Appendix B for
“Testing functional inequalities conditional on estimated
functions”

Examples of estimators that satisfy Assumption 1

Andres Aradillas-Lopez'

Abstract
This appendix presents examples of estimators and the conditions under which they
satisfy the restrictions in Assumption 1 in the paper. The examples we include are
OLS, GMM, density-weighted average derivatives, and a semiparametric multiple-
index estimator.

In the examples that follow, all expectations are taken with respect to a generic distribution
F e F. At times, to simplify our exposition we omit denoting explicitly the dependence of these

(and other) functionals on F.

B1 A convenient definition
Take a collection of column vectors (vg)?:1 where v, € R? for each ¢, and let

’

v=(v],V5,...,V))

d?x1
For any such v we will define
vy
H;(v) = _2 and, when it exists, we will denote My (v) = Hy(v)\. (B1.1)
—_ :
dxd v:i
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B2 OLS

Consider an iid sample (Z;,Z,;);_, where Z; = (Z,;,Z,;) ~ F, with Z;; e R and Z,; € RK. Denote
the £ element in Z,; as Z,; ;. Define

_ 1 &
Gy =- Zzzizzi,g, Aer =Ep[Z2Z4),
—_—— n i
i=1 —
kx1 kx1

J— p— ’

G=(G1,Gy...,G) and Ap=(A{pAsp.Alp)

k?x1 k2x1

Assumption LS 3 Mzﬂz such that ||(EF[ZQZ§])‘1 || < ]\_/IZ222 ¥ F € F. For some q > 2, there exist Ha,z,

and W, , such that, for each €, m,
EF [|Z2,€ZZ,m_EF[ZZ,ZZZ,W]Iq] SﬁZZZQ and EF[|ZZ’€V|q] Sﬁzzv Y F E.}r.

There exists My such that |[M(Ap)|| < M, for all F € F and there exist K; >0, K, > 0 and a > 0 such
that, forany F € F and v € lez,

lv-Apll <Ky = [IM(v) - My(Ap)Il < Ky - llv = Al
and there exists K5 < oo such that

sup {IMy(v) - My(Ap)llf <K5 Y FeF
villv=Ap|I<Ky

Consider the OLS estimator

. 1 n -1 1 n
0= [Z ;Zﬁzéi ZZ{Z%ZU;
1= 1=

and let
0y = (EF[2,25)" - Ep[Z2,24),

and let us express Z; = 2,67+ (Zl - Zé@;) =Z,07+v, wherev = (Zl - Zé@}). Note that Eg[Z,v] =
0 by the definition of ;. In the usual linear regression model where we assume a structural
relationship given by Z; = Zy + ¢ with Ep[Z;e] =0 Y F € F, we would have v = ¢ and 0}, = f, for
all Fe F.

’ -1 ) N* / -1
Result OLS Let 0} = (Ep[Z,25]) - Ep[Z221), vi = (21i - 2,0} ), and 9(Z;) = (Er2223)) - Zavi.



Note that EF[I{)I?(Zi)] = 0. Under Assumption LS, the OLS estimator satisfies
1 n
n * 0 0
0 =0+ EZ{@%(Z)HS
i=

-1
and the conditions in Assumption 1 of the paper are satisfied, with gbg(Zi) = (EF[ZQZQ]) - Z5iV;,
Ty = nl/2, and for any t and Ssuchthat 0<t<a/2,and 0< S < (g—-1)/2.

Proof: Let My () be as defined in (B1.1) and note that My (Af) = (EF[ZZZQ])_l. We have

~ 1y — 1
0 = O + Mi(Ap)— ;Zzﬂ/i +(Mi(G) - Mg(Ap)) - - ;Zzﬂ/i
1= 1=

1 n
59;+—Z¢F9(zi)+52, where
" (B2.1)

9(Z;) = My(Ap) - Zojvi = (BE[Z,25) " - Zoivi,

56 _( (6) My ( /\P ZZZZVZ

Note that Eg [1,DF(ZI~)9] = 0. Take any ¢ > 0. Using the conditions in Assumption LS,

1 n

; ZZZivi > C}
1 —

o) Za Zc}-ﬂ{HMk<G>—Mk<AF)

<U{K;3||: L, Zoivi||>c}

ZZZIVl

<1{IG-A¢lI>K; }

1ledll> e <1 \Mk M)

1 “Mk ~ M(Ap)|-

SK3}

> K3} (B2.2)

> c} {HMk@—Mk(Ap)

IA

1

—Zzz,v, >Ki3}+1{||E—AF||zK1}
—ZZzle (Ka)/\Kl}Hl{”G /\FH ( )/\Kl}

IA

1

&
|
+1{|\Mk M)
|
|




Take b > 0. Assumption LS and Chebyshev’s inequality imply that, forall {,min 1,...,k,

& —
rer PF[ 1 ;(ZZi’€ZZi'm_EF [Z216Z2im])| 2 b]ﬁ (anZ_zsz)q
Therefore, B
M
sup ([6 - 20)< 23

where M, depends only on Hy,,, and k. Similarly, Assumption LS also implies that there exists a

constant M, which depends only on Hs,, and k such that, for any b >0

21;1}?) PF( Zval > b] (nl/z b) (B2.4)
Combining (B2.3) and (B2.4) with (B2.2), we have that for any ¢ > 0,
0 M +M, ~ 1 g-1
sF,gprP(”en“ZC)S (n1/2~((KL3)/\K1))q _0(n1/2+5) VO<6<T (B2.5)

_ . q-1-26 )
Take 0 < 0 < % and consider a sequence ¢, > 0 such that n 2 -¢,, — oo. Then, the result in

(B2.5) would still hold for c,,. Thus,

ilelprF(HESHZC"):O(#) Ve in' T — o, 0<b<%

Take any b > 0. From our previous results,

ZzpF

FeF

1 v M
>b|<sup Pr —ZZzivi Z_L SL(%
nie M, (nl/z . (ML))
A

Thus, going back to the linear representation result in (B2.1), we have that for any ¢ > 0,
lep >—]+sup PF(HSQH )

M2 M1+M2

S( (|0 () AR

sup Pr
FeF

sup Pr (”5— 6}“ > c) <sup PF[
FeF FeF




And so,

sup Pr (”5— O
FeF

2c)—>0 Y c>0.

Thus ||§— O

= 0,(1) uniformly over F. Recall from its definition in (B2.1) that

n
e < @) w25 Hl 5 2

From (B2.4), we have

=0, (n_l/z), uniformly over F. (B2.6)

1 n
" Zzzivi
im1

Now let us analyze “Mk(é) —Mk(/\p)”. Take any b > 0. From the conditions in Assumption LS,

]1{“Mk(§) - My 2 b} < max(]l{Kz JG-26|" =0} 1 {HE— A2 Kl})

< ﬂ{Ha_AFH (Ki)K}

Take 7 > 0. Then, from (B2.3),

M
1 —0 VT<E,

(n1/2~((%2'b)1/a/\1<1))q 2

sup Pr (||Mk(6) Mg 20T b) <
FeF

which means,
“Mk(é) —Mk()\F)” =0,(n"") V< %, uniformly over F.

Combining (B2.6) and the previous expression, we have that for any 0 <7 < 7,

1
2] _ .
||en || =0y (m), uniformly over F
Together, (B2.1), (B2.5) and the previous expression show that the conditions in Assumption 1

-1 _
of the paper are satisfied, with 1/)?(21-) = (EF[ZZZQ]) Zoivi, Ty =02, 0<t<a/2,and 0 < 6 <
(9 —1)/2. This proves Result OLS. m



B3 GMM

n
i=1

simplicity that Sy is the same for each F € F. Let us focus on an exactly-identified GMM model
where 0 € RF and

Consider an iid sample (Z;)_, where Z; ~ F. Let S; denote the support of Z and assume for

8(Z:,0) = (1(21,0),82(Z;,0),...,g(Z;, 0))
~————
kx1

is a collection of parametric moment functions satisfying Ep[g(Z,0})] = 0. We denote 0} possi-
bly as a functional of F for generality (to include, e.g, the OLS example described above). For
simplicity we focus on an exactly-identified GMM model with as many moment restrictions as
parameters which includes, e.g, MLE and NLS as special cases. Let © denote the parameter space
and let

~——
kx1

0= @(Z.0) and  F(0) = (,(0)8:(0)....,(0))
i=1

denote the sample moments. Suppose the GMM estimator 0 € © is characterized by the condi-
tion §(5) = 0. Suppose the moment functions are differentiable with respect to 6 and for the ¢*"

moment function g, denote

_ {99(2,0) 09g/(2,0) 2g,(2,0)\
Ge(Z, 9) = ( gagl gaez e gaek ) ’
——
kx1
1 n
0(0) = " G¢(Z;,0) and Agp(0) = Ep[Ge(Z,0)]].
S~— i=1 —

kx1 kx1

From here and the definition of 6 we obtain the following mean value expression for the /" sample
moment
0=5,(0)=3,(0:)+G(0,)(0-06%) €=1,...,k, (B3.1)

where 6, belongs in the line segment connecting 0 and 0. Take a collection (Qg)lef:l where each
O, € ©. This is a collection of k points in the parameter space ©. For any such collection we will
denote

0=(0,,05..,0)cOx0Ox---x0 =OF

—_—
k products



In particular, we will denote @ = (51,5’2,...,5,’()’, where 0, is as described in the mean-value ap-
proximation (B3.1), and 0} = (9}', 9;',...,6;')’. For a given 0 = (61,05,...,0,) € Ok let

G(0) =(G1(61),G2(02),...,G(6k)') , Ap(0) = (A1,p(61), Ag p(02) ..., Ak r(6)') -
—_—— ——
k2x1 k2x1

Consider the following restrictions.

Assumption GMM

(i) There exists an integer q > 2 and a constantﬁg < oo such that, foreach ¢ = 1,...,k and each F € F,
Eg [gg(Z, 9;)‘1] < o There exists a nonnegative function V(-) such that, for each € = 1,...,k and

m=1,...,k,

Hage(z,ff) _9g(2,0')
90, 0,

HsV&y”e—a

| YzeS; and 6,6'¢cO,

and there exists iy such that Ep [7(2)4‘1] <py VY F€F, where q is the integer described above.

(ii) Let Hy and My, be as defined in (B1.1). 3d >0, M, K3 > 0 and K4 > 0 and a; > 0 such that, for
every F € F,

inf [det (Hi(Ap(0)))| > sup [M(Ap(9))]| < My
0e® OOk

VQE@k, ||V—/\F(Q)”SK3 — ||Mk(/\F(Q))—Mk(y)|ISK4”v_/\F(Q)Hal
And,
sup {[Mi(4£(0)) - Me(w)]} < K5 <o
villv-Ap(9)lI<K;
0cOk

(iii) 3 K¢ >0, K7 > 0 and a, > 0 such that, for every F € F,

ar

voeco*: |o-o;

| Ae(0) - Ar(0})|| < K7 -||€ - 0} <K

!
Result GMM Let 6 be characterized by Ep[g(Z,0})] = 0 and define 1/;F9(Zi) = —(Ep[ag(é’gf)]) .

8(Z;,0%). Under Assumption GMM, the estimator 0 described by the sample moment conditions §(/9\) =
0 satisfies

~ 1y g 0
6:9F+E214¢F(Zi)+€w
1=



o1
and the conditions in Assumption 1 of the paper are satisfied, with z,bg(Zi) = —(Ep [%]) .

8(Z;,0p), 1y = nl’2 0<t< % A aléaz, and 0< 6 < %.
. e (o e Y . 232,001\
Proof: As defined above, let 0} = (QF ,0,...,0% ) and note that M (Ap(07)) = (EF[ 5690 ]) .

Combining the mean-value expressions in (B3.1) for each of the £ = 1,...,k sample moments, we

have

From here,

- 0 0
=0r + EZI,DF(ZI-Hen, where (B3.2)

dg(Z,6%)1\"
IPFG(Z:')E—Mk(/\F(Q}))'g(Ziﬁ;):—(EF[%) -8(Z;, 0F),

5 =|Mu(A£(0)) - Mk(Ap(07))|- 2(67) + [Mi(A£(0)) - M (G(@))|-2(67)
Consider the class of functions

Gom :{f:SZ —R: f(z)= 8g§;z,6) for some 96@}

By part (i) of Assumption GMM and Lemma 2.13 in Pakes and Pollard (1989), there exist positive
constants A and V such that, for every the class %, is Euclidean (A, V) for an envelope W(z)
for which 3 p7 < oo such that Ef [W(Z)4q] < ti77 (wWhere q is the integer described in Assumption
GMM). The conditions in Result S1 are satisfied for the integer q described in Assumption GMM
and there exists a constant D < co such that, for each ¢,m € 1,...,k and for any b > 0,

1\~ (98(Zi,0) . [9g:(Z,6) D
;12;( 96, EP[ 36, DIZb]S(nuzlﬁq (B3.5)
> My b},

sup Pr|sup
FeF 0€O

Next, note that for any b > 0, we have

k k
]l{;?gk G(6) - /\F(Q)“ > b} < ZZl{sup

L Z( 982,0) [9&/(2,9)])

20,, 20,




where my is a constant that depends only on k. Thus, from (B3.3) we have that there exists a
constant Ml < oo such that, for all b > 0,
M,

< W, (B3.4)

G(O)-Ar(0)| 2 b

sup Pr| sup
FeF 0cOk

where g is the integer described in Assumption GMM. Using Chebyshev’s inequality, part (i) of
Assumption GMM also yields the following result for each ¢ =1,...,k,

1o X
- de(zzu@p)
i=1

zb}siﬂ{% y

(=1 i=1

FeF

1 n
1{ L
n

i=1

sup PF[ > b] < (L Y b>0. (B3.5)

n1/2.b)q
> Ck - b},

where ¢ is a constant that depends only on k. By the conditions in Assumption GMM we have

bl
<Z { > e (MbA)}

From here and (B3.5) we have that there exist constants M, < co and M3 < co such that, for all
b>0,

Next, note that

Zg(zi' Or)

¢(Z;,0F)

ir

Z)

n

% Zg(zzv OF)

i=1

n

WAL

i=1

i)

FeF

>b SLW and sup Pr
(nl/z«b) FeF

M;
sup Pp[ > b] W
(B3.6)

where g is the integer described in Assumption GMM. Note that the above result implies that

1o X 1 v
) :H;;g(ziﬁp) = ‘;;}Pg(zz) =

Now, take any ¢ > 0 and note from Assumption GMM that

iz

Op (n—l/Z

), and O, (n_l/z)

, uniformly over F.

(B3.7)

€9]| < 2M - |[g(07)|| + || Mk (A£ (@) -




Therefore,

1{llef) = cf < m (Jl{ZMAHg CHy

= max(]l{”g(Q;)

Let us examine the term (III) in (B3.8). From the conditions in Assumption GMM, we have

]1{||Mk(/\F(§)) —Mk(E@))” . ||§(6;)” > %} _

n{HMk(Ap@) - M(G@))| - [[g(63)] =

{Ilg ||

+11{||Mkup<é>>— 0)-[ls(ez) IIZ§} ﬂ{IIMkuF@)—Mk(E@))ll>1<5}

_g} {||Mk (A+(@) - MG [2063)
> } {|Mk (Ar(@)) - M(G(9))]|- [[g(67)

(I11)

S 5}) (B3.8)
)

<1{lIG(0)-Ar(0)II=K5}

Therefore,

n{(leup@)) - M(G(9))|| - |lg(07)|| = —} < n{ll@(@;)ll > —} +14[|G(0) - 1p(0)|| > K3}

(B3.9)
Combining (B3.8) and (B3.9), we have

1 1 —
{2 < 1{l0nl (10 55 8 ) -2 s - o

0Ok

From here, combining (B3.4) and (B3.6), we have that for any ¢ > 0,

supPF(”sg“Zc)S M, + M, ! ) VO<6<%

=0 :
q ( 1/2+6
FeF ( 172 . (K3/\(2K5A4]\14 ) c)) n

A

_ q-1-20
Take 0 <6< % and consider a sequence c,, > 0 such that n 29 .¢,, — oco. Then, the result in the

10



previous expression would still hold for c¢,.. Thus,

1 q-1-26 —

1
ilelprp(“eg”ch):o(m) Ve,:n 2 -c,—> 00, O<6<T (B3.10)

From our previous results we have

. 1
sup Fr(J0=0f]| > ) < sup [ ;

= 0,(1) uniformly over F. Next, from the definition of €% in (B3.2), we have

€8] < || Mi (e (@) = Mi(Ap(@7)|| - [g(05)|| + | Mk (A (©)) - (B3.12)

As we stated in (B3.7), |[g(67)|| = Op(n‘l/Q) uniformly over .7-' Let us examine the asymptotic
(Ap(0)) — Mi(Ap(03))]| and |Mi(A£(9)) — Mi(G(9))|| under Assumption GMM.
Take any b > 0, then from Assumption GMM,

\%

M;(G(0)) - Mi(Ar(@ )>H>b}<ﬂ{sup (Ks-[[Gl01-Axt0)
0Ok

23] —
) b+ 1 sup (|G
0cOk

{22251 (=@ AF<Q)||2K3A(K%)1/&1}

1{ sup
0@k

Therefore, from (B3.4),

supPp[sup M(G(0)) - Mk<AF<@>>|j>n-T-b)<

FeF 0Ok

which means

sup
0eOk

M (G(6)) - Mk(/\F(Q))” op(n”") V< %, uniformly over F.
In particular,
”Mk G(0)) - M (Ap(0) || =0,(n"") ¥V 1< %, uniformly over F. (B3.13)

Next, recall from the definitions of 6 and 01 that, for any 6 > 0, we have ]l{”é—@}

26}§

11



]l{||§— 9}” > dy - 6}, where dj is a constant that depends only on k. From here and Assumption
GMM we have that, for any 1 >0,

{JAr@) 141607 2 ) < 1 - [~ 03] = )+ {003 = Ko)

. I 1/a;

0 - 0; —
fr-otesolzf)

. " 1/a,
51{||9—9;||zdk. K6/\(K—7) J}

Take ¢ > 0. Using Assumption GMM and the result in the previous expression,

IA

Kg A

K3 A (Kﬁ)l/“l ]1/“2

K7

[H@ 01| > di- }

||6 91:” > dk (Ké /\[ K3 /\ C/K4)1/a1)/K7]1/a2)}

From here, using (B3.11), for any b > 0 we have

sup Pr (|[Mi(Ar(@)) - M(A£(67))]| 2 b)

FeF
< M
- 1/ q
(nl/Z . % . dk . (K6 A [(K3 A (b/K4)1/a1 )/K7] az))
+ Ml +M2
q
(n1/7- (K3 /\( A ) Lody- (K6 A[(Ks A (b/K4)1/“1)/K7]1/a2)))
A
Therefore, B o
sup P ([|M(4¢(8)) - McAp(@p)]| 207" -b) — 0 Vo< ==
€
which means,
a1 -y

1M (@) = Mi(Ap(@F))]| = 0p (177 VT < =

Thus, combining (B3.7), (B3.12), (B3.13) and the previous expression, we have that for any 0 < 7 <
al
A

@ az

||e§|| =0p (ﬁ) uniformly over F.

12



Together, (B3.2), (B3.10) and the result in the previous expression show that the conditions in

. -1
ag(z,ep)])  ¢(Z1,0%), 1y = n'/2, 0 <

Assumption 1 of the paper are satisfied, with ybg(Zi) = —(EF [W

T<F AR, and 0< o< %. This proves Result GMM. m

B4 Density-weighted average derivatives

Consider an iid sample (Z;;,Z,;)!_, where Z;; € R, Z,; € RY and Z; = (Zy;,Z,;) ~ F € F. As in our
previous discussions, we will let S¢ denote the support of the r.v . We will group Z = (Z,,2,)
and we will assume that Sy is the same for all F € 7. Suppose that, for each F € F, we have
Er(Z11Z,] = up(Zy) = GE(Z5B0), where Gp is unknown but smooth as described in Powell, Stock,
and Stoker (1989) (we will be precise about these smoothness conditions below). Let f, denote
the density of Z,, assumed to be absolutely continuous with respect to Lebesgue measure, and
denote of = Ef [fZZ(ZZ)G;(ZéﬁO)] and O = or - fo. Using integration by parts, under the conditions
described in Powell, Stock, and Stoker (1989), we have

afzz (ZZ)
Z, |

6}:—2-EF[Zl-

Let K : R — IR be a kernel function (whose conditions we will describe below) and let ¢ > 0 be a

strictly positive scalar. For a pair of observations i # j in the sample let

Zoi—Zo;i
p(Zi,Zj30) = (Z1i - Z4j)- K(”(]Tl).

Let 0, — 0 be a bandwidth sequence. The estimator for 0} proposed in Powell, Stock, and Stoker
(1989) is of the form

-1
—~ [n 1
9:(2) sz(zi,zj;o—n). (B4.1)

i<j
Assumption DWAD

(i) There exists an integer q > 2 and a constant ji, < co such that Ep [qu] <W, forallFeF.

(i) The kernel K : RY — R is a multiplicative kernel of the form K(ip) = ]—[?:1 k(¢e) (with ¢ =
(1,...,Px)). () is a bounded kernel function satisfying |k(v)| < K < oo for all v. The kernel
function x(-) is also of bounded variation and it has support of the form [-S, S]. k() is symmetric
around zero and has the properties of a bias-reducing kernel of order L: I_Ss vix(v)dv = 0 for
j=1,...,L-1 and J_SS [v|Fk(v)dv < co. In addition, x(-) is differentiable, with first derivative
denoted as «’(-). The function  (-) is bounded, satisfying |k’(v)] < ¥y < oo for all v, and it is also

13



of bounded variation. Since «k(-) is symmetric around zero, k'(-) is antisymmetric around zero,
satisfying x’(v ) = —«'(~v) for all v € [-S,S]. Thus, if we let K\!) denote the Jacobian of K, then
KW () = ~KD(=p) for all p € R?. We have [K()| < K < oo and |[KV(y)|| < K; < co for all
peRY.

(iii) Let L be the constant described above. Then, both f, (z;) and pp(z;) are L-times continuously
differentiable with respect to z, for F-a.e z; € Sy, with derivatives that are uniformly bounded
over Sy forall F € F.

(iv) Let L be as described above. The bandwidth sequence o, > 0 satisfies 0,, — 0 and is such that
nl/278 g+l oo, /20 6L 0 and n'*2 .09+ . gL — 0 for some 0 < A < 1/2. In addition,

the integer q described above and A are such that gA > %

Result DWAD For a given (z1,2;) € Sz, let 9p(z1,27) = (21 — pr(22)) sz z5), and let z/)F( )=
(% —Er [(mg;lezz’)]) Under Assumption DWAD, the estimator O described in equation (B4 )

2
1 n
o * § 0 0
6:9F+E'1¢F(Zl)+é
1=

satisfies
and the conditions in Assumption 1 of the paper are satisfied, with ng(zi) =—
Ty :n-o,‘f“, 0<T<A, and0<5<qA—%.

2.( (PF(?ZE;Z%) —Ep [‘PF(?ZZ%) ]),

Proof: For a given o > 0 let

r,e(Zi;0) = Er [P(Zi:Zj;GNZi] —Er [P(Zi’ZjZO‘)]x
rp(Zi, Z30) = (p(Zi, Zj30) - Ep [p(Zi;Zj}U)]) —r,p(Zi;0) —1,p(Zj;0),
-1
n
Uj (o) = (2) ;rZ,F(ZiijZG)'
i<j

U, (o) is a degenerate U-statistic of order 2 and {U,,(0): 0 >0} is a degenerate U-process of
order 2. Going forward we will denote U, ,(0,) = U, ,. A Hoeffding decomposition (see Serfling
(1980, pages 177-178) or Sherman (1994, equations (6)-(7))) of the U-statistic in (B4.1) yields

n

1 2 1
0= o -Ep [P erZ];Grz)] m ;rl,F(zi;Gn)"' Ty U - (B4.2)

For a given (z1,25) € Sz, let ¢p(z1,25) = (21 — pp(22)) - f,,(22). Under the smoothness conditions
and the higher-order properties of the kernel described in Assumption DWAD, an M*"—order

14



approximation yields the following re-expression of (B4.2),

~ 2 (9214, Z) Pr(Z1i,Z2;) 1
N L

=1
1 n
—_N* 6 o
=0r + " ;wF(Zi) +¢,, where
1=

07— o (P Z1i22i) o |@e(Z1irZ2i)
oz =2 (20T g, 2o

(B4.3)

1
0 _
én :W M U2,i’l + BH,F’
On
where B,  is a bias aggregate term which, by the smoothness conditions and the higher-order
properties of the kernel described in Assumption DWAD, is such that there exists a constant
Cp > 0 such that

IByell<Cp-oy VFeF. (B4.4)

Let us examine the properties of the degenerate U-process {U,,(0): 0 >0} under Assumption
DWAD. By Lemma 22 in Nolan and Pollard (1987), if A(-) is a real-valued function of bounded
variation on R, the class of all functions of the form z, — A(y’z,) with y ranging over R is
Euclidean for the constant envelope A = sup, .y |A(b)|. Combining this with the closure proper-
ties of Euclidean classes described in Lemma 2.14 in Pakes and Pollard (1989), the conditions in

Assumption DWAD imply that the class of functions

= {f : S% — R f(z42) = (214 —zlb)-K(l)(M) for some o > 0}
o
is Euclidean for envelope G(z,, 2y) = K1 - (|z14] +|213]). By Assumption DWAD, there exists Hg <oo
such that Eg [G(le-, le)4q] < Jig- From here, the conditions in Result S1 are satisfied for the integer
q described in Assumption DWAD and we have that, for all b > 0, there exists Dy < co such that

D
sup PF(sup |U,u(0)] Zb)s o
FeF >0 (n-b)

From here it follows, in particular,

Dy
sup Pr(|Up,|20)< Yb>0 (B4.5)
sep (Ve 20) < 5o
Note that (B4.5) implies
1
|U2,n| =0, (;) uniformly over F. (B4.6)

15



Take any ¢ > 0. From (B4.4), we have
]l{”eﬁ” > c} < ]l{sug”Uzln(G)” > g+l '(C—EH : o*,f)}
o>

Let 11y be the smallest integer such that Cy -0 < c. Then, from the previous expression and (B4.5),

Dy

Y B4.7
(n-a,f“-(c—EH-o-,{“))q n>ng (B4.7)

sup Pr (”52” > c) <
FeF

1/2+6

Note from Assumption DWAD(iv) that (:GT]) — 0 for any 0 < 6 < gA — % Next, combining (B4.4)
and (B4.6), we have

1
||e,61|| =0, (Fy‘f“) + O(o,f) uniformly over F.

Therefore, by the conditions in Assumption DWAD, for any 0 < 7 <A,

1
||€g|| =0, (m), uniformly over F.
Together, (B4.3), (B4.7) and the previous expression show that the conditions in Assumption 1 are
satisfied, with 1[/?(Z,~) =-2- ((pp(glz’;ZQ") - Er [(PF(glzi;Zzi)])} rp=n-081,0<t<A,and 0 <6< gA - %
This proves Result DWAD. m

B5 A semiparametric multiple-index estimator

Consider a collection of d single-valued indices (m,(Wy, 95))?21 where 6, € R*¥. Each m, has

S

known parametric functional form (e.g, m,(W;,6,) = W,0,). Group U§:1Wg = Z, and let 6
(9{,65,...,9:{)/ € RF and denote

m(Z,0) = (my(Wy,01), ma(Wa, 0,),...,mg(Wy,04)) € R

For simplicity let us focus on the case where Z, is a vector of jointly continuously distributed
random variables. Let Z; be a scalar random variable and group Z = (Z,,Z;) ~F € F. Let ©
denote the parameter space for 6, assume O to be bounded and consider a model where there
exists a 6* € © such that

Ep[2112,) = Ep|Z1|m(2,,0%)] VY FeF

For a given 0 € © let up(m(Z,,0)) = Eg[Z1|m(Z,,0)]. Our model therefore assumes Eg[Z,|Z;] =
e(m(Z,,0%)). Let ¢ € RF denote a vector of pre-specified instrument functions and consider an

16



estimator based on the moment conditions

Er[$(22) (21 = up(m(25,6%))] = 0 (B5.1)

Suppose we have a random sample (Z;;,Z,;)i_, where Z; = (Z,;,Z5;) ~ F € F. Let S; denote
the support of the r.v £ and for simplicity assume throughout that S, is the same for all F € F.
Suppose that the instrument functions are designed such that ¢(z;) =0V z, € Z,, where 2, C Sz,
is a pre-specified set belonging in the interior of Sz, for all F € 7. We refer to 2, as our inference
range. Thus, the instrument functions also serve as trimming functions to keep inference confined
to the set Z,. Finally, suppose || (z5)]| < ¢ ¥ z,. Let

M= {m eR* m= m(z,,0) for some (z,,0) € Z;, x @}.

M is the range of all possible values of the index m(z,, 0) over our inference range and the param-
eter space. Let 0, — 0 denote a bandwidth sequence and let K denote a kernel function. For a
given 6 € © and z; € 2, let f,,(m(Z,,0)) denote the density of m(Z,,0). Consider a kernel-based

estimator of pp(m(z,,0)) of the form

_ Rim(zy,0))
fn(m(z2,0)

R(m(z,,0)) = 1 ZZUK ( m(Z,;,0) —m(z,,0) )

ﬁ\(m(zbe))

Consider an estimator 6 defined by the sample analog moment conditions to (B5.1),
1y -
ZZ‘P(ZZi)'(Zli_ﬁ(m(ZZi'Q))): 0. (B5.2)
i=1

Assumption SMIM1 For some q > 2, we have EF[qu] < Hyy < oo forall F € F. Also, there exist
constants im >0, f,, <ooandu < oo such that f, > f,(m)> im and |pp(m)| <u ¥ me M and all
F € F. Also assume that both f,,(m) and up(m) are L-times continuously differentiable with respect to
m for F—a.e m € M, with derivatives that are uniformly bounded over M for all F € F. The kernel
K:RY > Risa multiplicative kernel of the form K(ip) = ]_[?:1 k(Pe) (with i = (Yq,...,¢4)), where k()
is a function of bounded-variation, a bias-reducing kernel of order L with support of the form [-S, S]
(i.e, f_ss vik(v)dv=0forj=1,...,.L—1and I—Ss |k (v)dv < 00) and symmetric around zero. We have

1/2+A L

supweRd|K(lp)| < K. The bandwidth sequence o, > 0 satisfies o,, — 0, with n c0,;, — 0 and
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nl/2=8 .58 s oo for some 0 < A < 1/2. g and A are such that gA > %

Denote Rp(m) = pp(m)- f,,(m) and note from Assumption SMIM1 that |Rg(m)| < ﬁ]_(m =RVmeM
and all F e F. le m € M. A second order aproximation yields

1 (m) =

) = o) + = (Rlom) = Re () - g(,’z) (Foum) = fon(m)
(RO = Re () (Fulm)— i) Riom)- (Fotom) ~ fulm))’
Fn(m)? Fon(m)? ’

where ﬁn(m) is an intermediate point between ]";,l(m) and f,,(m), and ﬁ(m) is an intermediate point

between R(m) and Rp(m). From here, we have that, for any given (z,,0) € Z, x O,

W(m(zy,0)) — pp(m(zy, 0) — Ug Z (Zyi - zz,)G))) 'K(m(ZZi’QL;m(ZZ'Q))+£5(m(zz,9)),
where
(e 0 = — B2 O Rtz 0 )'(J?m 2 Ol 0)
fun(m(22,0
 Rlm(z5,0)- (fu(m(z2,0) fm(m(zz,e»)2
fun(m(z2,0

(B5.3)
For the next few lines let us omit the dependence of ]’C,;, E ]7,;1, R, eﬁ, fm and Rp on m(z,,0) to

simplify the exposition. Note first that

e IR=Re| - [fo = fl E~|fm—fm|2 IR=Re| - [fy = funl?
eh| < +

[l Ful? Ful?
< [R=Rel fuu = foul | Relfuu= fiul® | IR=Rel-[fon = furl
Ful? Ful? Ful?

where the last inequality follows because, by definition, |§— Rp| < |f€\— Rpr|. Next, note that, ¥V ¢ >0,
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we have 1{[&;]+[&] + (&3] > ¢} < max(]l{|§1| >3}, W&ol > 5}, 1{l&5] > §}) Therefore, for any ¢ >0,

{Is|>c}gmax(u{|§_RF|.'7;1_fm]2|fm|2 } {’fm L2 Ul }

3R

(Iv) (V)
— 2 |fl-c
fm_fm| > fm3 })

(V1)

(B5.4)

) 11{|I€—RF|-

Next, note that, ¥ ¢ > 0, we have 1{|&;] - |&;] = ¢} < max(ﬂ{|51| > 12}, 1{|&,| > cl/z}). Therefore,

1{|§_RF|.|ﬁ_fm|z@%}

v) (B5.5A)
B 82
{lfm A _lf'"P }=1{|ﬁ—fm|z(|@;c)l/2} (B5.5B)
v)
{IR Rel - s > oL }
o (B5.5C)

< max(ﬂ{|§— Rp|> (%%)1/2} , Jl{m —fm| > (%E : 6)1/4}]

Note that min{lfml , |]7m|3/2 , |]7m|3/4l = minl|}7m|3’/2 , |]7m|3/4}, and min{cl/4 , C1/2} < min{cl/4 , cl for
all ¢ > 0. Given this, let
1

(p”(}’;,c) = % -min{% , 1}-min{|}‘;|3/2 , |}:n|3/4}-min{cl/4 , c}.
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Combining (B5.5A), (B5.5B) and (B5.5C) with (B5.4), we have

11{|55| > c} < max(1{|§— RF' > @V(ﬁ,c)} , 11{@1 —fm| > go"(};,c)})

(B5.6)
(Virn) (VIII)
Let us analyze term (VII) in (B5.6) first. Begin by expressing it as
> = = = ~ 1
U[R=Rel > @#(F0)} = Y [R=Re| > 9} 1|7l = |8 - 5 -1, }
(B5.7)

n 1{|§— Re| > @“(ﬁnw)}' 1{|ﬁn| <[ful - % 'im}

We begin with the first term on the right-hand side of (B5.7). Note first that |f,| - & im >1 im
and therefore ]l{I]F‘,“ﬂl > |ful - % im} < ]l{I]F(,HﬂI >3 im} Define

et _ %-min{% , 1}.min{(%.£m)3/2 ' (%'im)w}

Then, the first term on the right-hand side of (B5.7) satisfies

1{|7€— Re|> <pf‘(7m,c)} : 1{|7m| > |fu] - % im} < 1{|T€— Rg| > D' .min{c1/4 ) c}} (B5.8A)

Next, we move on to the second term on the right-hand side of (B5.7). Recall that, by definition,

we have |fyu = ful 2 |fou=fiul- Therefore, |fu=fiul = |fu=fiul = |ful=|fl and thus, L ful <|ful=3-f } =
W fol = | fol > 3 fm} <Y|fon— fiul > %im} < IL{IE —ful> % im} Therefore, the second term on the
right-hand side of (B5.7) satisfies,

1{|§—RF|pr"(ﬁw)}'ﬂ“m<|fm|‘%'im} (B5.8B)
<t{R-re|z o) [l 2 3£, <1l 51, |

Combining (B5.8A) and (B5.8B) with (B5.7), we have that the term (VII) in equation (B5.6) satis-
fies,

_ — _ f
IL{|R—RF| > (p”(fm,c)} < max(1{1R—RF| > min{% ,D'cM4 D¢

(VII) (B5.9A)

— f y |
’ I[{|fm_fml > min{% , Dé*cl/4 , D‘gl‘c

20




Next, we analyze the term (VIII) in equation (B5.6). Similar to (B5.7), let us write it as

o A R A A R R AR AL
A[fu ful 2 0G0} 1Bl <1l 21,)

Parallel steps to those leading to (B5.8A) and (B5.8B) now yield,

1{']‘; —fm| = @”(fnw)} < 11{|J?m _fm| = min{%’” , Dl DS”c}} (B5.9B)

(VIII)

Denote

P*(c) = mm{%" D¢, Df”cl/‘*}. (B5.10)
Combining (B5.9A) and (B5.9B) with (B5.6), we have that, for any ¢ > 0,
[ehm(z, 00| > c}
< ma [1{\72‘( m(z2,0)) - Ri(m(z2,0))| > ()} ﬂ{\ﬁ(m(zz, ~ Fulm(z2,0)| > f"(C)}] -

< 1[Rim(z2,0)) - Re(m(z2,0)| > 9(0)}+ 1 [Frm(z2,0)) = fu(m(z2,0)| > @(c)}
YV (z5,0)€eZ,xOV FeF

For (z,0) € Z, x® and ¢ > 0, let

, pfm(Zl',Zz,G,O') =K n

Z5;,0)— )
pR(Zi;Zz,Q,U) =7 K(m( 2i 6)0_ m(zy 9))

n

V,If(zz, 0,0)= %Z(pR(Zi,zz,G,a) —Er [pR(Z,zz, 9,0)]), and

i=1
n

fm(ZZ:Q 0) = % Z(pf’”(zi,zz, 9"7) _EF [pfm(zr 22, 9"7)])'

i=1

Assumption SMIM2 Consider the following class of functions defined on Sz,
4 :{g:SZ2 —R:g(z)= (a m(z,,0)+ p-m(v, 6))) forsome v€S;,0€0,a,p EIR}

Then, %, is Euclidean for the constant envelope K.

For indices of the form m(z,,0) = 2,0, the condition in Assumption SMIM2 follows immediately
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from Lemma 22 in Nolan and Pollard (1987), who showed that if A(-) is a real-valued function of
bounded variation on R, the class of all functions of the form x — A(y’x + 7) with y ranging over
R? and 7 ranging over R is Euclidean for a constant envelope. By Assumption SMIM2, the class

of functions

m(z,,0) —m(v,0)
o

{g:SZZ—>IR:g(22):K for some veSZz,96®,a>0}
is Euclidean for the constant envelope K and the conditions in Result S1 are satisfied for any
integer g (due to the constant nature of the envelope) and we have that, for all b > 0 and any

integer g, there exists M; < co such that

M
sup Pr sup v,{’”(zz, 6,a)| >b|< —lq (B5.12)
FeF (25,0)€2,%O (n1/2 . b)
o>0
From here it follows that, for any ¢ > 0, there exists a finite A, > 0 such that
sup Pr sup nl/zv,]:"‘(ZQ, 9,0)| >A | <e,
FeF (25,0)€2,%xO
o>0
which means that
sup Vﬁ,(ZZ,@,a)' = OP(l_/z) uniformly over F (B5.13)
(20,0)€2,xO n

By Pakes and Pollard (1989, Lemma 2.14), Assumption SMIM2 implies that the class of functions

m(z,,0)—m(v,0)
o

%:{g:SZ1 xSZZaR:g(zl,zz):zl-K( ) for some veSZz,866,0>0}

is also Euclidean for the envelope G(z;) = |z;| - K. By Assumption SMIM1, Ep[G(Z;)*] = k.

Ep[qu] <KM ‘Hyq < oo forall F e F, from here, Result S1 implies the existence of M, < oo such
that, for the integer g described in Assumption SMIM1,

M
sup Pr sup |v,§(22,6,0)| >hl<——2 (B5.14)

FeF | (z,0)e2,%0 (n1/2 . b)q
0>0
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which in turn also implies that

1
sup vR(z2,,0 (7)| =0 (W) uniformly over F. (B5.15)
(2,,0)€2,%0 n
We have )
R(m(z;,0)) = R(m(z2,0)) + — - Vi (22,6,0,) + By (22, 0),
n
A — V)"(2,6,0,) + B"(2,,0
fm(m(z2,0)) = fiu(m(zy,0)) + O'd (z2,0,0,) + (Zz; ),
n
where
R pr(Z,2,,6,0,) fo pin(Z,2,,6,0,)
B, p(22,0) = Ep — —Rp(22,0),  B,':(2,0) = Ep — — fn(22,0)
n n

are the corresponding bias terms. By the smoothness conditions described above and the bias-

reducing nature of the kernel K, there exists a constant C g“ such that

sup  |BRp(z,0)| <Cht ok, sup |Bf” 22,9)|<C ol VFeF (B5.16)
(25,0)€Z,%x0O (25,0)€Z,%x0O
Define
s1u=Ch ok, (B5.17)
Then, from (B5.13), (B5.15) and (B5.16)
_ 1 X 1
sup  [R(m(z5,0)) = Rp(m(z5,0))| < — - sup  |vi(22,60,0,)|+51,4=Op Sl
(22,0)€2,%0 Off  (22,0)€2,%0 nl/2. o}
— 1 1
sup [Futn(es 0D fulmlzn, 0] < - swp lr(en 0,50 = O - s
On  (2,,0)€Z,x0 nt’<. oy
(B5.18)

(25,0)€Z,%xO

uniformly over F. Take any b > 0 and let 1 be the smallest integer such that s; , <b. Combining

(B5.12), (B5.14) and (B5.18),

M
sup PF( sup |fm m(z,,0)) — fu(m(z,,0 | > b] < - ! 7 Yn=ng,
FeF (2,,0)€2,%O (n1/2 o+ (b _Sl,n)) : )
_ B5.19
— M
sup Pp[ sup |R(m(zz,9)) —RF(m(zz,G))| > b] < y 2 g Ynxng
FeF  \(220)e2:%0 (n172-0f - (b=s1,))
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Going back to the definition of sﬁ(m(zz, 0)) in (B5.3), recall that

[R(r(2,0) = R (m(z2,0)| - ({22, 0)) = fin(1m(22,0
|fm 22, ’2
R |]/c:n(m(z2; fm 22’
+ 3
|fm 22' |
[Rim(z2,0)) Ry (m(z2, 0)) - [Fom(z2, 0))~ fs (22, 0))]
|fm 22, |3

[en(m(z2,0))| <

|2

(B5.20)

+

where }‘:n(m(zz, 0) is an intermediate point between ﬁn(m(zz, 0) and f,,(m(z;,0)and R = ﬁfm From
(B5.18) and Assumption SMIM1, it immediately follows that  sup |§(m(22,9))| = Op(1) uni-
(20,0)€2,%O

formly over F. Assumption SMIM1 and the resultin (B5.18) also imply that  sup
(22,9)622 x0O

fn(m(22,0))

Op(1) uniformly over F. To see why, take any 6 > 0 and note that

1
Ful(m(z2,6))

Pr ( sup
(2,,0)€2,x0O

> (1—51)'fm]SPF[( sup |]7,;(m(z2, — fu(m(z,, 0 |>5£m]

25,0)€2,%x0

Let ny be the smallest n such that s; , <6 fm Then,

1
Fn(m(z,0))

1 M,
> <
(1—6)~£mJ (n1/z (S f— SM)

Vn>ng

sup Pp[ sup
FeF (20,0)€Z,xO

Therefore, for any ¢ > 0 there exists a small enough 0. and n, such that

1 1
sup Pr sup = > <e Vnzng,
FeF [( 0)c2,x0 | fon(m(z5,0))|  (1-9) ‘im] )
andso  sup é‘ = Op(1) uniformly over F. From here, (B5.18) and (B5.20) yield
(2,,0)€2,x© | f(11(22,0))
1 2
sup |sz (m(z;_,@))| =0, ((—d + Sl,n) ], uniformly over F. (B5.21)
(20,0)€Z,xO nl/2. ot
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And going back to (B5.11) we have that, for any ¢ > 0,

1Jehm(z, 00| > cf < 1{[vE(z2,0,0,) 2 o (€)= 51.)

]]-{|Vnm(22; 0, On)| 2 O—g : (fy(c) _Sl,n)}
Y (ZQ,Q)GZzX@, VY FelkF.

where @#(c) is defined in (B5.10). Thus, if we take any ¢ > 0 and we let n, be the smallest integer

such that sy , < @¥(c), (B5.19) and the previous expression yield

M, +M
sup PF[ sup |£Z (m(zz,Q))| > c] < y L 2 g Ynxng.
FeF (20,0)€2,x0© (n1/2 - 07, -((p”(c)—sl,n))

For a given 0 € © define
1 n
vi(0)= ;cp Z3i) - (Fm(Z2,0)) = pe(m(Z2:, 0))).

For a given 0 > 0, let

22~ pr(m(Z2;,0)
m?(zi,zpe))s%[qb(zzj)-( — 22],2]) ) iz

(21— pr(m <22i,9>>)
fm Zle ’

’

Pr(Zi,Z;30,0) = mp(Z;,Z;,0)- K

U§n90 () ZpFZZ 0,0),

i<j

(m(ZZil 6) -

m(Zere))
o

and denote Ugn(e, 0,) = U;n((?). Let

(21— pp(m(z2,0)))
fm (ZZr .

From (B5.3), we have

1
vi(0) = — - Uj,(0) (
On

) zszl,e chzzl -€n(m(Z5,0))

(B5.22)

(B5.23)

(B5.24)

(B5.25)

Recall that we have assumed that there exist constants f >0 f,, < oo and Ji < co such that

Fon = fn(m)

>f

and |pup(m

m)| <u ¥Vme Mand all F e F. We have also assumed that both
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fm(m) and pp(m) are L-times continuously differentiable with respect to m for F-a.e m € M, with
derivatives that are uniformly bounded over M for all F € F. Let

111:(711(22,9)) = EP[(P(ZZ) | m(ZZ,G)],

and assume that, like the other functionals analyzed before, 1(m) is also L-times continuously
differentiable with respect to m for F-a.e m € M with derivatives that are uniformly bounded
over M for all F € F. For a given 6 € © and 0 > 0, let

" e(Z:;0,0) = Eg [pg(zi,zj;e,a)|zi] —Ep [pﬁ(zi,zj;e,o)],
s p(Z:,2;;0,0) = (ph(Z:,2j;0,0) — Ep [pﬁ(zi,zj;e,a)]) — 1} 1(Z530,0) -1} [(2;30,0),

-1
2
V) .(0,0)= (n) ) Hhe(Zi,20,0)

i<j

V;n(G,O‘) is a degenerate U-statistic of order 2 and {V;n(Q,O‘) :0€0,0> 0} is a degenerate U-
process of order 2, and therefore compatible with the conditions for Result S1 under the assump-
tions we will describe below.

Let us denote V;n(e, 0,) = Vzlfn(e). A Hoeffding decomposition (see Serfling (1980, pages 177-
178) or Sherman (1994, equations (6)-(7))) of the U-statistic Ug’n(()) in (B5.24), combined with the
higher-order kernel properties and the smoothness conditions described above yield the following

result,

aig UL (0)= ;nﬂm(zﬁ,e)) (Zai = pr(m(Z23,0)) + ﬁ VE(0)+BL0)  (B5.26)

where B, ,(0) is a bias term which, by our smoothness assumptions, is such that there exists a
constant Cg’ such that
sup||B, »(0)| < C}'-of VFerF (B5.27)
0€O

Plugging (B5.26) into (B5.25), we have

n

i=1
n

0= 2 Vi O+ K5 (02,00 Erlerz.00) (B5.28)

i=1

)+ ehm(Z, (K‘OL)-EF[QF<2,6>]+B’,§,F<9>
n-of
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From our assumptions, it follows that there exists a constant Cg < co such that

sup |EF[QF(Z,0)]|<Co VFeF
0O

Define

K(0)|-C
Son = % +Ch ok, (B5.29)

n-op

Thus, from (B5.27) and the previous expression,

e ©)] <

Tl

%Z(Qp (2;,0) EF[QF@,@)J)H
=l (B5.30)

+ 52,n

%Z(P(Zzi) Em(2,0)
i=1

Assumption SMIM3 The index m(z,,0) is smooth with respect to 6 and, for every F € F, the following
Jacobians are well-defined for F-a.e z; € Sz, and for all 6 € ©,

vgyp(m(zz;e))E(amgglzz:w’ 8yp<519<2zz;e)' a,@%(;z;ey),
L 90,
Vofu(m(zy;0)) = Lalen)’ Shalplza)” . 2halitzi0)’)
e

There exists a nonnegative function H,(-) such that, for each F € F,
sup ||Vour(m(z;0))|| <Hi(z) V2, € 2,
0€O

sug Vo fn(m(zo;0)| < Hy(2z2) ¥ 2, € 25,
Oe

and there exists P, < such that Ep[H,(Z,)*] < P, VY F € F, where q is the integer described in
Assumption SMIMI.

If we let m; be as defined in (B5.24), and

(1Z1j1+ f o+ 1)
2f?

_ Z A+ f +7 _
G2z = | Vil T B) oz 1 (2 +

2£fn NPp(Zi)ll- Hi(Z2:)

where f " ]_(m and p are as defined in Assumption SMIM], then, for each F € F,

|m(Zi,2;,0) - m(2:, 2;,6")|| < G1(Zi, Z)) - V0,0 €O
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Let g be the integer described in Assumption SMIM1. By Assumption SMIMS3, there exists jig < oo
such that,
Er|Gi(2:,2)"|<Hg, VFeF

For the ¢ component (¢pe(Z,)) of ¢(Z,) and for each F let

YR ) 1 (z1a — pr(m(z2p,0))) (21 — pr(m(z24,0)))
= {3 otz =3 oty B SO B L)
XK(M(Zza,Q);m(Zzb,a)) for some 96@,0>0}

By Assumptions SMIM2 and SMIM3, Lemmas 2.13 and 2.14 in Pakes and Pollard (1989), there
exist positive constants A3 and V3 such that, for every F € F, the class %{P is Euclidean (A3, V3)

for the envelope

G3(242) = %(Ilcﬁ(m)ll (210 = pp(m(z20, 00))| + || (220) |- (21 = pE ({220, 00)))|) + Mo - G (24, 21)

—m

where 6 is an arbitrary point of ® and Mg = 2\/Esup@ |6 — 6||. Let g be the integer described in
Assumption SMIM1. By the conditions described in AssumptionsSMIM1 and SMIM3, there exists
Hg, <o such that Ep [G3(Zi,Zj)4q] <Hg, for all F € F. Next, let

%ﬁF:{f:SZ—>]R:f(z):EF[g(z,Z)] for some ge%{F}

By Lemma 20 in Nolan and Pollard (1987) (or Lemma 5 in Sherman (1994)), Assumptions SMIM2
and SMIM3 imply that there exist positive constants A4 and Vj such that %f r is Buclidean (Ay, V4)

Gu(2) = \EF[G3(2,2)?]

2
Let g be any positive integer. By Jensen’s inequality, G4(z) = (EF [G3(Z,Z)2]) 1< Ep [G3(z,Z)4q].
Therefore, Ef [G4(Zi)4q] <Er [G3(Z,-,Z]-)4q] < ﬁGs' The conditions in Result S1 are satisfied for the
integer q described in Assumption SMIM2 and there exists a constant M3 < co such that, for all
b>0,

for the envelope

sup DPr (sup ||V2Hn(9)|| > b) <sup Pr|sup ||V2Hn(9)|| >b|< Ms (B5.31)
Fer  \pe® ' 7 FeF  |oc0 ' 7 (n-b)?

h>0

which in turn also implies that

1
sup ||V2Mn(9)|| =0, (E) uniformly over F. (B5.32)
6O
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For ¢y, the £ component of ¢, let

(21 — pp(m (22,9)))
fm 221

%épz{g:SZeR:g(z):W(zz)- for some 96@}

Let

= |Z1|+f + 1)
Gy(z) = —2f

where H;(-) is as described in Assumption SMIM3. By the conditions described there, for any

llp(z2)ll- Hi(z2),

F € F, we have

b Lz 0) 1 prlntaz 0))

fn(m(z,,0 ~belz2); fm(m(z,,0

By Assumptions SMIM2 and SMIM3, Lemmas 2.13 and 2.14 in Pakes and Pollard (1989), there
exist positive constants A5 and V5 such that, for every F € F, the class %é r is Buclidean (A5, Vs)

z)-|6-0| Vveo.0'€e.

for the envelope

Gs(z) = fi Nb(z)||- (21 - jap(m(za, 00))] + Mo - Ga(2)

Zm
where 60 is an arbitrary point of ® and M, = Zx/Esup@ |6 — 6yl|. By the conditions in Assumption
SMIM3, there exists ﬁGs < oo such that Eg [GS(Z)4‘7] < ﬁGs for all F € F. Thus, conditions in Result
S1 are satisfied for the integer q described in Assumption SMIM?2 and there exists a constant
M4 < oo such that, for all b > 0,

1y M
sup Pr|sup —Z(QF(ZZ-,G)—EF[QF(Z,G)]) >hl<s——4 (B5.33)
Fer |00 || i (n1/2~b)
which in turn also implies that
n
sup lZ’(QF(Z 0)-Er[Qr(Z 6)]) =0 (L) uniformly over F (B5.34)
veo |1 & i P\ 172

Now, going back to (B5.30), we have

Z(QF (2,0)- EF[QF<Z,9>])H

sup |2/ (0)]| <— -sup |V, (©)] + |~
0ecO 1

On 0eO n- O'n

+¢- sup |£ﬁ(mx,9))|+52’n
(x,0)eXx0©
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And so, from (B5.21), (B5.32) and (B5.34), we have that, uniformly over F,

2
1 1
Sup ||€ || = ( )+Op(n3/2—.o—"j)+op((nl/2—.gg+sl’n) )4‘52’” (B535)

Take any b > 0 and let n be the smallest integer such that

Sp,<b and s;,<min ﬂ,DE’A-(#),DS"-(#)
2 3¢ 3¢

=g*‘(%) (see (B5.10))

Then, from (B5.22), (B5.31) and (B5.33),

op) st M
o= (5) (o (i)

M;{+M
+ 1 2 Vn>n0

(et (S )]

Equipped with the result in (B5.36), let us go back to the analysis of the estimator 6 described by
(B5.2). Recall that we defined

sup Pr (sup He%”(@)
FeF 0O

(B5.36)

Ep[¢1(Z2)lm(Z5,0)])  (m1,r(m(Z2,0))

E Z Z,,0 Z5,0
1E(m(Za)0)) = Ex [(Zo)\m(Za, 0)] = Flal 2:)|m( 2,0)] _ ’72,F(mf 2,0))

—_——

kx1 Er[pr(Z2)Im(Z5,0)]) \nxp(m(Z,,0))

We add the following smoothness conditions to those described in Assumption SMIM3.

Assumption SMIM4 For every F € F, the following Jacobians are well-defined for F-a.e z, € Sz, and

everywhere on ©,

_ [ P1er(m(z2,0)"  Inep(m(z,0) M) _
Vaw,F(m(ZQ,Q))—( 70, 70, 20, p b=k (B5.37)
1xk
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Let

Voni,r(m(z,,0))
Vota,r(m(z,,0))
VGWF(m(ZZfQ) = .
—— .
fock Vonkr(m(zz,0))

and express ¢(zy) = (P1(22), P2(22),..., Pr(22)) € RK. For €=1,...,k, define

Ty p(Z,6) = (¢e(Z2) = e, p(m(22,0))) - Vour (m(Za, 0)) + Vore p(m(Z2,0)) - (21 — up(m(Z,,0))),
~———
1xk

Te(Z,60) = Ty p(2,0) Top(Z,0) - Tip(Z,0))
~——
k2x1
Aep(0) = Ep [Ty p(Z,0)],
————
1xk

Ap(0)=E[TR(Z,0)] = (A1 £(6) Aop(6) - Ap(0))
k2x1

’
’

(i) There exists a nonnegative function H,(-) such that, for each F € F,

sup ||Vorp(m(zo,0)| < Ha(z2) ¥ 2, € 25
0ec®

and there exists By, < o0 such that Er [ﬁ2(22)4q] < p, for all F € F, where q is the integer
described in Assumption SMIM1I. Note that this condition, combined with Assumptions SMIM]1
and SMIM3 imply that there exists a nonnegative function Gg(-) such that, for all F € F,

|T(2,0) - Te(2,0')|| < Gs(2)- |0 - 0| YzeS; and 6,0"€o,

and there exists ﬁaé < oo such that Eg [56(2)4‘7] < ﬁa V F € F, where q is the integer described
in Assumption SMIMI.

(ii) Let Hy and My be as defined in (B1.1). Assume that 1d >0, M, K5 >0, K¢ > 0 and a; > 0 such
that, for every F € F,

inf |det (Hi(Ap(0))| 24 sup|[Mi(Ap(0))| < M
€0 6€®

(B5.38)
[Mi(Ap(0)) = Mi(@)|| < Ko - IAR(0) =l ¥ 2,0 : lv—Ap(0)| < K5, 0 €©.
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And,

sup {||Mk(AF(9))-Mk(v)||} <Ky < o0
vilv-Ar(6)l<Ks
0O

(i1i)) 3 Kg >0, Kg > 0 and a, > 0 such that, for every F € F,

| A£(0) - Ap(0)| < 0:16-67 <Kg

Result SMIM Define

Cr(Zi) = (CP(Zzi) - ﬁF(m(Zzi,Q*))) : (Zli —#F(m(zzi,f?*))),
YP(Zi) = My (Ap(07)) - Cr(Zy).

Note that Ep[Cp(Z)] = Ep[l,b?(Z)] = 0. Under Assumptions SMIM1-SMIM4, the estimator defined by

(B5.2) satisfies,
0=0"+— Z% 9

and the conditions in Assumption 1 of the paper are satisfied, with l/)g(zi) = M (Ap(6%)-Cp(Z;), 1, =
n'/2 .64, and for any t and & such that 0 < t < min{(%) , (ap-ap-A), A} and 0 <6< qA - %

Proof: Let us go back to (B5.2), which defines the estimator 6 by the sample-analog moment
condition %2?21 P(Z,;) - (Zli —ﬂm(zzi,a))) = 0. From here we obtain,

:%i(P(ZZi)'(Zli_VF( ZZU ) Z¢ ZZZ (]xlp 22176 ))—],{F(m(zzi’é\)))
+— Zd) Zyi)- ( m(Z3:,0)) ~ H(m(Z5:, 6 )) (B5.39)

—v,’f(é\) (see (B5.23))

From our result in (B5.28), we have

= % ;WF(’”(Zzi,é\)) . (Zli - ptp(m(Zz,-,é\))) +e(0).
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Thus, (B5.39) becomes

= %;(P(Zﬁ) : (Zli —,Mp(m(Zzi,Q*)))+ % ;‘P(Z%) . ,MF(m(Zzi,@*))
_ % ;[¢(Zzi) : #F(m(Zzi,5)) + WF(m(Zzi,§)) . (le- - yF(m(Zzi,g)))]
~&,(0)

And from here, using the Jacobians defined in (B5.37) and the Mean Value Theorem, the previous
expression becomes,

( (Z2i) - 221;9)))'(Zli—llP(m(Zzi;G*)))
{ [ (Z2i) = np(m(Zai ))) Vopur(m (ZZi:E))‘*'VGWF(m(ZZir@))'(Zli_VF(m(ZZira)))]} (B5.40)
(o)
-&' (0)

where 6 belongs in the line segment connecting 0 and 6 (thus O € ©). Let Ty r and Tg be as
defined in Assumption SMIM4 and let

— 1 v
TdO)=1) Ter(Z:0)
i=1
1xk
= 1 — — ’
To = XTF 2,0)=(T1(0) Ta(0) - T(0))
k2x1
Using our definition of My in (B1.1), the expression in (B5.40) yields,
n

0=0"+M(T(0))- % ;(4)(221‘) — e (m(Zas, 9*))) ' (Z“ ~pr(m(Za; 9*))) (B5.41)

- M (T(0))- )" (0)
Define
CeZ0) = ((Z) = e (m(Z21,0) ) (215 = e (221, 6)) ,
PP(Zi) = My (Ap(60Y)) - Cp(Z).

(B5.42)
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Note that Er[Cp(Z2)] = EF[¢IQ(Z)] = 0. We can re-express (B5.41) as,

0=0"+ % ingQ(Z,-) + 82, where
i=1
el = (Me(T®) - M (A @)1 )_cr(2)
- 11:2 (B5.43)
+ (M (16(0) - Mic(Ap(0°D))- = )" Co(Z)

i=1

Recall from the conditions in (B5.38) that sup”Mk(/\p(G))” <M ,. Therefore,
0e®

”5 )| +2M, - _ZCF

|'+M/\

s 5}
G (B5.44)
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Let K5 and K7 be as described in (B5.38) and note that by the conditions described there,

n{HMk (T(0)) - My (1))

{||T(6)—/\ )||21<5}
31{ %ZCF( ) 24%(7}+1{||T(9)-AF(5) 2K5}.
Similarly,
1{“Mk(T(§))-Mk(AF(§))“ &/ @)] = %}
:1{”Mk(T(é))—Mk(AF(é))” s””(é\)Hzi}xﬂ{HM;{(T(E)) Me(1£(@)) ||<1<7}
<’ @]zt ) 55,455,
+]l{||Mk T(0)) - My (1£(@ || || ||_4} {”Mk (T(@)) - My (1£(0)) ||>1<7} '

<]1{||T(§)—AF(§)||2K5}

i@z i1 {fr s o )

Combining (B5.45A) and (B5.45B) with (B5.44), for any ¢ > 0 we have
1 1 1
0 2
ﬂ{||€n||ZC}S { E Cr(Z K5/\(8 4K7) C)}

1 v 1 1
+14dsup ||— Ks /\( )c) (B5.46)
0eo |1 8M, 4K7

) (Te(Z:,0) - B¢ [Te(2,0)]) 2
1
<t ler o= (< (57 ) o)

i=1
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Take the ¢! component (T{(Z,0)) of T¢(Z,0) let
%{p = {g:SZ —-R:g(z)= Tlf(z,G) for some 0 e@}

By Assumptions SMIM2, SMIM3 and SMIM4, and Lemmas 2.13 and 2.14 in Pakes and Pollard
(1989), there exist positive constants Ag and Vi such that, for every F € F, the class gép is Eu-
clidean (Ag, Vi) for an envelope Gg(z) for which 3 Hg, < such that Ep [G6(Z)4q] < Hg, (where ¢
is the integer described in Assumption SMIM1). The conditions in Result S1 are satisfied for the
integer q described in Assumption SMIM2 and there exists a constant M5 < co such that, for all
b>0,

b](M_b) B5.47)

n

N (1(20,0) - Er [T:(2.0))

i=1

sup Pr|sup
FeF 6€O

Next, note from Assumption SMIMI that there exists ji, < co such that Ef [CF(Z)4‘1] < pi¢ for all
F € F. From here, a straightforward Chebyshev inequality implies that there exists a constant M

%gCF(Zi)

in both instances (B5.47 and B5.48), g is the integer described in Assumption SMIM1. Take any
¢ > 0 and let ny be the smallest integer such that

such that, for any b > 0,
v
>b|< —6q (B5.48)
(n1/2 . b)

sup Pr
FeF

1 1
<|Ks Al —A—1| d
Son ( 5 (SM/\ 4K7) c) an
S1,, <min{ =" D M, 7 " per s, A :

:ﬂl‘((Ks /\( ﬁ A ﬁ )~c)—sz,n ) (see (B5.10))
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From (B5.36), (B5.47) and (B5.48), the inequality in (B5.46) implies

sup PF(”'EQ”ZC)S M5+M6 :
FeF (nl/Z.((KS/\(Slﬁ/\%I@).C)))
M, i,
+ - q
(n ot [ R J] [n3/2 i [(KSA( Msw)) ]]
Ml +M2 s "o

+
[nl/Z . (Fﬁl . [Ey [ (Ks/\(fwl)l;\? )'C)_Sz,n ] ~ Sl’n])q

We can obtain a simplified bound from the previous expression. Take any positive constants A,
A, such that

1 1 1 1 1 1 1 1
Aj<—-min{ =, ——, 1 xKs, A, <—-min{ =, , 1 — A ,
173 {¢ |K(0)] } ¥ P73 {¢ K (0)] }(SM,\ 4I<7)

and let MSF = ]7:1 M]-. Take any positive sequence ¢ > 0 and let 1y be the smallest integer such
that

. 1/4
Son <Ay ANAp-c, and s51,< mm{Al —S2n» (A2 . c—sz,n) , (A2 . c—sz,n) }
Let
1/4
E(y_ . 1/2 .
Aﬁ (c)=n / -crnd . (mm{Al —Son» (Az . c—sz’n), (Az . c—sz’n) }_Sl,n)-
Then,

sup Pr (||£2|| > c) < VY n>ng (B5.49)

FeF (AﬁE(c))q

where g is the integer described in Assumption SMIM1. Recall from Assumption SMIM1 that the

1/2+A | L 1/2-A , .d

bandwidth sequence o0, — 0 satisfies n -0, — 0and n -0/} — oo for some 0 <A< 1/2.

Next recall that the sequences s; , and s, , are defined in (B5.17) and (B5.29) as s , = Cg“ .ok and
Son = lK(O)l'dCQ +Ch' - oL Therefore, n!/2+A. 1/2+4

c¢>0,and thus from (B5.49) we have

sip— 0and n spn — 0 and A, (c) — oo for all

21;‘2 PF(”‘SS”ZC):O[W] VC>0

Furthermore, recall that Assumption SMIM1 states that A and g are such that gA > 1/2. From here
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we have that for any 0 <0 < gA - %, we have

sup Pr([|ed]| = c)=0 L (B5.50)

Fe}'p E\Inll =%) = nl/2+6 )
More generally, suppose c,, is a sequence such that n'/2"% .54 .c, — co. Then, the result in (B5.50)
would still hold for c,,. Thus,

1

1
ilelfp PF(”gg”ZCn):O(W) Vcn:nl/z_A~of~cn—>oo, and 0<6<qA—§

4
Next, by Assumptions SMIM1 and SMIM4, there exists iy <00 such that Ep [(4)2(2 )) q] < Hy for
all F € 7. From here, a straightforward Chebyshev inequality implies that there exists a constant

Mg such that, for any b > 0,
>bh|< &
(n1/2 : b)q

Thus, going back to the linear representation in (B5.43), we have that for any c¢ > 0 there exists n
such that

n

LY iz

i=1

sup Pr
FeF

ls:ufp PF(HQ 0* || >c)<sup PF(

oY iz
i=1

- Mg . MSE
B (n1/2-5/2)q (AEE(C/Z))q

2o {1023
(B5.51)

VTlZl’lo.

And so,

sup Pp(|A— Il > )—)0 Yec>0
FeF

= 0,(1) uniformly over 7. Equipped with the previous expression we can obtain a

more precise asymptotic result for €. Recall from (B5.43) that it is defined as

&

(M (T(@) - M (1:@)) ) - XCF )+ (M (A(@) - Me (A0 ZCF

- (M (T@) - Me (16(0)))- €2 @) - M (1£(0)) -1 @)
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Take any c¢ > 0. By Assumption SMIM4,
1 {||Mk(T(5)) —Mk(AF@))H > c} < max(]L {K6 7@ - A:0)|" = c} ) 11{||T(§) - Ap(0)]| > KS})
1/
<1 {||T(§) — Ap(0)[| > K5 A (Kié) }

Thus, from (B5.47), for any ¢ > 0 there exists ny such that

n

%Z(TF(ZI"G) - Ep[T(2,0)))

i=1

sup Pr (”Mk(T(é)) _Mk(/\F(a))H > C) <sup Py [Zl;g

c 1/(11
>Ks Al
- (K6) ]

Ms

(nuz , [K5 A(é)l/al])q

. -7, 1/a -7,
Take any ¢ > 0 and 7 > 0. Then, there exists n, such that K5 A ( "KGC) - (”Kéc

VY n>ng

)1/0(1

for all n > n,.

Therefore, there exists 1 such that

itelg PF(”Mk(T(é))—Mk(/\F(a))” >n " c)

IA
=
v
=
S

Therefore,
ilelfp Pr (”Mk(T(é)) —Mk(lp(é))“ >n " c) —0 Vec>0,7< %
which means,

||Mk(T(§)) —Mk(/\p(a))H =0,(n"") V< %, uniformly over F. (B5.52)

c 1/[11
Ks

_ « ¢\ —
-0 ko (i) ) afiE-o 2 )

_ 1 c ay /22
<1 ||6—6*||2[K—9-[K5/\ K—é) ] AKg

Recall that 6 belongs in the line segment connecting 0 and 0* and therefore 6 — 6% < ||§— o*l.

Take any ¢ > 0. Once again from Assumption SMIM4, we have

1| M (16®) - M Ap(@)] 2 e} < 1 {||/\F(§) — Ap(6")]| 2 Ks A

< max
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Thus, from the above result and (B5.51) we have that for each ¢ > 0, there exists ny such that

sup P [[Mi (A¢(0) - Me (Ap(0°))]| > <)

FeF
1/0(1 l/az
1 c
>|—- | KsA|— A K
_[K9 [ ° (Ké) ]} ;

<sup Pr [“5— A

FeF
< Mg . - MSE . :
e PP T R POBR Y
¥V n>ng
Recall that

. 1/4
AflE(c) =nl/2. a,f . (mm {A1 —Son (A2 -C _SZ,n)! (A2 -C —Sz,n) }— 51,,1).

And recall from Assumption SMIM1 that the bandwidth sequence o,, —> 0 satisfies n'/>** .ol —

0 and n'/?72. g% — oo for some 0 < A < 1/2. Take any ¢ > 0 and 7 > 0. Then, there exists , such

that
1a;\11/ 2 1/(ay-a3)
1 1 c 1 c
— | —- KS/\(_) A Kg :—(_) .n*T/(Ofl'Oﬁz)’
2 K9 [ K6 2. Kgl/l’(z K6
_ a1/ @2 (a, a)
1 1 n e\t A c v
ASEl = | |=—- K5/\( ) A Kg :nl/z_f/(“l"”)-ad-—z-(—) +0(1)
n 2 K9 ( KG n 2K91/a2 K6
Yn>n,
Therefore, for each ¢ > 0 there exists 7y such that
sup PF(”Mk(AF(E))—Mk (Ap(6%) | > n_T.C)
FeF
< M, . MSE
- q q
1/(aq-asy) ) 1/(a;-a,)
(Tll/zT/(al'%) . 2.[(2/“2 . (KLﬁ) 1 ) (nl/zT/(le a) . G;Iqi . —2.1?32/“2 . (KLé) 1 + 0(1))
Vn> ngp.
Therefore,

1sslelfp Pp(HMk(/\F(E))—Mk(AF(Q*))

|Zn_T-c)—>0 Ve>0,t<ap-a-A
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which means,
||Mk (1£(8)) - My ()\F(G*))“ =0,(n") YT<ay-a,-A, uniformly over F. (B5.53)

Next, recall from (B5.35) that, uniformly over F,

2
1 1 1
su £ = +O0,| —— |+ O, || —— + 51 ) +5,,=0 (—)
P ” ” (n Gn) p(ﬂyg_gg) p[(nm-a,‘j n ] TP\ 17240

and from (B5.48) we also have that, uniformly over F,

1
O 73
From here, (B5.52) and (B5.53) we have that, uniformly over F, and for any 0 < 7 < (%) A
(ai-az-A),
— = 1 v
x| < ||Mk (T(6)) - My (Ar (@ +{|Mi (A£(0) = MA@ -1~ )~ Cr(Zi)
i=1
—_—
=0,(n7) =0,(n112) =0p(n") =0,(n"1?)
+||Mk (T(@))—Mk(/\p(é))”-sup “en (9)||+M,\-sup ||£,ZF(9)||
6cO 6cO
B —_———— ————
=0p(n7") o, (n"1/24) o, (n"1/24)
Therefore, for any 0 < 7 < mln[(Tl) , (g -ay-A), A},
||€9|| =0 1 uniformly over F (B5.54)
n|l = %p\ 25 ) y : :

Together, (B5.42), (B5.49) and (B5.54) show that the conditions in Assumption 1 of the paper are
satisfied, w1th 2(Z;) = My (Ap(0") - Cp(Zi), 1y =208, 0 < T < mm{(%) , (aq-ap-A), A}, and
0<6<gA- 7. This proves Result SMIM. m
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