual dominance conditions. Define

�t (zi , a, b) = E[t(vi , v j , b) | zi , µ(w j , γ0) = a]ρ(a) fµ(a)

�̄t (zi , a1, a2, b) = E[t(vi , v j , b) | zi , xj = a1, µ(w j , γ0) = a2]ρ̄(a1, a2) fµ | x(a2; a1)

�t1 (zi , a, b) = E
[
∂(µ(wi , γ0) − µ(w j , γ0))

∂γ
t(vi , v j , b) | zi , µ(w j , γ0) = a

]
× ρ(a) fµ(a)

�̄t1 (zi , a1, a2, b) = E
[
∂(µ(wi , γ0) − µ(w j , γ0))

∂γ
t(vi , v j , b) | zi , xj = a1,

µ(w j , γ0) = a2

]
ρ̄(a1, a2) fµ | x(a2; a1).

The following condition will correspond to the case in which the exclusion restric-
tion in Assumption 5 holds:

ASSUMPTION 17. �t is differentiable with respect to its second and third argument,
�t1 is differentiable with respect to its second argument, and there exists a function
g with E[g(zi)2] < ∞ such that
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Max
{∣∣�(2)

t (zi , µ(wi , γ0) − hnψ, β0)
∣∣, ∣∣�(3)

t (zi , µ(wi , γ0) − hnψ, β0)
∣∣,

∣∣�(2)
t1 (zi , µ(wi , γ0) − hnψ, β0

)∣∣}
≤ g(zi ), and lim

‖ψ‖→∞
K(ψ) · �

(2)
t (vi , µ(wi , γ0) − hnψ, β0) = 0.

If Assumption 5′ holds, we modify Assumption 17 in the following way:

ASSUMPTION 17′. �̄t is differentiable with respect to its third and fourth arguments,
�̄t1 is differentiable with respect to its third argument, and there exists a function ḡ
with E[ḡ(zi )2] < ∞ such that

Max
{∣∣�̄(2)

t (zi , xj , µ(wi , γ0) − hnψ, β0)
∣∣, ∣∣�̄(3)

t (zi , xj , µ(wi , γ0) − hnψ, β0)
∣∣,

∣∣�̄(2)
t1 (zi , xj , µ(wi , γ0) − hnψ, β0)

∣∣}
≤ g(zi ), lim

‖ψ‖→∞
K(ψ) · �̄

(2)
t

(
zi , xj , µ(wi , γ0) − hnψ, β0

) = 0.

We have the following result.

LEMMA 2. Let

pβ

0 (γ0, β0)

= E
[
�

(3)
t (zi , µ(wi , γ0), β0)

]
, pγ

0 (γ0, β0) = −E
[
�

(2)
t1 (zi , µ(wi , γ0), β0)

]
p̄β

0 (γ0, β0)

= E
[
�̄

(3)
t (zi , xj , µ(wi , γ0), β0)

]
, p̄γ

0 (γ0, β0) = −E
[
�̄

(2)
t1 (zi , xj , µ(wi , γ0), β0)

]
.

Then,

i. Under Assumptions 4, 5, 6, 7, and 17, pβ

0n(γ 0, β0) → pβ

0 (γ 0, β0) and pγ

0n(γ 0,
β0) → pγ

0 (γ 0, β0);
ii. Under Assumptions 4′, 5′, 6, 7, and 17′, pβ

0n(γ0, β0) → p̄β

0 (γ0, β0) and
pγ

0n(γ0, β0) → p̄γ

0 (γ0, β0).

The previous result implies that Assumption 16(i.a) is satisfied. The next lemma
provides sufficient conditions for Assumptions 16(i.b) and 16(iv) to hold.

LEMMA 3. Let D̃n and 
β D̃n be as defined in Assumption 16(iii). Suppose that
p1n(zi, γ 0, ·) is continuously differentiable in a neighborhood N(β0) of β0, and that
there exists a function h(zi) with E[‖h(zi )‖2] < ∞ such that

Max
{∥∥
β p1n(zi , γ0, b)

∥∥,
∥∥
β D̃n(w2i ; γ0, b)

∥∥} ≤ h(zi ) ∀b ∈ N(β0).
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Then,

1√
n

n∑
i=1

p̃n(zi ; γ0, βh) − 1√
n

n∑
i=1

p1n(zi ; γ0, β0) = op(1)

1√
n

n∑
i=1

D̃n(wi ; γ0, βh) − 1√
n

n∑
i=1

D̃n(wi ; γ0, β0) = op(1).

For the first result, note that p0n(γ 0, βh) = 0 by definition of βh. Therefore, under
Assumptions 4–7 and 17,

1√
n

n∑
i=1

[ p̃n(zi ; γ0, βh) − �t (zi , µ(wi , γ0), β0)] = op(1)

1√
n

n∑
i=1

[
D̃n(wi ; γ0, βh) − E

[
�

(2)
t (zi, µ(wi , γ0), β0)

∣∣ w2i
]

·(µ(wi , γ0) − τ (wi , γ0) − η(wi , γ0)
)] = op(1),

and under Assumptions 4′, 5′, 6, 7, and 17′,

1√
n

n∑
i=1

[ p̃n(zi ; γ0, βh) − E[�̄t (zi , xj , µ(wi , γ0), β0) | zi ]] = op(1)

1√
n

n∑
i=1

[
D̃n(wi ; γ0, βh) − E

[
�̄

(2)
t (zi, xj , µ(wi , γ0), β0)

∣∣ w2i
]

·(µ(wi , γ0) − τ (wi , γ0) − η(wi , γ0))
] = op(1).

The previous result provides more precise expressions for the asymptotic distri-
bution results in Theorem 4 and Corollary 2. They are also helpful in showing how
to estimate the corresponding standard errors.

3.8. Bias Reduction. The asymptotic normality result for β̂ in Theorem 4
centers the asymptotic distribution of β̂ at the pseudo-true value βh. As the proof
of Theorem 4 shows, the “contribution” to the bias of β̂ derived from the need to es-
timate the unknown function µ(·) nonparametrically is at most of order op(n−1/2).
This is a result of using a higher-order bias reducing kernel H(·) in the construc-
tion of µ̂n(·), along with the results of Theorem 1. Nevertheless, the pseudo-true
value βh need not converge to the true value β0 at a rate faster than

√
n, because

of the interaction of the bandwidth sequence hn and the kernel K(·) in the esti-
mation criterion Tn(·); as in Honoré and Powell (2005), this would be the case
even if the control variable µ(wi , γ 0) were observable. The usual approach to
ensuring that

√
n(βh − β0) = o(1) would use a higher-order bias reducing kernel

K(·) to ensure
√

n-consistency, but such a requirement would be unattractive for
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the kind of estimators proposed here.8 The resulting negativity of the kernel func-
tion for some data points could compromise the convexity of the corresponding
minimand, complicating both the asymptotic theory (through an additional com-
pactness restriction) and computation of the estimator. An alternative to the use
of higher-order kernels was proposed by Honoré and Powell (2005), which was
based upon the familiar jackknife approach. Specifically, assuming the pseudo-
true value βh is a sufficiently smooth function of the bandwidth hn, it is possible
to construct a linear combination β̂ of different estimators β̂ of β0 (involving
different choices of the bandwidth hn, each of which satisfies our assumptions)
for which the corresponding linear combination β∗

n of pseudo-true values satisfies√
n(β∗

n − β0) = o(1); furthermore, since the different estimators have the same lin-
ear representation (to order o(n−1/2)), the “jackknifed” estimator β̂ will have the
same asymptotic distribution as each β̂, i.e.,

√
n(β̂ − β∗

h) = √
n(β̂ − βh) + op(1). It

follows that

√
n(β̂ − β0) = √

n
(
β̂ − β∗

n

) + √
n
(
β∗

n − β0
) = √

n(β̂ − βh) + op(1) + o(1)

= √
n(β̂ − βh) + op(1),

so the jackknifed estimator β̂ will be
√

n-consistent and asymptotically normal,
with the same asymptotic distribution as given in Theorem 4. Algebraic details of
the construction of the jackknifed estimator β̂ can be found in Honoré and Powell
(2005), Section 3.3.

3.9. Consistency and Asymptotic Normality without Exclusion Restrictions.
We now present conditions under which we can replicate the previous results
without Assumptions 5 (or 5′), which were introduced in order to preserve con-
sistency of β̂ in the presence of trimming. Take a sequence of trimming sets W2n .
Basically, we could drop the exclusion restrictions if we were able to make the
trimming set converge asymptotically to S(w2) while preserving the results of
Theorem 1 for the entire sequence W2n . We now outline a set of conditions under
which this is possible.

Take a sequence ςn → 0. Assume that the trimming function is given by

an(w2) =
{

φn(w2) > 0 if f̂ w2n
(w2) > ςn,

0 otherwise,

where f̂ w2n
(·) is the nonparametric estimator of fw2 (·) used in the construction of

µ̂n(·). Assume that φn(·) is bounded, strictly positive, and M times differentiable
with bounded derivatives for all n, and φn(·) → c for some c > 0. Define W2n =
{u ∈ R

L2 : fw2 (u) ≥ ςn} and w̄n = supW2n
‖u‖.

8 Using higher-order kernels to achieve
√

n-consistency would be an attractive option if the pairwise-
difference estimator has a closed form expression. See, for example, Aradillas-Lopez (2006).
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ASSUMPTION 18.

i. All the properties stated for the set W2 in Assumptions 1 and 2 are satisfied
by any compact subset in the interior of S(w2).

ii. Strengthen Assumption 6 and assume that n1−2εbL2
n h2(L+2)

n ς2
n → ∞ for

some ε > 0.
iii. We will modify Assumption 3(iii) and assume that ςn converges to zero

sufficiently slow relative to bn such that bnt + w2 ∈ interior{S(w2)}∀t ∈
H, w2 ∈ W2n, n ∈ N. Let ρn(µ(wi , γ0)) = E[an(w2i ) | µ(wi , γ0)]. We will
generalize Assumption 4(v) and assume that ρn(µ(wi , γ 0)) is continu-
ous and strictly positive for all w2i ∈ W2n. We also assume that the tails
of fw2 (·) are such that ln(w̄n) = op(nε), where ε is defined in the previous
assumption.

The next result establishes consistency of β̂ without Assumption 5 and it also
shows that the asymptotic normality results still hold.

THEOREM 5. Suppose we use the sequence of trimming functions an(·) described
above. We have the following results:

i. If Assumptions 1–4, 6–10, and 18 are satisfied, then β̂ satisfies the consis-
tency results of Theorems 2 and 3.

ii. Suppose Assumption 14 is satisfied for any compact set in the interior
of S(w2). Then, if Assumptions 1–3, 6–7, 11–13, and 15–16, and 18 are
satisfied, the conclusions of Theorem 4 are true with vn(zi, zj; γ , β) and
pn(zi, zj; γ , β) replaced by

v̄n(zi , zj ; γ, β) = c ∗ 1
hL

n
K

(
µ̂n(wi , γ ) − µ̂n(w j , γ )

hn

)
t(vi , v j , β)

p̄n(zi , zj ; γ, β) = c ∗ 1
hL

n
K

(
µ(wi , γ ) − µ(w j , γ )

hn

)
t(vi , v j , β)

with c > 0 being the limit of the sequence of functions an(·).

The main steps of the proof are included in the Appendix.

4. EXAMPLE: DISCRETE CHOICE MODEL WITH ENDOGENEITY

Let us revisit more formally the example briefly described in Section 2.5.2.
Suppose we have

yi = 1l{x′
iβ0 + εi ≥ 0},

and let xi = (x′
1i , x′

2i )
′, β = (β ′

1, β ′
2)′, and wi = (x′

1i , w′
2i )

′, where x2i is a subvector
of w2i . The subvector w1i ≡ x1i of regressors is assumed to be endogenous, and
can be characterized by a (partially known) reduced form

x1i = E[x1i | w2i ] + µi ,
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where E[x1i | w2i ] is of unknown functional form. Using the notation from Sec-
tion 3, we have µi ≡ µ(wi ) = x1i − E[x1i |w2i ] and τ (wi , γ ) ≡ x1i ≡ η(wi , γ ) for this
example. Following Blundell and Powell (2004), suppose we model endogeneity
in this model by assuming that the dependence between the structural error term
εi on the vector of regressors xi and the “instrumental variables” w2i is completely
characterized by the reduced-form residuals µi ; specifically, suppose we model the
structural error term εi as additively separable in the reduced-form error term µi

and a logistic error term ζ i ,

εi = g(µi ) + ζi ,

as in Blundell and Smith (1989, which also takes g(·) to be linear). Assuming ζ i is
independent of wi , so that

εi |xi , wi ∼ εi |µi ,

the structural model for the binary variable yi can be rewritten as

yi = 1l{x′
iβ0 + g(µi ) + ζi ≥ 0},

which reduces to the partially linear logit model discussed in Section 2.2 and an-
alyzed in Ai and McFadden (1997) and Honoré and Powell (2005), albeit with an
unknown regressor µi in the nonparametric component. Suppose w2i is a contin-
uously distributed random vector with dimension L2, and let H(·) be the kernel
function described in Section 3.2. Define

Rn(ω2) = 1

nhL2
n

n∑
j=1

x1 j Hbn (w2 j − ω2), f̂ w2n
(ω2) = 1

nhL2
n

n∑
j=1

Hbn (w2 j − ω2), and

µ̂n(wi ) = x1i − Rn(w2i )

f̂ w2n
(w2i )

;

the estimator µ̂n(wi ) fits the description of Section 3.2 with τ (wi ; γ ) = w1i ≡ x1i =
η(w1i , w2i , γ ). The conditions of Assumption 2 will be satisfied if µ(wi ) is M times
differentiable with bounded derivatives, E[w2

1i | w2i ] exists and is a continuous
function of w2i , and E[w4

1i ] < ∞. In addition, if the smoothness conditions of
Assumption 1 concerning the density of w2i are satisfied, along with the kernel
and bandwidth properties of Assumption 3, then µ̂n(wi ) will satisfy the results of
Theorem 1. Define

Ln(b) =
(n

2

)−1 1
hL

n

∑
i<j

yi�=yj

K
(

µ̂i − µ̂ j

h

)

× [yi ln(1 + exp{(xj − xi )′b}) + yj ln(1 + exp{(xi − xj )′b})]a(w2i )a(w2 j ).

Following the discussion in Section 2.2.1 and Equations (4) and (5), we pro-
pose to estimate β by minimizing Ln(b). The need to add a trimming func-
tion to (5) follows from the detailed discussion in Section 3. The problem
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β̂ = argminbLn(b) fits the framework analyzed in Section 3 with s(vi , v j , b) =
1l{yi �= yj } · [yi ln(1 + exp{(xj − xi )′b}) + yj ln(1 + exp{(xi − xj )′b})]; in this set-
ting, it is important to verity if the model fits the exclusion restrictions 5 or 5′.
Since yi = 1l{x′

iβ0 + g(µi ) + ζi ≥ 0}, where ζ i ∼ i.i.d. logistic and independent of
wi , it follows that yj | xj, µ(w j ), w2 j ∼ yj | xj, µ(w j ) and thus if vi ≡ (yi, xi

′)′, we
have E[s(vi, vj, b) | vi, xj, µ(w j ), w2 j ] = E[s(vi, vj, b) | vi, xj, µ(w j )] and the ex-
clusion restriction in Assumption 5′ is satisfied. Assumption 4′ will be satisfied
if the density of µi conditional on xi is a continuous function of ζ i . Assumption
10′ will be satisfied if E[si(vi, vj; b) | xi, xj, µi = µ j ] is uniquely minimized at b
= β0; given our previous assumptions, this will hold if xi has full rank. Provided
that Assumptions 6, 7, and 9 hold, this would yield consistency of our estimator,
and if Assumptions 11–13, 15, and 16 hold, then β̂ would have the asymptotic
distribution described in Corollary 2.9

4.1. A Monte Carlo Study. Having described the large sample properties
of the proposed estimator in Section 3, we devote this subsection to evaluate
the performance of a simple implementation of our estimation procedure for the
case of a discrete choice model with endogeneity. Using the same notation as
above, we have x2i ∼ N (0, 1), w2i ∼ U[−1, 1], µi ∼ √

2N (0, 1), and ζi ∼ logistic;
all these variables are independent of each other. x1i and εi are given by

x1i = (w2i − 1)2

2
− w3

2i

4
+ w4

2i

10
− exp(w2i )

(1 + exp(w2i ))
+ sin(4w2i )︸ ︷︷ ︸

=E[x1i | w2i ]

+µi ,

εi = 2µi

π
arctan(µi )︸ ︷︷ ︸
=g(µi )

+ζi .

The functions chosen are smooth but clearly nonlinear in nature. We have

yi = 1l{−1 + x1i + x2i + εi ≥ 0},

so β10 = 1 and β20 = 1. We focus only on the slope coefficients β1, β2 because the
intercept is not involved in the identifying moment conditions.10 We are interested
in the properties of a quick, simple implementation of our methods. We estimate
E[x1i | w2i ] simply by using a local polynomial of order six and we choose the stan-
dard normal density as the kernel K(·). Our focus here is on the bandwidth hn. Let
Rn denote the interquartile range of (Ê[x1 | w2i ])n

i=1, let σ̂E[x1|w2] denote the sample
standard deviation of (Ê[x1 | w2i ])n

i=1, and define An = min{σ̂E[x1|w2], Rn/1.34}. Fix
a scalar c ∈ R and define β̂(c) as the estimator obtained by using hn = cAnn−1/5.
Silverman’s “rule of thumb” density estimation bandwidth when the reference

9 In this model, η(·) is not a function of w2i and γ 0 is trivially known. This makes a number of the
conditions studied in Section 3 (e.g., Assumptions 8 and 14) irrelevant.

10 Recall that the function g(·) is assumed to be unknown.
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TABLE 1
SIMULATION RESULTS FOR β̂1 (TRUE VALUE IS β10 = 1). NUMBER OF SIMULATIONS = 1000

n = 150 n = 450

|Bias(β̂1)| M̂SE(β̂1) β̂1(0.025) β̂1(0.975) |Bias(β̂1)| M̂SE(β̂1) β̂1(0.025) β̂1(0.975)

β̂ I
1 0.10326 0.37230 0.04832 2.41428 0.02729 0.07156 0.53087 1.58677

β̂II
1 0.03594 0.10319 0.52705 1.78713 0.00576 0.02136 0.72904 1.29874

β̂III
1 0.06242 0.16345 0.36515 1.98202 0.01182 0.03691 0.65136 1.42428

n = 700 n = 1000

|Bias(β̂1)| M̂SE(β̂1) β̂1(0.025) β̂1(0.975) |Bias(β̂1)| M̂SE(β̂1) β̂1(0.025) β̂1(0.975)

β̂ I
1 0.00626 0.04195 0.59200 1.42109 0.00992 0.02735 0.69016 1.33034

β̂II
1 0.00631 0.01288 0.77812 1.22448 0.00852 0.00975 0.80565 1.19510

β̂III
1 0.00244 0.02276 0.71927 1.30665 0.00293 0.01622 0.75708 1.25162

population is a standard normal is a special case, with c = 0.90 (see equation 3.31,
p. 48 in Silverman, 1986).

One of our goals in this section is to evaluate the sensitivity of our estimator to
the actual bandwidth chosen; we proceed as follows. Let c1 = 0.4 and cj = c j−1 +
0.5 for j ≥ 2. We use a grid of scalar values (c1, . . . , cM) with M = 5 (i.e., cM =
2.4). We estimate β̂ in three different ways, all of which would have the same
asymptotic linear representation and

√
N-distribution.11

β̂ I = β̂(c1), β̂II = β̂(cM), β̂III = 1
M

M∑
�=1

β̂(c�),(21)

so β̂ I chooses the small bandwidth, β̂II chooses the large bandwidth, and β̂III takes
a simple average over the bandwidths in our grid. We trimmed out the observations
with the highest 5% of values for |Ê[x1 | w2i ]|. Tables 1 and 2 present the results of
1000 simulations for each one of the estimators described above.

As we should expect, our simulation results show that the actual choice of band-
width has a relatively more important effect on smaller samples. In this particular
case, using the larger bandwidth in our arbitrary grid yielded better results than
those of the smaller bandwidth. The difference became less relevant for larger
sample sizes. The results also illustrate that taking a simple average of the esti-
mators in the bandwidth grid is a good “rule of thumb” to safeguard against the
problem of finding the “correct bandwidth” to commit to. In fact, the absolute
bias of β̂III was smaller than those of β̂ I and β̂II for sample sizes N = 700 and
1000.

The individual mean squared errors decreased steadily with the sample size
in all cases, and their magnitudes also became closer across the three estimators

11 Any weighted average of the resulting estimators would have the same Bahadur representation
as any individual estimator (see Theorem 1), as long as the weights add up to one.
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TABLE 2
SIMULATION RESULTS FOR β̂2 (TRUE VALUE IS β20 = 1). NUMBER OF SIMULATIONS = 1000

n = 150 n = 450

|Bias(β̂2)| M̂SE(β̂2) β̂2(0.025) β̂2(0.975) |Bias(β̂2)| M̂SE(β̂2) β̂2(0.025) β̂2(0.975)

β̂ I
2 0.09622 0.20209 0.43348 2.04395 0.01974 0.02944 0.71601 1.37653

β̂II
2 0.04243 0.12874 0.45047 1.79982 0.00587 0.02497 0.70021 1.31226

β̂III
2 0.06454 0.14804 0.43502 1.89152 0.00696 0.02667 0.71132 1.32944

n = 700 n = 1000

|Bias(β̂2)| M̂SE(β̂2) β̂2(0.025) β̂2(0.975) |Bias(β̂2)| ˆMSE(β̂2) β̂2(0.025) β̂2(0.975)

β̂ I
2 0.00360 0.01573 0.76393 1.26773 0.01001 0.01085 0.82532 1.22939

β̂II
2 0.01445 0.01395 0.75836 1.22905 0.00293 0.00989 0.81105 1.20510

β̂III
2 0.00452 0.01462 0.76070 1.24420 0.00159 0.01021 0.81711 1.22166
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as the sample size increased. As Figures 1 and 2 show, the asymptotic Normal
approximation becomes more precise as the sample size increases for our three
estimators. For smaller sample sizes (N = 150 and 450), a normal approxima-
tion appears relatively more accurate for β̂1, the coefficient of the endogenous
regressor, than for β̂2, the coefficient of the exogenous regressor.12

The normal approximation in both cases appears indistinguishably accurate for
N = 1000. In the majority of cases, a normal approximation seemed more accurate
for β̂III than for the other two estimators. As with all other results, the difference
seemed less obvious as the sample size was increased. Overall, taking a simple
average over the estimators that result from a grid of bandwidths seems to lead
to a nice balance between bias and dispersion. In our case, this was true even for
a simple average using uniform weights.

12 Note however that the absolute bias and the MSE of β̂1 were slightly larger than those of β̂2 in
the majority of cases.



PAIRWISE DIFFERENCE ESTIMATION 1151

5. CONCLUDING REMARKS

Econometric models amenable to pairwise-differencing estimation arise in a
variety of contexts ranging from sample selection and/or endogeneity to micro-
economic models with rational expectations with or without strategic interactions.
As this article showed, even if the control function involved in the identifying
moment restriction is of unknown functional form,

√
N-consistent estimation is

possible. As we argued at length, special care must be placed on the issues of
trimming and its implications on identification. As it is always the case in semi or
nonparametric estimation procedures, the choice of bias-reducing techniques is
up to the researcher. Bias reduction could be done through the density estimator
(using bias-reducing kernels) or through the bandwidth (taking advantage of the
fact that any estimator that uses a valid bandwidth sequence will have the same
asymptotic linear representation). We advocate the latter approach here. A simple
Monte Carlo study showed that even using a naive, simple average of estimators
over a grid of bandwidths could serve as a simple way of achieving a good balance
between bias and dispersion without the need to search to the “correct” finite
sample bandwidth. The asymptotic standard errors we found would be valid for
such an estimator. As the sample size grows, the actual bandwidth chosen becomes
relatively less important.

APPENDIX

A.1. Steps to Prove Theorem 4. Define

S1n(zi , zj ; γ, β) = 1

hL+1
n

K(1)
(

µ(wi , γ ) − µ(w j , γ )
hn

)
t(vi , v j , β)a(w2i )a(w2 j )

S2n(zi , zj ; γ ) = [τ (wi , γ ) − η(wi , γ ) − µ(w j , γ )]

bL2
n fw2 (w2 j )

Hbn (w2i − w2 j ).

and let

T1n(zi , zj ; γ, β)

= S1n(zi , zj ; γ, β)′[S2n(zi , zi ; γ, β) − S2n(zi , zj ; γ, β) + S2n(zj , zi ; γ, β)

− S2n(zj , zj ; γ, β)]

T2n(zi , zj , zk; γ, β)

= S1n(zi , zj ; γ, β)′[S2n(zk, zi ; γ, β) − S2n(zk, zj ; γ, β)] + S1n(zi , zk; γ, β)′

× [S2n(zj , zi ; γ, β) − S2n(zj , zk; γ, β)] + S1n(zj , zk; γ, β)′

× [S2n(zi , zj ; γ, β) − S2n(zi , zk; γ, β)].
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Note that T1n(zi, zj; γ , β) and T2n(zi, zj, zk; γ , β) are symmetric in i , j and in i , j ,
k, respectively. We have the following result.

CLAIM 1. If Assumptions 1–3, 6, 7, and 11 are satisfied and {zi, i = 1, . . . , n} is
an i.i.d. sample, then

Ĝn(γ, β)

= Gn(γ, β) +
(n

2

)−1 1
n

∑
i< j

T1n(zi , zj ; γ, β) +
(n

2

)−1 1
n

∑
i< j<k

T2n(zi , zj , zk; γ, β)

+ cn(zi , zj ; γ, β),

where sup
i, j
B,�

|cn(zi , zj ; γ, β)| = op(n−1/2).

PROOF. Using Assumption 7, we have

1
hL

n

[
K

(
µ̂n(wi , γ ) − µ̂n(w j , γ )

hn

)
− K

(
µ̂n(wi , γ ) − µ̂n(w j , γ )

hn

)]
≤ 1

hL+1
n

K(1)
(

µ(wi , γ ) − µ(w j , γ )
hn

)′

× ([µ̂n(wi , γ ) − µ(wi , γ )] − [µ̂n(wi , γ ) − µ(wi , γ )])

+ 2L

hL+2
n

∥∥K(2)(d∗
ij

)∥∥ · [‖µ̂n(wi , γ ) − µ(wi , γ )‖2 + ‖µ̂n(w j , γ ) − µ(w j , γ )‖2].
Assumptions 1–3, 6, 7, and 11 and the nature of the trimming function a(·) imply
that

sup
i, j
B, �

∥∥K(2)
(
d∗

ij

)∥∥
hL+2

n
· [‖µ̂n(wi , γ ) − µ(wi , γ )‖2] · | t(vi , v j , β) | · a(w2i )a(w2 j )

≤ C

nhL+2
n

Op
(
n1−δbL2

n

)−1∣∣F(zi , zj )
∣∣a(w2i )a(w2 j )

for any δ > 0 and some C > 0. Using Assumption 6, there exists a δ > 0 such that
(n1−δhL+2

n bL2
n )−1 = o(n−1/2). From Assumption 11 and the properties of a(·), we

have E[{F(zi , zj )a(w2i )a(w2 j )}2] = O(n). Using lemma A.3 in Ahn and Powell,
we have

c1n(zi , zj ) ≡ C

nhL+2
n

Op
(
n1−δbL2

n

)−1
(n

2

)−1 ∑
i< j

|F(zi , zj )|a(w2i )a(w2 j )

= 1

n1−δhL+2
n bL2

n
Op(1)
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for all δ > 0. Choosing the value of δ in Assumption 6, we obtain c1n(zi, zj) =
op(n−1/2). If Assumptions 1–3 hold, Theorem 1 yields

1

hL+1
n

K(1)
(

µ(wi , γ ) − µ(w j , γ )
hn

)′
(µ̂n(wi , γ ) − µ(wi , γ ))t(vi , v j , β) · a(w2i )a(w2 j )

= 1

hL+1
n

K(1)
(

µ(wi , γ ) − µ(w j , γ )
hn

)′
t(vi , v j , β) · a(w2i )a(w2 j )

×
{

n∑
k=1

[τ (wi , γ ) − η(w1k, w2i , γ ) − µ(wi , γ )]

fw2 (w2i )nbL2
n

Hbn (w2k − w2i ) + ξn(w2i , γ )

}
,

where supv∈W2
γ ∈�

‖ξn(ω, γ )‖ = Op(nδ−1b−L2
n ) for any δ > 0. We have

1

hL+1
n

(n
2

)−1 ∑
i< j

sup
i, j
B,�

∥∥∥∥K(1)
(

µ(wi , γ ) − µ(w j , γ )
hn

)∥∥∥∥|t(vi , v j , β)|

· a(w2i )a(w2 j )‖ξn(w2i , γ )‖

≤ C

nhL+1
n

Op
(
n1−δbL2

n

)−1
(n

2

)−1 ∑
i< j

|F(zi , zj )|a(w2i )a(w2 j ) ≡ c2n(zi , zj )

for any δ > 0. By Assumption 6 and the same argument used above, we have c2n(zi,
zj) = op(n−1/2). Grouping the terms in the sum, we obtain the result of the claim,
with sup

i, j
B,�

|cn(zi , zj ; γ, β)‖ = D · (c1n(zi , zj ) + c2n(zi , zj )) for some constant

D > 0. �

CLAIM 2. If Assumptions 1–3, 6, 7, and 11–14 hold and {zi, i = 1, . . . , n} is an
i.i.d. sample, then

(n
2

)−1 1
n

∑
i< j<k

T2n(zi , zj , zk; γ, β)

= 2(n − 2)
n

1
n

n∑
i=1

Bn(w2i ; γ, β)[τ (wi , γ ) − η(wi , γ ) − µ(wi , γ )]a(w2i ),

+ c̃n(zi , zj ; γ, β),

where supB,�|c̃n(zi , zj ; γ, β)| = op(n−1/2).

PROOF. Recall from Assumption 1 that f w(w1, w2) denotes the joint density
of w1i and w2i . Using iterated expectations, we have
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E[S1n(zi , zj ; γ, β)′S2n(zk, zi ; γ, β) | zi ]

= E
[

1

hL+1
n

K(1)
(

µ(wi , γ ) − µ(w j , γ )
hn

)′
t(vi , v j , β)a(w2i )a(w2 j )

× 1

bL2
n

∫∫
[τ (wi , γ ) − η(u, w2i , γ ) − µ(wi , γ )]

fw2 (w2i )
H

(
v − w2i

bn

)
fw(u, v) du dv

]
.

Define Q� ≡ {(q1, . . . , qL) ∈ N
L2 : q1 + · · · + qL2 = �} and ϒ�(u, v) = ∑

Q�
×

∂� fw(u,v)

∂w21 ···∂w
qL2
2L2

. From Assumption 2(i), there exists C > 0 such that ϒ�(u, v) < C

for all u, v and � = 1, . . . , M. From Assumptions 1(ii) and 3(i), the following
approximation is valid:∫

H(ψ) fw(u, bnψ + w2i )dψ

= fw(u, w2i ) + bM
n

(−1)M

M!

∫ ∑
QM

(
ψ

q1
1 · · · ψqL2

L2

)
ϒ

(
u, w2i + b∗

nψ
)
H(ψ) dψ,

with b∗
n ∈ (0, bn). Assumptions 1(ii) and 3(i) imply that supu

∫ |∑QM
×

(ψq1
1 · · · ψqL2

L2
)ϒ(u, w2i + b∗

nψ)H(ψ)|dψ < D for some D > 0. Therefore, we have

sup
B,�

E[S1n(zi , zj ; γ, β)′S2n(zk, zi ; γ, β) | zi ] ≤ C
bM

n

hL+1
n

E[F(zi , zj )a(w2i )a(w2 j )]

for some C > 0. Using Assumptions 6 and 11, supB,� E[S1n(zi , zj ; γ, β)′ ×
S2n(zk, zi ; γ, β) | zi ] = op(n−1/2). Using iterated expectations and steps paral-
lel to those used above, we obtain the same result for E[S1n(zi , zj ; γ, β)′ ×
S2n(zk, zj ; γ, β)|zi ] , E[S1n(zi , zk; γ, β)′S2n(zj , zi ; γ, β)|zi ], and E[S1n(zi , zk; γ, β)′×
S2n(zj , zk; γ, β) | zi ]. Define

D̃n(v, u; γ, β) = Bn(v; γ, β)
[
τ (u, v, γ ) − η(u, v, γ ) − µ(v, γ )

]
a(v).

Using iterated expectations, we have

E[S1n(zj , zk; γ, β)′S2n(zi , zj ; γ, β) | zi ]

= E

[
Bn(w2 j ; γ, β)

[τ (wi ) − η(wi , γ ) − µ(w j , γ )]

bL2
n fw2 (w2 j )

a(w2 j )Hbn (w2 j − w2i ) | zi

]

=
∫

D̃n(w1i , bnψ + w2i ; γ, β)H(ψ)dψ.

From Assumption 12, a(·) is M times differentiable almost everywhere—the
boundary ofW2 is a set of Lebesgue-measure zero in R

L2 . Therefore, Assumptions
2(i), 12, and 14 imply that with probability one, D̃n(u, v; γ, β) is M times differen-
tiable with respect to v with bounded derivatives for all γ ∈ � and β ∈ B. Let the
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set Q� be as defined above and denote %�(u, v; γ, β) = ∑
Q�

∂� D̃n(u,v;γ,β)

∂v
q1
1 ···∂v

qL2
L2

. An Mth

order approximation yields

E[S1n(zj , zk; γ, β)′S2n(zi , zj ; γ, β) | zi ]

= D̃n(w1i , w2i ; γ, β) + bM
n

(−1)M

M!

∫ ∑
QM

(
ψ

q1
1 · · · ψq2

L2

)
%(w1i , w2i + b∗

nψ ; γ, β) dψ.

Assumptions 2(i), 3(i), 12, and 14 yield supB,� | ∫ ∑
QM

(ψq1
1 · · · ψq2

L2
)%(w1i , w2i +

b∗
nψ ; γ, β) dψ | < C for some C > 0. Therefore, for some D > 0,

sup
B,�

| E[S1n(zj , zk; γ, β)′S2n(zi , zj ; γ, β) | zi ] − Bn(w2i ; γ, β)

× [τ (wi , γ ) − η(wi , γ ) − µ(wi , γ )]a(w2i ) | ≤ DbM
n = o(n−1/2),

where the last equality follows from Assumption 6—or its weaker version, As-
sumption 3(ii). Using iterated expectations and following parallel steps, we have

sup
B,�

|E[S1n(zj , zk; γ, β)′S2n(zi , zk; γ, β)|zi ] + Bn(w2i ; γ, β)

× [τ (wi , γ ) − η(wi , γ ) − µ(wi , γ )]a(w2i )| = o(n−1/2).

The change in sign with respect to the previous result is a direct consequence of the
properties of K(1)(·) stated in Assumption 7. Combining all these results together,
we get

E[T2n(zi , zk, zk; γ, β) | zi ]

= 2Bn(w2i ; γ, β)[τ (wi , γ ) − η(wi , γ ) − µ(wi , γ )]a(w2i ) + c̃n(zi , zj ; γ, β),

where supB,� | c̃n(zi , zj ; γ, β) | = op(n−1/2). Note that

E[Bn(w2i ; γ, β)[τ (wi , γ ) − η(wi , γ ) − µ(wi , γ )]a(w2i )] = 0.

Using Assumptions 3(i), 6, 7, and 11, the properties of the trimming set, we have

sup
B,�

E
[‖S1n(zi , zj ; γ, β)′S2n(zi , zj ; γ, β)‖2] ≤ C

h2(L+1)
n b2L2

n

× sup
�

E

[
‖F(zi , zj )[τ (wi , γ ) − η(w1i , w2 j , γ ) − µ(w j , γ )]‖2

(
a(w2i )a(w2 j )

fw2 (w2 j )

)2
]

.

Using Assumptions 11 and 6, the right-hand side is O(n). This result also holds
for all the remaining components of T2n(zi, zj, zk; γ , β). Therefore, we obtain

sup
B,�

E
[‖T2n(zi , zj , zk; γ, β)‖2] = O(n),
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and lemma A.3 in Ahn and Powell yields

(n
3

) ∑
i< j<k

T2n(zi , zj , zk; γ, β) = 3
n

n∑
i=1

E[T2n(zi , zk, zk; γ, β) | zi ] + d̃n(zi , zj ; γ, β)

= 6
n

n∑
i=1

Bn(w2i ; γ, β)[τ (wi , γ ) − η(wi , γ ) − µ(wi , γ )]a(w2i ) + d̃n(zi , zj ; γ, β)

+ op(n−1/2),

where supB,� |d̃n(zi , zj ; γ, β)| = op(n−1/2). The result from the Claim follows im-
mediately by noting that 1

n ( n
2 )−1 = 1

3
n−2

n ( n
3 )−1. �

CLAIM 3. If Assumptions 1–3, 6, 7, and 11–14 are satisfied and {zi, i = 1, . . . , n}
is an i.i.d. sample, then

Ĝn(γ, β) = Gn(γ, β) + 2(n − 2)
n

1
n

n∑
i=1

Bn(w2i ; γ, β)

×[τ (wi , γ ) − η(wi , γ ) − µ(wi , γ )]a(w2i ) + ẽn(zi , zj ; γ, β),

where supB,� |ẽn(zi , zj ; γ, β)| = op(n−1/2).

PROOF. The same argument we used to show that supB,� E[‖T2n(zi , zj , zk;
γ, β)‖2] = O(n) also yields supB,� E[‖T1n(zi , zj ; γ, β)‖2] = O(n). Conse-
quently, supB,�( n

2 )
∑

i< j ‖T1n(zi , zj ; γ, β)‖ = Op(1) and therefore supB,� ×
1
n ( n

2 )
∑

i< j T1n(zi , zj ; γ, β) = op(n−1/2). Given this, the result follows from Claims
1 and 2. �

PROOF OF THEOREM 5. We will outline the general steps of the proof. We begin
by noting that our assumptions are consistent with lemma 25 in Ichimura (2004),
which implies that

Pr
(
1l{ fw2n (w2i )} − 1l{ fw2 (w2i )} �= 0 for at least one w2i

) −→ 0.

This result is very useful since our trimming setW2n is defined in terms of fw2n (w2i ).
Given this, we now present the key components that lead to consistency. As we
did previously, define

Tn(γ0, b) =
(n

2

)−1 ∑
i< j

1
hL

n
K

(
µ(w2i , γ0) − µ(w j , γ0)

hn

)
s(vi , v j ; b)an(w2i )an(w2 j ).

Using Assumptions 4(i), 6, 7, 18(iii), the properties of an(·), and Lebesgue’s Dom-
inated Convergence Theorem, we obtain

E[Tn(γ0, b)] → E[ fµ(w2,γ0)(µ(wi , γ0))κs(vi , µ(wi , γ0); b)] ≡ T0(γ0, b),
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which depends on w2i only through µ(wi , γ 0). Therefore, consistency will rely
exclusively on Assumption 10, namely that E[s(vi , v j ; b) | µ(w j , γ0) = µ(wi , γ0)]
is uniquely minimized at b = β0, without the need of Assumption 5.

If Assumptions 1 and 2 are satisfied for any compact subset in the interior of
S(w2) and if the condition log(w̄n) = op(nε) holds, we can extend Theorem 1 to
show that

(a) sup
v∈W2n

γ∈�

(n1−δbL2
n )1/2‖µ̂n(v, γ ) − µ(v, γ )‖ = Op(1) for any δ > 0.

(b) µ̂n(v, γ )−µ(v, γ ) = 1
fw2 (v)

1
nb

L2
n

∑n
i=1[τ (wi , γ )−η(w1i , v, γ )−µ(v, γ )]×

Hbn (w2i − v) + ξn(ω, γ ),

where sup v∈W2n
γ ∈�

‖ξn(ω, γ )‖ = Op(nδ−1b−L2
n ) for any δ > 0. Following the same

steps as in Sections 3.3.1 and 3.4, we use this result to establish pointwise and
uniform convergence of Tn(γ̂ , b) to T0(γ 0, b) and thus establish consistency of β̂.

To establish asymptotic normality, we rely once again on the extension of The-
orem 1 to the set W2n. The remaining key step is to note that

sup
B,�

E
[‖S1n(zi , zj ; γ, β)′S2n(zi , zj ; γ, β)‖2] ≤ C

h2(L+1)
n b2L2

n ς2
n

× sup
�

E

[
‖F(zi , zj )[τ (wi , γ ) − η(w1i , w2 j , γ ) − µ(w j , γ )]‖2

(
a(w2i )a(w2 j )

fw2 (w2 j )

)2
]

.

Using Assumptions 3(i), 7, 11, and 18(ii), the right-hand side is O(n). Using the
same steps as we did in Claim 3, this result leads to the conclusion that

Ĝn(γ, β) = Gn(γ, β) + 2(n − 2)
n

1
n

n∑
i=1

Bn(w2i ; γ, β)

× [τ (wi , γ ) − η(wi , γ ) − µ(wi , γ )]a(w2i ) + ẽn(zi , zj ; γ, β)

≡ Gn(γ, β) + 2(n − 2)
n

1
n

n∑
i=1

D̃n(wi ; γ, β) + ẽn(zi , zj ; γ, β).

The final result follows from the exact same steps used to prove Theorem 4, and
the fact that an(·) → c. �
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