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Abstract

A number of economic models produce testable implications in the form of inequalities in-
volving conditional functionals of the distribution of Y , conditional on X, where Y and X are
observable random variables. In applications where X includes a large collection of continu-
ous covariates, researchers may wish to aggregate X into a lower-dimensional, parameterized
function g(X,θ), indexed by a finite-dimensional parameter θ, and proceed to test the func-
tional inequalities conditional on g(X,θ̂) instead of X, where θ̂ is a first-step estimator. Moti-
vated by this, we introduce tests for functional inequalities conditional on estimated functions.
Our tests are based on one-sided Cramér–von Mises (CvM) statistics where violations to the
inequalities are measured through a tuning parameter converging to zero. Our proposed test-
statistics adapt to the properties of the contact sets (the set of values of conditioning variables
where the inequalities are binding) and have asymptotically pivotal properties. In Monte Carlo
experiments, our procedure displays good power properties, capable of detecting violations to
the inequalities that occur with very small probability.
Keywords: Functional inequalities, nonparametric tests, conditional moments, curse of dimen-
sionality.
JEL classification: C1, C12, C14.

1 Introduction

A commonly encountered problem in econometrics involves inequalities of conditional moments.

These functional inequalities can arise as testable implications of economic models. If these func-

tionals are conditioned on a vector of observable covariates X, they can be estimated nonpara-

metrically. In a number of applications, X may contain a rich number of continuous variables,

*A previous version of this paper was titled “Nonparametric Tests for Conditional Affiliation in Auctions and Other
Models”
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making nonparametric estimators susceptible to the curse of dimensionality. In such cases, re-

searchers may opt to aggregate X into a lower-dimensional, parametric function g(X,θ) indexed

by a finite-dimensional parameter θ, and proceed to test the functional inequalities conditional on

g(X,θ̂) instead of X, where θ̂ is a first-step estimator. This can be justified by the testable assump-

tion that Y |X ∼ Y |g(X,θ∗), where θ∗ is the probability-limit of θ̂. Alternatively, conditioning on

g(X,θ̂) instead of X can be justified by iterated-expectation arguments when the inequalities are

linear in the conditional functionals involved. Motivated by the general problem described above,

this paper will introduce tests for functional inequalities conditional on estimated functions, and

characterize their asymptotic properties. To our knowledge, this appears to be the first paper ex-

plicitly devoted to the study of testing functional inequalities conditional on estimated functions.

We believe the results presented here can be a useful tool for applied researchers, whose data

sets may include a rich collection of conditioning variables that they may wish to aggregate into

lower-dimensional parametric functions or “indices” that are estimated in a first step.

Our approach is a generalized version of the type of one-sided Cramér–von Mises (CvM) tests

proposed in Aradillas-López, Gandhi, and Quint (2016) to the case of estimated conditioning

functions. Violations to the inequalities are measured through a tuning parameter bn converging

to zero. This will allow or test-statistic to adapt asymptotically to the measure of the contact sets

(the set of values of conditioning variables where the inequalities are binding). A regularization of

the asymptotic standard error of our test-statistic will yield asymptotically pivotal properties. Ex-

isting methods for conditional moment inequalities (CMIs) include, among others, Andrews and

Shi (2013), Lee, Song, and Whang (2013), Lee, Song, and Whang (2018), Armstrong (2015), Arm-

strong (2014), Chetverikov (2017), Armstrong and Chan (2016) and Armstrong (2018). However,

none of the existing procedures considers the case where the conditioning variable is estimated in

a first step (i.e, a “generated regressor”). Conditioning directly on X, without relying on estimated

conditioning functions, is a special case of our tests. Therefore, our methodology also contributes

to the existing toolbox for the usual problem of testing conditional functional inequalities (with-

out estimated conditioning functions).

The paper proceeds as follows. Section 2 provides the setup and the type of functional in-

equalities we study. Based on this setup, Section 3 describes the population statistic that our test

will focus on. Section 4 describes our proposed econometric test and studies its asymptotic prop-

erties. Section 5 includes results from Monte Carlo experiments. Section 6 concludes. Appendix

A describes the proofs of our main econometric results, along with extensions and other details

mentioned throughout the paper. Appendix B describes examples of estimators that satisfy a key

condition in our setup. An accompanying Econometric Supplement includes all the step-by-step

derivations and the full details of our proofs.
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2 Setup and description of the inequalities to be tested

2.1 Some preliminaries

Our analysis includes a triple of observable random variables (Y ,X,Z). Our inequalities will in-

volve functionals of the distribution of Y |X, while Z will denote covariates used in the construc-

tion of a first-step estimator θ̂ (to be described below). Z can include elements from (Y ,X), with

Z = (Y ,X) as a special case. We observe a sample (Yi ,Xi ,Zi)
n
i=1 of independent observations of a

distribution F ∈ F , where F is a space of distributions. Our goal will be to describe conditions

that yield asymptotic properties that hold uniformly over F . Let Sξ denote the support of a r.v

ξ. We will group V ≡ (Y ,X)∪Z, and we will maintain that SV is the same for all F ∈ F . We will

indicate functionals of the distribution F by including the subscript F except when this produces

cumbersome notation. In any case, the exposition and definitions will clarify which objects are

functionals of F. We will maintain that the space of distributions F satisfies the following com-

pactness feature. For any measurable set S, sup
F∈F

PF(S) = p =⇒ ∃ F∗ ∈ F : PF∗(S) = p. Following

convention, we will use the following terminology for a given sequence {ξn},

(i) ξn = op(nλ) uniformly over F if, sup
F∈F

PF
(
n−λ ‖ξn‖ > c

)
−→ 0 ∀ c > 0.

(ii) ξn =Op(nλ) uniformly over F if, for any ε > 0 there exist a finite ∆ε > 0 and nε ∈N such that

sup
F∈F

PF
(
n−λ ‖ξn‖ > ∆ε

)
< ε ∀ n ≥ nε.

Following convention, we say that sn = O(nγ ) for a deterministic sequence sn if for some ∆ > 0,

∃ n0 such that ‖n−γsn‖ < ∆ for all n ≥ n0. We say sup
F∈F

PF
(
n−λ ‖ξn‖ > c

)
= O(nγ ) for a given c > 0, if

∃ n0 and ∆ > 0 such that n−γ sup
F∈F

PF
(
n−λ ‖ξn‖ > c

)
< ∆ ∀ n ≥ n0.

2.2 Components of the models studied here

2.2.1 Functional inequalities

The model includes a collection of P known real-valued functions (Sp)Pp=1, which depend on Y ,

and on an index parameter t ∈ T ⊆Rdt , where T is a known, pre-specified, bounded subset of Rdt .

For each x ∈ SX , t ∈ T , θ ∈Θ and F ∈ F , define

Γp,F(x, t) = EF
[
Sp(Y ,t)

∣∣∣ X = x
]
, and ΓF(x, t)︸ ︷︷ ︸

P×1

≡
(
Γ1,F(x, t), . . . ,ΓP ,F(x, t)

)′
.

(1)
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Models without index parameters t will be a a special case of our general setup. Next, we have a

known, real-valued transformation B :RP −→R of the functionals ΓF(·), and a model that predicts,

B(ΓF(x, t)) ≤ 0 F−a.e x ∈ SX , ∀ t ∈ T . (2)

Equation (2) describes a functional inequality produced by some underlying economic or statisti-

cal model, and our ultimate goal will be to construct a test for it. We present examples next.

2.2.2 Examples

Example 1: First order stochastic dominance

Suppose Y1, Y2 are two scalar random variables, and consider the first-order stochastic domi-

nance restriction FY1|X(·|X) %FOSD FY2|X(·|X) F−a.s. This relation implies the inequality FY1|X(t|X) ≤
FY2|X(t|X) F−a.s, ∀ t. Let Y ≡ (Y1,Y2) and S(Y ,t) ≡ 1 {Y1 ≤ t} − 1 {Y2 ≤ t}. Then, EF[S(Y ,t)|X] ≤ 0

F−a.s, ∀ t, a special case of (2) where B(Γ ) = Γ .

Example 2: Second order stochastic dominance

Consider a second-order stochastic dominance restriction FY1|X(·|X) %SOSD FY2|X(·|X) F−a.s. That

is,
∫ t
−∞FY1|X(v|x)dv ≤

∫ t
−∞FY2|X(v|x)dv F−a.e x ∈ SX , ∀ t. Note that

∫ t
−∞1 {ξ ≤ v}dv = max {t − ξ, 0}.

Thus, EF[max{t−Y`, 0}|X = x] =
∫∞
−∞

(∫ t
−∞1 {y ≤ v}dv

)
fY` |X(y|x)dy =

∫ t
−∞

(∫∞
−∞1 {y ≤ v}fY` |X(y|x)dy

)
dv

=
∫ t
−∞FY` |X(v|x)dv for ` = 1,2. Denote S(Y ,t) ≡max{t − Y1, 0} −max{t − Y2, 0}. The model predicts

EF[S(Y ,t)|X] ≤ 0 F−a.s, ∀ t. This is a a special case of (2) where B(Γ ) = Γ .

Example 3: Covariance restrictions

There exist economic models that yield restrictions of the form Cov(η1(Y ,t),η2(Y ,t)
∣∣∣X) ≤ 0 F−a.s,

∀ t ∈ T , where η1 and η2 are parametric functions. As shown in Aradillas-López and Gandhi

(2016), restrictions of this form arise in incomplete information games with ordinal action spaces

when we conjecture that some parametric “aggregate index” ϕ(Y−p) (e.g, ϕ(Y−p) =
∑
q,pYq) of

the actions of player p’s opponents is a strategic substitute for Yp. Under payoff-shape restric-

tions described by the authors, we must have Cov(1{Yp ≥ t},ϕ(Y−p)|X) F−a.s, ∀ t ∈ T . Here, t

denotes a generic element in the action space of player p, and T is p’s action space. Let S1(Y ,t) ≡
η1(Y ,t) · η2(Y ,t), S2(Y ,t) ≡ η1(Y ,t) and S3(Y ,t) ≡ η2(Y ,t). Then, EF[S1(Y ,t)|X] − EF[S2(Y ,t)|X] ·
EF[S3(Y ,t)|X] ≤ 0 F−a.s, ∀ t ∈ T . This is a special case of (2), with B(Γ1,Γ2,Γ3) = Γ1 − Γ2 · Γ3.

Example 4: Affiliation

Let Y ≡ (Y1, . . . ,YL) ∈RL. Let a∨b ≡max{a,b} and a∧b ≡min{a,b} (element-wise). Take δ ∈RL+, u ∈
R
L, and let GF(u,δ|X) = PF

(
u − δ ≤ Y ≤ u + δ

∣∣∣X)
. Take t1, t2 ∈RL and t3 ∈RL+, group t ≡ (t′1, t

′
2, t
′
3)′
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and define, τF(t,X) = GF(t1, t3|X)·GF(t2, t3|X)−GF(t1∨t2, t3|X)·GF(t1∧t2, t3|X). Using the definition

in Milgrom and Weber (1982, Lemma 1), the elements of Y are affiliated conditional on X if and

only if τF(t,X) ≤ 0 F−a.s, ∀ t ∈RL×RL×RL+. Let S1(Y ,t) ≡ 1{t1−t3 ≤ Y ≤ t1+t3}, S2(Y ,t) ≡ 1{t2−t3 ≤
Y ≤ t2 + t3}, S3(Y ,t) ≡ 1{t1 ∨ t2 − t3 ≤ Y ≤ t1 ∨ t2 + t3}, and S4(Y ,t) ≡ 1{t1 ∧ t2 − t3 ≤ Y ≤ t1 ∧ t2 + t3}.
From here, the functional inequality in (2) arises, with B(Γ1,Γ2,Γ3,Γ4) ≡ Γ1 · Γ2 − Γ3 · Γ4.

Example 5: Conditional moment inequalities (CMI)

Our methodology will include CMI models that predict E[S(Y )|X] ≤ 0 F−a.s (without an index

parameter t) as special cases. These models are a special case of (2), with B(Γ ) = Γ .

2.3 Conditioning functions

We have a collection of D real-valued, pre-specified (by the econometrician) parametric condition-
ing functions (gd)Dd=1, whose arguments are X and a parameter1 θ ∈Rk . We will group

g(X,θ)︸ ︷︷ ︸
D×1

≡ (g1(X,θ), g2(X,θ), . . . , gD(X,θ))′︸                                   ︷︷                                   ︸
D conditioning functions

.

Our setup is motivated by the case where g(X,θ) is lower-dimensional than X, and the researcher

aggregates X through this parametric index and proceeds to test the functional inequalities in (2)

conditional on g(X,θ̂) (instead of the full vector X), where θ̂ is estimated in a first-step. We will

assume that the estimator θ̂ is obtained from the same sample2 that produced the observations

for (Y ,X). In our setup, we can express θ̂ as a statistic θ̂(Z1, . . . ,Zn), where (Zi)
n
i=1 denote the

observable covariates in our sample used in the construction of θ̂. As we mentioned previously,

Zi can have elements in common with (Yi ,Xi), with Zi = (Yi ,Xi) as a special case. We will take the

choice of the estimator θ̂ as a given, pre-specified modeling choice made by the researcher, and

we leave the problem of how to estimate θ̂ “optimally” for future work. We will maintain that the

estimator θ̂ used by the researcher satisfies the following asymptotic properties.

Assumption 1 The probability-limit of θ̂ is denoted as θ∗F . We let Θ ⊆Rk denote the parameter space,
assumed to be a bounded and convex subset of Rk . The estimator θ̂ satisfies the linear representation,

θ̂ = θ∗F +
1
n

n∑
i=1

ψθF (Zi) + εθn , (3)

1The conditioning functions can also potentially depend on the index parameter t. Our results and derivations will
illustrate how this extension could be handled.

2Our results can be readily extended to the case where θ̂ is obtained from an auxiliary sample.

5



where εθn is such that there exists a τ > 0 such that

∥∥∥εθn∥∥∥ = op
( 1
n1/2+τ

)
uniformly over F , i.e, sup

F∈F
PF

(
n1/2+τ ·

∥∥∥εθn∥∥∥ ≥ δ) −→ 0 ∀ δ > 0, and

sup
F∈F

PF
(∥∥∥εθn∥∥∥ ≥ c) =O

(
1

(rn · c)q

)
∀ c > 0,

for some integer q ≥ 2 and a sequence rn −→∞. The integer q and the sequence rn are such that ∃ δ > 0

such that n1/2+δ/r
q
n −→ 0.

θ∗F will depend on the assumptions of the econometric model used to estimate θ̂. For example,

suppose the researcher maintains the exclusion restriction Y |X ∼ Y |g(X,θ0) (a testable assump-

tion). Existing semiparametric methods (see Powell, Stock, and Stoker (1989), Ichimura and Lee

(1991), Ichimura (1993), Picone and Butler (2000), Donkers and Schafgans (2008)) can be used to

construct an estimator θ̂ for θ0 (modulo scale and location normalizations). In this case, θ∗F = θ0.

Examples of estimators that satisfy Assumption 1

Appendix B presents various examples of estimators that satisfy the restrictions in Assumption

1. The examples include OLS, GMM, density-weighted average derivatives and a semiparametric

multiple-index model. As shown there, these estimators can satisfy Assumption 1 under com-

monly used regularity and integrability conditions.

2.4 Conditioning on g(X,θ∗F)g(X,θ∗F)g(X,θ∗F)

Our setup is one where the researcher chooses to aggregate X through g(X,θ̂), and proceeds to

test the functional inequalities described above, conditional on g(X,θ̂). For a given θ, let us begin

by defining the counterparts to the functionals in (1) when we condition on g(X,θ) instead of X.

For a given x ∈ SX , t ∈ T , and θ ∈Θ, we will denote

Γp,F(x, t,θ) = EF
[
Sp(Y ,t)

∣∣∣ g(X,θ) = g(x,θ)
]
, and ΓF(x, t,θ)︸    ︷︷    ︸

P×1

≡
(
Γ1,F(x, t,θ), . . . ,ΓP ,F(x, t,θ)

)′
.

(4)

By Assumption 1, if we condition on g(X,θ̂), then asymptotically the relevant functionals will be

ΓF(x, t,θ∗F), and the functional inequalities we will test are,

B(ΓF(x, t,θ∗F)) ≤ 0 F−a.e x ∈ SX , ∀ t ∈ T . (5)

Remark 1 (Conditioning directly on XXX) Our setup and results will always include g(X,θ) = X (no
conditioning functions, no estimator θ̂) as a special case. In this instance, all the results bellow will
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follow with ψF(Zi) ≡ 0 and εθn ≡ 0.

When aggregating X into the index g(X,θ∗F), two questions arise. First, under what conditions will

(5) follow from (2)? Second, and more generally, what is the difference between testing (5) and

(2)? We discuss these questions next.

2.4.1 Testing (5) vs. testing (2)

Before proceeding, there are two key questions to address. When do the inequalities in (5) fol-

low from those in (2), and what is the difference between testing (5) and (2)? To address these

questions, we can focus on two general cases.

(A) The case where Y |X ∼ Y |g(X,θ∗F)Y |X ∼ Y |g(X,θ∗F)Y |X ∼ Y |g(X,θ∗F)

Suppose we maintain that the conditional distribution of Y |X depends on X only through the

parametric function g(X,θ∗F) (i.e, Y |X ∼ Y |g(X,θ∗F)). In this case, all the functionals of Y |X can be

written as functionals of Y |g(X,θ∗F), and therefore (2) can be re-written as (5). In this case, testing
(5) is equivalent to testing (2). Note that the exclusion restriction Y |X ∼ Y |g(X,θ∗F) is testable (see,

e.g, Hardle and Mammen (1993), Fan (1995), Fan and Li (1996), Zheng (1996), and Fan (1998)),

and an estimator θ̂ can be constructed through existing semiparametric methods (see Powell,

Stock, and Stoker (1989), Ichimura and Lee (1991), Ichimura (1993), Picone and Butler (2000),

Donkers and Schafgans (2008)). Appendix B provides an example of such an estimator and it

shows conditions under which it satisfies the restrictions in Assumption 1.

(B) The case where the transformationBBB is linear

Suppose B(Γ ) = α′Γ , where α is a known vector of constants. Then, (2) is simply “α′EF[S(Y ,t)|X] ≤
0 a.e X, ∀ t ∈ T ”. Let g(X) be a measurable function of X. By iterated expectations,

α′EF[S(Y ,t)|g(X)] = EF[α′EF[S(Y ,t)|g(X),X]|g(X)] = EF[α′EF[S(Y ,t)|X]︸             ︷︷             ︸
≤ 0 a.e X, ∀ t ∈ T

|g(X)] ≤ 0 a.e X, ∀ t ∈ T

As long as g(X,θ∗F) is a measurable function of X, the functional inequality in (2) implies that (5)

is valid. This does not require that Y |X ∼ Y |g(X,θ∗F). Without this exclusion restriction, testing (5)

is no longer equivalent to testing (2), but rejecting (5) would immediately reject (2).

Revisiting the examples in Section 2.2.2

Examples 1, 2 and 5 (FOSD, SOSD and CMI) are instances where B is linear. Thus, the inequal-

ity (5) will be valid (modulo measurability of g(X,θ∗F)) without having to assume that Y |X ∼
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Y |g(X,θ∗F). Examples 3 and 4 (covariance restrictions and affiliation) involve nonlibear trans-

formations B. In these cases, (5) will be valid if we assume that Y |X ∼ Y |g(X,θ∗F) (a testable

assumption).

3 A population test-statistic for (5)

Our goal moving forward is to construct a test for the functional inequality (5) over a prespecified

testing range of values of x. We describe next the population test-statistics we will focus on.

3.1 A target testing range

Let X ⊂ SX denote a prespecified, compact subset of the support of X, and let G be a prespecified,

compact subset ofRD . Let X ∗F =
{
x ∈ SX : x ∈ X and g(x,θ∗F) ∈ G

}
. The set X ∗F constitutes our target

testing range for the functional inequalities (5). X ∗F will be assumed to satisfy conditions that yield

uniform asymptotic properties for our nonparametric estimators.

3.2 Weight functions

Following our choice of G, we introduce a collection of weight functions (ωp)Pp=1. Each ωp is a

mapping ωp : RD →R, satisfying ωp(g) ≥ 0 ∀ g ∈RD , and ωp(g) > 0 ⇐⇒ g ∈ G. We will define

Qp,F(x, t,θ∗F) ≡ Γp,F(x, t,θ∗F) ·ωp(g(x,θ∗F)),

QF(x, t,θ∗F) ≡
(
Q1,F(x, t,θ∗F), . . . ,QP ,F(x, t,θ∗F)

)′ ,
ω(g(x,θ∗F) ≡

(
ω1(g(x,θ∗F)), . . . ,ωP (g(x,θ∗F))

)′ . (6)

3.3 A separability assumption for B

The rest of the paper will focus on cases where the transformation B satisfies a separability con-

dition. Specifically, we assume that B is such that we can construct a collection of nonnegative

“weights” (ωp)Pp=1 such that,

B(Γ1 ·ω1,Γ2 ·ω2, . . . ,ΓP ·ωP ) = B(Γ1,Γ2, . . . ,ΓP ) · H(ω1,ω2, . . . ,ωP ),

where

 H(ω1,ω2 . . . ,ωP ) ≥ 0

H(ω1,ω2, . . . ,ωP ) > 0 ⇐⇒ ωp , 0 ∀ p.

(7)

Note that we do not assume that (7) holds for any collection of nonnegative weights, but that there

exists a particular collection of weights for which (7) is satisfied. From (7) and the properties of
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the weight functions ω described in (6), it follows that,

B
(
QF(x, t,θ∗F)

)
= B

(
ΓF(x, t,θ∗F)

)
· H

(
ω(g(x,θ∗F))

)
,

where

 H(ω(g(x,θ∗F)) ≥ 0 ∀ x,

H(ω(g(x,θ∗F)) > 0 ⇐⇒ g(x,θ∗F) ∈ G.

(8)

The condition in (6) is trivially satisfied by any linear transformation B, but it can also be satisfied

by nonlinear transformations. In particular, it holds all the examples in Section 2.2.2.

Examples 1, 2 and 5 (FOSD, SOSD and CMI): Here, we have B(Γ ) = Γ and the condition in (7) is

satisfied trivially, since B(Γ ·ω) = Γ ·ω = B(Γ ) · H(ω), with H(ω) ≡ω. �

Example 3 (Covariance restrictions): We have P = 3 and B(Γ1,Γ2,Γ3) = Γ1 − Γ2Γ3. Take any ω1 ≥ 0

and let ω2 = ω3 = ω1/2
1 . Then, B(Γ1 ·ω1,Γ2 ·ω2,Γ3 ·ω3) = Γ1ω1 − Γ2ω

1/2
1 Γ3ω

1/2
1 = (Γ1 − Γ2 · Γ3) ·ω1 ≡

B(Γ1,Γ2,Γ3) · H(ω). Thus, the condition in (7) holds with H(ω) ≡ω1. �

Example 4 (Affiliation): In this example we have P = 4 and let B(Γ1,Γ2,Γ3,Γ4) = Γ1Γ2 − Γ3Γ4. Take

anyω1 ≥ 0 and setω2 =ω3 =ω4 =ω1. Then, B(Γ1 ·ω1,Γ2 ·ω2,Γ3 ·ω3,Γ4 ·ω4) = Γ1ω1Γ2ω1−Γ3ω1Γ4ω1 =

(Γ1Γ2 − Γ3Γ4) ·ω2
1 ≡ B(Γ1,Γ2,Γ3,Γ4) · H(ω), and condition in (7) holds with H(ω) ≡ω2

1. �

3.4 A population statistic

We will construct a test for the inequality

B
(
QF(x, t,θ∗F)

)
≤ 0 for F-a.e x ∈ X and ∀ t ∈ T . (9)

From (8), testing (9) is equivalent to testing the restriction,

B
(
ΓF(x, t,θ∗F)

)
≤ 0 for F-a.e x ∈ X ∗F and ∀ t ∈ T (10)

The goal if this paper is to test (10) by constructing a test for (9). Let (a)+ ≡ a∨ 0. Note from (8),

(
B
(
QF(x, t,θ∗F)

))
+ =

(
B
(
ΓF(x, t,θ∗F)

))
+H(ω(g(x,θ∗F)) (11)

We will focus on one-sided Cramér–von Mises (CvM) population statistics that integrate out x

in (11) with respect to dFX (the distribution of X), and integrate t with respect to a prespeci-

fied weight function dW ≥ 0 which satisfies dW (t) > 0 ⇔ t ∈ T . For simplicity, we normalize∫
t∈T dW (t) = 1. Let φ ≥ 0 be a weight function satisfying φ(x) > 0⇔ x ∈ X . For a given t ∈ T , let

T0,F(t) ≡ EF
[(
B
(
QF(X,t,θ∗F)

))
+φ(X)

]
=

∫
x

(
B
(
ΓF(x, t,θ∗F)

))
+H

(
ω(g(x,θ∗F))

)
φ(x)dFX(x).
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Where the last equality follows from (11). We focus on the following population statistic,

T2,F ≡
∫
t
T0,F(t)dW (t) =

∫
t

(
EF

[(
B
(
ΓF(X,t,θ∗F)

))
+H

(
ω(g(X,θ∗F))

)
φ(X)

])
dW (t) (12)

By construction, T2,F ≥ 0 and T2,F = 0⇔ B(ΓF(x, t,θ∗F)) ≤ 0 for F−a.e x ∈ X ∗F , andW−a.e t ∈ T .

Remark 2 In models without index parameters t, we simply have

T2,F = EF
[(
B
(
QF(X,θ∗F)

))
+φ(X)

]
= EF

[(
B
(
ΓF(X,θ∗F)

))
+H

(
ω(g(X,θ∗F))

)
φ(X)

]
.

Again, the last equality follows from (11). Models without index parameters t will be a special case of
our framework throughout. �

4 Proposed econometric test and its asymptotic properties

Our proposal is to construct a test-statistic based on T2,F . First, we present some preliminary

definitions and estimators.

4.1 Notational definitions of some key functionals

We will focus on the case where the conditioning functions g(X,θ∗F) are jointly continuously dis-

tributed3, with joint density function denoted by fg(·). For a given x ∈ SX and t ∈ T , we will define

Rp,F(x, t,θ∗F) ≡ Γp,F(x, t,θ∗F) ·ωp(g(x,θ∗F)) · fg(g(x,θ∗F)). Note that Qp,F(x, t,θ∗F) =
Rp,F(x,t,θ∗F )
fg (g(x,θ∗F )) .

4.2 Estimators of the functionals involved

We will rely on kernel-based estimators. Let K : RD → R be a kernel function and let hn −→ 0

be a bandwidth sequence (their properties will be described below). For any pair (x1,x2) and θ,

denote ∆g(x1,x2,θ) ≡ g(x1,θ)− g(x2,θ). For a given (x,θ), let f̂g(g(x,θ)) ≡ 1
n·hDn

∑n
i=1K

(
∆g(Xi ,x,θ)

hn

)
be

our estimator of f̂g(g(x, θ̂)). Next, let R̂p(x, t,θ) ≡ 1
n·hDn

∑n
i=1Sp(Yi , t)ωp(g(Xi ,θ))K

(
∆g(Xi ,x,θ)

hn

)
be our

estimator for Rp,F(x, t,θ∗F). Our estimator for Qp,F(x, t,θ∗F) will be

Q̂p(x, t, θ̂) ≡
R̂p(x, t, θ̂)

f̂g(g(x, θ̂))
, with Q̂(x, t, θ̂) ≡

(
Q̂1(x, t, θ̂), . . . , Q̂P (x, t, θ̂)

)′
(13)

3Note that this only presupposes that a subset of elements in X are continuously distributed and it allows for some
of its elements to be discrete random variables.
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4.3 Our estimator for T2,FT2,FT2,F

Letting Q̂(x, t, θ̂) be as described in (13), our estimator for T2,F is,

T̂2 ≡
∫
t

1
n

n∑
i=1

B
(
Q̂(Xi , t, θ̂)

)
1

{
B
(
Q̂(Xi , t, θ̂)

)
≥ −bn

}
φ(Xi)

dW (t) ≡
∫
t
T̂0(t)dW (t),

where T̂0(t) ≡ 1
n

n∑
i=1

B
(
Q̂(Xi , t, θ̂)

)
1

{
B
(
Q̂(Xi , t, θ̂)

)
≥ −bn

}
φ(Xi),

(14)

and where bn −→ 0 is a nonnegative sequence with properties described in Assumption 4 below.

4.4 Asymptotic properties of T̂2̂T2̂T2

In this section we will describe assumptions that will yield an asymptotic linear representation

result for T̂2. These assumptions will be technical in nature, but we will summarize intuitively

how each one contributes to our asymptotic results. Let Sg,F denote the support of g(X,θ∗F) for a

given F. That is,

Sg,F =
{
g ≡ (g1, . . . , gD ) ∈RD : g = g(x,θ∗F) for some x ∈ SX

}
. (15)

Next, let SXg,F denote the restriction of Sg,F over the testing range X . That is,

SXg,F =
{
g ≡ (g1, . . . , gD ) ∈RD : g = g(x,θ∗F) for some x ∈ X

}
. (16)

We will maintain that both SXg,F and G are subsets of int(Sg,F) (the interior of the support Sg,F)

for each F ∈ F . Our first restriction will involve smoothness of the conditioning functions g, and

of some key functionals in our model. These conditions are similar to smoothness restrictions

assumed in general nonparametric problems.

Assumption 2 (Smoothness I) The conditioning functions g(X,θ∗F) are jointly continuously distributed,
with joint density function denoted by fg(·). There exist constants f

g
> 0, f g <∞ and Γ <∞ such that,

for each F ∈ F ,

inf
x∈X

fg(g(x,θ∗F)) ≥ f
g
, sup

x∈X
fg(g(x,θ∗F)) ≤ f g , and sup

(x,t)∈X×T

∣∣∣Γp,F(x, t,θ∗F)
∣∣∣ ≤ Γ , p = 1, . . . , P .

And there exists a constant C0 <∞ such that, for each d = 1, . . . ,D and ` = 1, . . . , k,

sup
x∈X

∣∣∣∣∣∣∂gd(x,θ∗F)
∂θ`

∣∣∣∣∣∣ ≤ C0 ∀ F ∈ F .

11



Let int (A) denote the interior of the set A. Let Sg,F and SXg,F be as defined in (15) and (16). Then,

SXg,F ⊂ int
(
Sg,F

)
for each F ∈ F . Furthermore, there exists c > 0 such that if, we define

SXg,F =
{
u ≡ (u1, . . . ,uD ) ∈RD : g − c ≤ u ≤ g + c (element-wise) for some g ∈ SXg,F

}
then, SXg,F ∈ int

(
Sg,F

)
for each F ∈ F . In addition, the following properties hold over SXg,F .

For a given g ≡ (g1, . . . , gD ) ∈ Sg,F , and each ` = 1, . . . , k and d = 1, . . . ,D, let

Ω
d,`
fg

(g) ≡ EF

∂gd(X,θ∗F)
∂θ`

∣∣∣∣∣∣g(X,θ∗F) = g

 .
There exists an integer M such that, for each `, d, and every 1 ≤ m ≤ M + 1 and (jd)Dd=1 such that∑D
d=1 jd =m, both

∂mfg (g1,...,gD )

∂g
j1
1 ···∂g

jD
D

and
∂mΩd,`

fg
(g1,...,gD )

∂g
j1
1 ···∂g

jD
D

are well-defined for any (g1, . . . , gD ) ∈ SXg,F , F ∈ F , and

sup
(g1,...,gD )∈SXg,F

∣∣∣∣∣∣∣∂
mfg(g1, . . . , gD )

∂g
j1
1 · · ·∂g

jD
D

∣∣∣∣∣∣∣ ≤ C1 and sup
(g1,...,gD )∈SXg,F

∣∣∣∣∣∣∣∣
∂mΩd,`

fg
(g1, . . . , gD )

∂g
j1
1 · · ·∂g

jD
D

∣∣∣∣∣∣∣∣ ≤ C1 ∀ F ∈ F

for some C1 <∞. Next let,

ΩRp ,0(g, t) ≡ EF
[
Sp(Y ,t)

∣∣∣∣g(X,θ∗F) = g
]
,

Ω
d,`
Rp ,1

(g, t) ≡ EF
[
Sp(Y ,t)ωp(g(X,θ∗F))

∂gd(X,θ∗F)
∂θ`

∣∣∣∣∣g(X,θ∗F) = g
]
,

ΩRp ,2(g, t) ≡ EF
[
Sp(Y ,t)ωp(g(X,θ∗F))

∣∣∣∣∣g(X,θ∗F) = g
]
,

Ω`
Rp ,3

(g, t) ≡ EF
[
Sp(Y ,t)

∂ωp(g(X,θ∗F))

∂θ`

∣∣∣∣∣g(X,θ∗F) = g
]
.

(note that ΩRp ,0

(
g(x,θ∗F), t

)
= Γp,F(x, t,θ∗F)). There exists a constant C2 <∞ such that, for each p, ` and

d, and for all 1 ≤m ≤M + 1 and (j1, . . . , jD ) such that
∑D
d=1 jd =m,

sup
(g1,...,gD )∈SXg,F

t∈T

∣∣∣∣∣∂mΩRp,0(g1,...,gD ,t)

∂g
j1
1 ···∂g

jD
D

∣∣∣∣∣ ≤ C2, sup
(g1,...,gD )∈SXg,F

t∈T

∣∣∣∣∣∣∂mΩd,`
Rp,1

(g1,...,gD ,t)

∂g
j1
1 ···∂g

jD
D

∣∣∣∣∣∣ ≤ C2,

sup
(g1,...,gD )∈SXg,F

t∈T

∣∣∣∣∣∂mΩRp,2(g1,...,gD ,t)

∂g
j1
1 ···∂g

jD
D

∣∣∣∣∣ ≤ C2, sup
(g1,...,gD )∈SXg,F

tT

∣∣∣∣∣∣∂mΩ`
Rp,3

(g1,...,gD ,t)

∂g
j1
1 ···∂g

jD
D

∣∣∣∣∣∣ ≤ C2


∀ F ∈ F
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For every 1 ≤ m ≤ M + 1 and (jd)Dd=1 such that
∑D
d=1 jd = m, the weight function ωp(·) satisfies,

sup
(g1,...,gD )∈RD

∣∣∣∣∣∂mωp(g1,...,gD )

∂g
j1
1 ···∂g

jD
D

∣∣∣∣∣ ≤ Cω <∞ and ωp(·) ≤ω <∞. �

The smoothness conditions in Assumption 2, combined with bias-reduction properties of the ker-

nels and bandwidths will make the bias of our estimators disappear asymptotically at the appro-

priate rate, uniformly over our testing range. Our next set of assumptions will lead to manage-
ability properties (see Pollard (1990, Definition 7.9) or Andrews (1994, Assumption A, Theorem

1)) for some empirical processes that will be relevant in our setting. We will focus on Euclidean
classes of functions, whose manageability properties have been studied, for example, in Pollard

(1984), Nolan and Pollard (1987), Pakes and Pollard (1989), Pollard (1990), Sherman (1994) and

Andrews (1994). We proceed first by stating the definition of Euclidean classes of functions from

Definitions 1 and 3 in Sherman (1994).

Euclidean classes of functions (Definitions 1 and 3 in Sherman (1994))

Let T be a space and d be a pseudometric defined on T . For each ε > 0, define the packing number

D(ε,d,T ) to be the largest numberD for which there exist pointsm1, . . . ,mD in T such that d(mi ,mj ) > ε

for each i , j. Let G be a class of functions onR. We say that G is an envelope for G if supG |g(·)| ≤ G(·).
Let µ be a measure on SkZ and denote µh ≡

∫
h(z1, . . . , zk)dµ(z1, . . . , zk). The class G is Euclidean (A,V )

for the envelope G if, for any measure µ s.t µG2 < ∞, we have D(x,dµ,G ) ≤ Ax−V ∀ 0 < x ≤ 1, where
dµ(g1, g2) = (µ|g1 − g2|2/µG2)1/2 ∀ g1, g2 ∈ G . The constants (A,V ) must not depend on µ.

Examples of Euclidean classes of functions

Examples of Euclidean classes of functions can be found, e.g, Pollard (1984), Nolan and Pollard

(1987), Pakes and Pollard (1989), Pollard (1990), Sherman (1994) and Andrews (1994). They

encompass many examples found in econometric models. A partial list includes the following.

• (Pakes and Pollard (1989, Lemma 2.13)) Let G = {g(·, t) : t ∈ T } be a class of functions on X

indexed by a bounded subset T of Rd . If there exists an α > 0 and a φ(·) ≥ 0 such that |g(x, t) −
g(x, t′)| ≤ φ(x) · ‖t − t′‖α ∀ x ∈X and t, t′ ∈ T , then G is Euclidean for the envelope G ≡ |g(·, t0)| +
Mφ(·), where t0 ∈ T is an arbitrary point and M ≡ (2

√
d supT ‖t − t0‖)α.

• (Nolan and Pollard (1987, Lemma 22), Pakes and Pollard (1989, Example 10)) Let λ(·) be a

real-valued function of bounded variation on R. The class G of all functions on Rd of the form

x→ λ(α′x+ β), with α ∈Rd and β ∈R is Euclidean for the constant envelope G ≡ sup |λ|.

• (Pakes and Pollard (1989, Example 2.9)) Let {g1, . . . , gk} be a finite set of functions on X . For

each 0 <M <∞, let GM denote the class of all linear combinations
∑
i αigi(·) with

∑
i |αi | ≤M. The

class GM is Euclidean for the envelope G ≡M ·maxi |gi |.
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• (Pakes and Pollard (1989, Lemma 2.12)) Let g be a real-valued function on a set X and define

subgraph(g) = {(x,s) ∈X ⊗R : 0 < s < g(x) or 0 > s > g(x)}. If {subgraph(g) : g ∈ G } is a VC class

of sets, then G is Euclidean for every envelope.

• (Pakes and Pollard (1989, p.1033)) A class G of indicator functions over a class of sets D is

Euclidean for the envelope G ≡ 1 if and only if D is a VC class of sets.

• (Andrews (1994, Section 4)) The Type I, II and III classes of functions described in Andrews

(1994) are Euclidean classes of functions.

Assumption 3 (Manageability I) Let q be the integer described in Assumption 1. There exists a non-
negative function H1(·) on SX and a µH1

< ∞ such that EF[H1(X)4q] ≤ µH1
for all F ∈ F , and the

following conditions are satisfied,

(i) For each conditioning function gd , we have sup
θ∈Θ
|gd(x,θ)| ≤H1(x) ∀ x ∈ SX .

(ii) For F−a.e x ∈ SX , each conditioning function gd(x,θ) is twice-continuously differentiable with
respect to θ and, for each {`,m} ∈ 1, . . . , k and,∣∣∣∣∂gd (x,θ)

∂θ`
− ∂gd (x,θ′)

∂θ`

∣∣∣∣ ≤H1(x) · ‖θ −θ′‖∣∣∣∣∂2gd (x,θ)
∂θ`∂θm

− ∂
2gd (x,θ′)
∂θ`∂θm

∣∣∣∣ ≤H1(x) · ‖θ −θ′‖

 ∀ x ∈ SX and θ,θ′ ∈Θ.

(iii) For each p = 1, . . . , P , the class of functions Sp =
{
m : SY −→R : m(y) = Sp(y, t) for some t ∈ T

}
is Euclidean for an envelope S(Y ) that satisfies EF[S(Y )4q] ≤ µS <∞ for all F ∈ F .

(iv) There exist constants A1 and V 1 such that, for each F ∈ F , each ` = 1, . . . , k and p = 1, . . . , P , the
following classes of functions are Euclidean (A1,V 1),

Mp,F =
{
m : SX −→R : m(x) = Γp,F(x, t,θ∗F) for some t ∈ T

}
,

R`
p,F =

{
m : X −→R : m(x) = ΞRp (x, t,θ

∗
F) for some t ∈ T

}
,

for an envelope G(X) that satisfies EF[G(X)4q] ≤ µG <∞ for all F ∈ F . �

The conditions in Assumption 3 will lead to manageability of various empirical processes relevant

to our problem. Next we describe restrictions for our kernel functions and bandwidths.

Assumption 4 (Kernels and bandwidths) Let M be the integer described in Assumption 2.

(i) The kernel K : RD −→ R is a multiplicative kernel of the form K(ψ) =
∏D
d=1κ(ψd) (with ψ ≡

(ψ1, . . . ,ψD )′), where κ(·) is a bias-reducing kernel of order M, symmetric around zero and with
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support [−S,S]. That is, κ(v) = κ(−v) ∀ v, κ(v) = 0 ∀ v < (−S,S),
∫ S
−S κ(v)dv = 1,

∫ S
−S v

jκ(v)dv =

0 for j = 1, . . . ,M − 1, and
∫ S
−S |v|

Mκ(v)dv < ∞. κ(·) is twice continuously differentiable, and we

will denote κ(1)(v) ≡ dκ(v)
dv and κ(2)(v) ≡ d2κ(v)

dv2 . The kernel κ as well as its first two derivatives are
bounded, with |κ(·)| ≤ κ,

∣∣∣κ(1)(·)
∣∣∣ ≤ κ and

∣∣∣κ(2)(·)
∣∣∣ ≤ κ for a constant κ <∞. Note that since κ(·) is

symmetric around zero, κ(1)(·) is antisymmetric around zero, satisfying κ(1)(v) = −κ(1)(−v) ∀ v.

(ii) κ(·), κ(1)(·) and κ(2)(·) are functions of bounded variation and, for each d = 1, . . . ,D, the following
classes of functions are Euclidean for the constant envelope κ,

M d
1 =

{
m : SX −→R: m(x) = κ

(
α · gd(x,θ) + β · gd(s,θ)

)
for some s ∈ SX , θ ∈Θ, α,β ∈R

}
,

M d
2 =

{
m : SX −→R: m(x) = κ(1)

(
α · gd(x,θ) + β · gd(s,θ)

)
for some s ∈ SX , θ ∈Θ, α,β ∈R

}
,

M d
3 =

{
m : SX −→R: m(x) = κ(2)

(
α · gd(x,θ) + β · gd(s,θ)

)
for some s ∈ SX , θ ∈Θ, α,β ∈R

}
,

(iii) Let τ > 0 be as described in Assumption 1. The bandwidth sequence hn is such that there exists
0 < ε < (τ ∧ 1/2) such that n1/2−ε ·

(
h2D
n ∧ hD+2

n

)
−→∞ and n1/2+ε · hMn −→ 0.

(iv) The bandwidth bn −→ 0 used in the construction of T̂2 satisfies
(
n1/2 ∧ rn

)
· hD+1
n · bn −→ ∞ and

n1/2+δ0 · b2
n −→ 0 for some δ0 > 0.

Existing results for Euclidean classes can be invoked to verify the restrictions described above. For

instance, if g(x,θ) = x′θ, the Euclidean property in part (ii) of Assumption 4 follows from Nolan

and Pollard (1987, Lemma 22). Next, we impose smoothness restrictions on the transformation B.

Assumption 5 (Smoothness II) We impose the following restrictions on the transformation B.

(i) ∃M1 > 0, M2 > 0 such that, ∀ Q,Q′ ∈RP , ‖Q −Q′‖ ≤M2 =⇒ ‖B(Q)−B(Q′)‖ ≤M1 · ‖Q −Q′‖.

(ii) B(·) is twice continuously differentiable, and we denote

∇QB(Q)︸   ︷︷   ︸
1×P

≡
(
∂B(Q)
∂Q1

, . . . ,
∂B(Q)
∂QP

)
, ∇QQ′B(Q)︸      ︷︷      ︸

P×P

≡


∂2B(Q)
∂Q2

1
· · · ∂2B(Q)

∂Q1∂QP
...

. . .
...

∂2B(Q)
∂QP ∂Q1

· · · ∂2B(Q)
∂Q2

P


(iii) Let Q ≡ Γ ·ω, where Γ and ω are the constants described in Assumption 2. ∃ CQ > 0, HQ > 0 such

that, ‖Q‖ ≤Q+CQ =⇒ ‖∇QB(Q)‖ ≤HQ, and ‖∇QQ′B(Q)‖ ≤HQ. �
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It is easy to verify that all the examples in Section 2.2.2 satisfy the restrictions in Assumption 5.

Combined, the restrictions in Assumptions 1-5 ultimately yield the following result,

sup
F∈F

PF

 sup
(x,t)∈X×T

∣∣∣B(Q̂(x, t, θ̂))−B(QF(x, t,θ∗F))
∣∣∣ ≥ bn −→ 0, (17)

This is the first key step towards the proof of our main result, as shown in Appendix A and in the

Econometric Supplement. The next step focuses on 1{B(Q̂(x, t, θ̂)) ≥ −bn} − 1{B(QF(x, t,θ∗F)) ≥ 0}.
To this end, we introduce the following manageability assumption.

Assumption 6 (Manageability II) For a given F ∈ F and b ∈ R, define the following class of sets,
CF(b) =

{
(x, t) ∈ X ×T : B

(
QF(x, t,θ∗F)

)
≥ b

}
. There exists D

VC
1 < ∞ and b0 > 0 such that, for each

F ∈ F , the class of sets SF =
{
CF(b) for some b ∈ [−b0, b0]

}
is a VC class of sets with VC dimension

bounded above by D
VC
1 .

Classes of indicator functions over VC classes of sets are Euclidean (see Pakes and Pollard (1989,

p. 1033)). This fact, combined with Assumption 6, will lead manageability properties of empirical

processes relevant to the study of 1{B(Q̂(x, t, θ̂)) ≥ −bn} − 1{B(QF(x, t,θ∗F)) ≥ 0}. The last building

block towards our main asymptotic result for T̂2 is the following assumption, which involves

smoothness conditions for some additional functionals, along with a regularity condition for the

density of B(QF(X,t,θ∗F)).

Assumption 7 (Smoothness III, and a regularity condition) There exists a finite constant µ∇B such

that, for each p, sup
t∈T

EF

[∣∣∣∣∣∂B(QF(X,t,θ∗F ))
∂Qp

∣∣∣∣∣] ≤ µ∇B ∀ F ∈ F . For a given (g,y, t) and p, let

Ω
p
T0

(y, t,g) = EF

(Sp(y, t)− Γp,F(X,t,θ∗F)
)∂B (

QF(X,t,θ∗F)
)

∂Qp
φ(X)1

{
B
(
QF(X,t,θ∗F)

)
≥ 0

}∣∣∣∣∣g(X,θ∗F) = g


(18)

The above expectation is taken with respect to X, conditional on g(X,θ∗F) = g. There exists a set G′ such
that G ⊂ G′ (recall that G is our testing range for gF(x,θ∗F)) such that,

(i) fg(g) ≥ f
g

for all g ∈ G′ and each F ∈ F .

(ii) LetM be the integer described in Assumption 2. ∃C4 <∞ such that, for each p, and 0 ≤m ≤M+1,

(jd)Dd=1 such that
∑D
d=1 jd =m, we have sup

(g1,...,gD )∈G′
(y,t)∈SY×T

∣∣∣∣∣∂mΩp
T0

(y,t,g1,...,gD )

∂g
j1
1 ···∂g

jD
D

∣∣∣∣∣ ≤ C4 ∀ F ∈ F .

(iii) There exist finite constants b2 > 0 and CB,2 > 0 such that, for all 0 < b ≤ b2,

sup
t∈T

EF
[
1

{
−b ≤ B

(
QF(X,t,θ∗F)

)
< 0

}
·1

{
X ∈ X

}]
≤ CB,2 · b ∀ F ∈ F .
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The functional Ωp
T0

described in Assumption 7 appears in the decomposition of a U-process that is

relevant for T̂2. Combined with our bias-reducing properties for kernels and bandwidths, parts (i)

and (ii) of Assumption 7 ensure that relevant bias terms vanish asymptotically at the appropriate

rate, uniformly over our testing range. Part (iii) essentially presupposes that, conditional on

X ∈ XX ∈ XX ∈ X , the functional B(QF(X,t,θ∗F))B(QF(X,t,θ∗F))B(QF(X,t,θ∗F)) has a density that is bounded, uniformly over t ∈ Tt ∈ Tt ∈ T and

F ∈ FF ∈ FF ∈ F , in a neighborhood of the form [−b2,0)[−b2,0)[−b2,0) (to the left of, but excluding, zero). Note that this

condition allows for B(QF(X,t,θ∗F))B(QF(X,t,θ∗F))B(QF(X,t,θ∗F)) to have a point-mass at zero. A point-mass at zero would

occur if the inequalities we are testing are binding with positive probability. We are now ready to

present the main asymptotic result for T̂2.

Proposition 1 Let ∆ ≡ ε∧ (δ0/2), where ε and δ0 are the constants described in Assumption 4. Group
Vi ≡ (Yi ,Xi ,Zi). If Assumptions 1-7 hold, we have

T̂2 = T2,F +
1
n

n∑
i=1

ψT2
F (Vi) + εT2

n , where εT2
n | = op

( 1
n1/2+∆

)
uniformly over F , and (19)

(i) EF
[
ψT2
F (V )

]
= 0 ∀ F ∈ F ,

(ii) PF
(
B
(
ΓF(X,t,θ∗F)

)
< 0

∣∣∣ X ∈ X ∗F) = 1 forW−a.e t ∈ T =⇒ PF
(
ψT2
F (V ) = 0

)
= 1.

(20)

Proof: The steps of the proof of Proposition 1 are described in Appendix A, and the exact expres-

sion for the influence function ψT2
F (V ) can be found in equations (A17)-(A20) there. Step-by-step

details of the proof are included in the Econometric Supplement. �

4.5 Constructing a test-statistic

4.5.1 Null hypotheses

Our population statistic is designed to test the null hypothesis,

H0 : B(ΓF(x, t,θ∗F)) ≤ 0 for F−a.e x ∈ X ∗F , andW−a.e t ∈ T . (21)

Let F 0 ≡
{
F ∈ F : B(ΓF(x, t,θ∗F)) ≤ 0 for F−a.e x ∈ X ∗F , andW−a.e t ∈ T .

}
. This is the subspace of

distributions that satisfy H0. Therefore, F \ F 0 is the subspace of distributions that violate H0.

Now let, F ≡
{
F ∈ F : B(ΓF(x, t,θ∗F)) < 0 for F−a.e x ∈ X ∗F , andW−a.e t ∈ T .

}
. This is the subset of

distributions in F 0 for which the inequalities inH0 are satisfied as strict inequalities almost surely.

Remark 3 (Contact sets and σ2
2,F ≡ EF[ψT2

F (V )2]σ2
2,F ≡ EF[ψT2

F (V )2]σ2
2,F ≡ EF[ψT2

F (V )2])

For each F ∈ F , we define the contact sets as {(x, t) ∈ X ∗F ×T : B(ΓF(x, t,θ∗F)) ≥ 0}. Thus, for each F ∈ F 0,
the contact sets are {(x, t) ∈ X ∗F × T : B(ΓF(x, t,θ∗F)) = 0} (all (x, t) in our target testing range for which
the inequalities in H0 are binding). Denote σ2

2,F ≡ EF[ψT2
F (V )2]. From the properties of the influence
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function ψT2
F (V ) summarized in (20), σ2,Fσ2,Fσ2,F will be the relevant measure of the contact sets for our

test. For any F ∈ F 0, the contact sets have measure zero if and only if σ2,F = 0. From part (ii) of
equation (20), we have σ2,F = 0 ∀ F ∈ F .

We will use the results in Proposition 1 to construct a test for the null hypothesis H0 described in

(21). The first step is to construct an estimator for σ2
2,F .

4.5.2 Estimation of σ2
2,Fσ2
2,Fσ2
2,F

Under the conditions of Proposition 1, ∃ σ2 <∞ such that EF
[
ψT2
F (V )2

]
≡ σ2

2,F ≤ σ2 for all F ∈ F .

From here, a Chebyshev inequality yields,∣∣∣∣∣∣∣1n
n∑
i=1

ψT2
F (Vi)

2 − σ2
2,F

∣∣∣∣∣∣∣ = op(1), uniformly over F . (22)

Based on the expression of the influence function ψT2
F (V ), described in Appendix A (see equations

A17-A20), we estimate σ2
2,F by constructing an estimator ψ̂T2(V ) for ψT2

F (V ). Appendix A describes

its construction under the following assumption.

Assumption 8 (An estimator for the influence function of θ̂̂θ̂θ) We have an estimator ψ̂θ(Z) for the
influence function ψθF (Z) that satisfies,

1
n

n∑
i=1

∥∥∥ψ̂θ(Zi)−ψθF (Zi)
∥∥∥2

= op(1) uniformly over F . �

Our estimator for σ2
2,F is σ̂2

2 ≡
1
n

∑n
i=1 ψ̂

T2(Vi)2. The exact expression for ψ̂T2(V ) is included in

Appendix A (Section A2, equation A22). Under the conditions of Proposition 1, combined with

Assumption 8, we show that ∣∣∣σ̂2
2 − σ

2
2,F

∣∣∣ = op(1) uniformly over F . (23)

4.5.3 Our proposed test

Recall that F 0 denotes the class of distributions that satisfy H0, and F ⊆ F 0 denotes the subclass

for which the inequalities inH0 are satisfied as strict inequalities. As we pointed out above, σ2,F = 0

∀ F ∈ F . Thus, to studentize T̂2 we need to regularize σ̂2. Let κ2 > 0 denote a pre-specified, small

but strictly positive constant. We consider the test-statistic,

t̂2 =
√
nT̂2

(σ̂2 ∨κ2)
. (24)
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We use (σ̂2∨κ2) instead of σ̂2 in our studentization because σ2,F = 0 ∀ F ∈ F . Under the conditions

of Proposition 1, we have

t̂2 =



√
n·εT2

n

(σ̂2∨κ2) ∀ F ∈ F ,
1√
n

∑n
i=1ψ

T2
F (Vi )

(σ̂2∨κ2) +
√
n·εT2

n

(σ̂2∨κ2) ∀ F ∈ F 0 \ F ,
√
n·T2,F

(σ̂2∨κ2) + 1√
n

∑n
i=1ψ

T2
F (Vi )

(σ̂2∨κ2) +
√
n·εT2

n

(σ̂2∨κ2) ∀ F ∈ F \F 0

(25)

From Proposition 1,
∣∣∣∣∣ √n·εT2

n

(σ̂2∨κ2)

∣∣∣∣∣ ≤ ∣∣∣∣∣√n·εT2
n

κ2

∣∣∣∣∣ = op
(
n1/2

n1/2+∆

)
= op

(
1
n∆

)
= op(1) uniformly over F , with ∆ > 0

being the constant described in Proposition 1. Thus, the first implication of (25) is that t̂2 = op(1)

uniformly over F ∈ F . Thus, for any c > 0,

lim
n→0

sup
F∈F

PF
(̂
t2 ≥ c

)
= 0. (26)

Let α ∈ (0,1) denote our target asymptotic significance level and let z1−α denote the (1 − α)th

quantile for the N (0,1) distribution. Based on the asymptotic properties summarized in (25)-

(26), we propose the following rejection rule for H0 in (21),

Reject H0 iff t̂2 ≥ z1−α (27)

Our alternative hypothesis is simply that H0 is violated. From (25), a uniform Berry-Esseen con-

dition would suffice for our proposed tests to be uniformly asymptotically level α. We describe

that condition next.

Assumption 9 (A sufficient condition for a uniform Berry-Esseen bound) For some B <∞, we have
EF

[∣∣∣ψT2
F (V )

∣∣∣3]
σ3

2,F
< B ∀ F ∈ F \F . �

Assumption 9 allows for σ2,F (the relevant measure of the contact sets in our test) to be arbitrarily

close to zero over F \ F . By the Berry-Esseen Theorem (Lehmann and Romano (2005, Theorem

11.2.7)), the condition in Assumption 9 is sufficient to ensure that there exists C > 0 such that

sup
F∈F \F

sup
d

∣∣∣∣∣∣∣PF
 1
√
n

∑n
i=1ψ

T2
F (Vi)

σ2,F
≤ d

−Φ(d)

∣∣∣∣∣∣∣ ≤ C

n1/2
. (28)
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where Φ(·) denotes the standard normal c.d.f. Take a given target asymptotic level α ∈ (0,1) and
let z1−α denote the (1−α)th quantile of the standard normal distribution. Assumption 9 yields,

lim
n→∞

sup
F∈F \F :
σ2,F≥κ2

∣∣∣∣∣∣∣PF
 1
√
n

n∑
i=1

ψT2
F (Vi)

(σ2,F ∨κ2)
≥ z1−α

−α
∣∣∣∣∣∣∣ = 0, limsup

n→∞
sup

F∈F \F :
σ2,F<κ2

PF

 1
√
n

n∑
i=1

ψT2
F (Vi)

(σ2,F ∨κ2)
≥ z1−α

 ≤ α.
(29)

From (23), we have
∣∣∣∣ 1
(σ̂2∨κ2) −

1
(σ2,F∨κ2)

∣∣∣∣ = op(1) uniformly over F \F . Thus, from (29),

limsup
n→∞

sup
F∈F 0\F

PF
(̂
t2 ≥ z1−α

)
≤ α, lim

n→∞
sup

F∈F 0\F :
σ2,F≥κ2

∣∣∣∣PF (̂t2 ≥ z1−α
)
−α

∣∣∣∣ = 0.

Combining (26) with the above result, we have

limsup
n→∞

sup
F∈F 0

PF
(̂
t2 ≥ z1−α

)
≤ α, with lim

n→∞
sup

F∈F 0\F :
σ2,F≥κ2

∣∣∣∣PF (̂t2 ≥ z1−α
)
−α

∣∣∣∣ = 0.
(30)

Thus, our proposed test has uniformly asymptotically level α (Lehmann and Romano (2005, Defini-

tion 11.1.2)). Next, consider F \F 0 (the subset of distributions that violateH0). Take any sequence

Fn ∈ F \ F 0 such that
√
n · T2,Fn ≥ δnD for some fixed D > 0, and a sequence of positive constants

δn→∞. From Assumption 9 and equation (28), we have that for any c > 0,

lim
n→∞

PFn

 1
√
n

∑n
i=1ψ

T2
Fn

(Vi)

(σ2,Fn ∨κ2)
+

√
n · T2,Fn

(σ̂2 ∨κ2)
≥ c

 = 1, and therefore lim
n→∞

PFn
(̂
t2 ≥ c

)
= 1.

More generally, consider a sequence of distributions Fn such that
(
σ2,Fn∨κ2
σ2,Fn

)
→ sa2 and

√
n·T2,Fn

(σ2,Fn∨κ2) → sb2

(with sa2 =∞ and sb2 =∞ as special cases). For any such sequence we have

lim
n→∞

∣∣∣∣PFn (̂t2 ≥ z1−α)−
[
1−Φ

(
sa2 · (z1−α − sb2)

)]∣∣∣∣ = 0. (31)

We say that our rejection rule for H0 has nontrivial asymptotic power for a sequence Fn ∈ F \ F 0

if limn→∞ PFn
(̂
t2 ≥ z1−α

)
> α (see Lee, Song, and Whang (2018, Definition 3)). It follows that our

test for H0 will have nontrivial power for Fn iff sa2 · (z1−α − sb2) < z1−α. Combining the results in

equations (25)-(31), the following theorem summarizes the properties of our proposed test.
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Theorem 1 Consider the test forH0 described by the rejection rule given in (27) for a target significance
level α. If Assumptions 1-9 hold, our test has the following properties.

(i) Uniformly asymptotically level α: Our proposed test satisfies,

limsup
n→∞

sup
F∈F 0

PF
(̂
t2 ≥ z1−α

)
≤ α, lim

n→∞
sup

F∈F 0\F :
σ2,F≥κ2

∣∣∣∣PF (̂t2 ≥ z1−α
)
−α

∣∣∣∣ = 0.

(ii) Consistency: Take any sequence of distributions distributions Fn ∈ F \F 0 such that
√
n ·T2,Fn ≥ δnD

for some fixed D > 0 and a sequence of positive constants δn → ∞. For any such sequence, we have
limn→∞ PFn

(̂
t2 ≥ z1−α

)
= 1.

(iii) Local alternatives against which our test has nontrivial asymptotic power: Consider a sequence of

distributions Fn such that
(
σ2,Fn∨κ2
σ2,Fn

)
→ sa2 and

√
n·T2,Fn

(σ2,Fn∨κ2) → sb2 (with sa2 =∞ and sb2 =∞ as special cases).

Then, limn→∞ PFn
(̂
t2 ≥ z1−α

)
> α iff sa2 · (z1−α − sb2) < z1−α.

Proof: Theorem 1 is a summary of the results in equations (25)-(31). �

4.6 On the choice of tuning parameters

While we leave a fully developed theory of bandwidth selection for future work, we present

reasonably detailed recommendations in Section 5, where we perform a series of Monte Carlo

experiments. Our proposed choice of hn follows a “rule of thumb” approach (see Silverman

(1986, Section 3.4)), while our tuning parameters bn and κ2 are chosen to be proportional to

B ≡ sup
(x,t)∈X×T

∣∣∣B(Q̂(x, t, θ̂))
∣∣∣. Our tuning parameter recommendations perform well across our range

of experiments, both in terms of power and size.

4.7 Extensions included in Appendix A

Appendix A (Section A4) presents two extensions of our results. The first extension describes

conditions under which we can let the regularization parameter κ2 vanish asymptotically (i.e,

κ2,n −→ 0). This can be done if we assume that σ2,F (the relevant measure of the contact sets) is

bounded away from zero over F \F (our current assumptions allow for σ2,F to be arbitrarily close

to zero over F \F ). In a second extension, we show that our approach can be readily extended

to testing multiple functional inequalities of the form (5), and we describe a test-statistic that

generalizes the results we obtained for the single inequality case.
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4.8 Comparison to existing methods

To our knowledge, this is the first paper devoted to testing functional inequalities that are condi-

tioned on estimated functions or generated regressors. For this reason, there are no existing proce-

dures that our results can be directly compared with. However, we can do a general comparison

to existing conditional moment inequalities (CMI) methods. We note first that methods based

on “instrument functions” (e.g, Andrews and Shi (2013)) cannot be used to test inequalities that

involve nonlinear transformations B of conditional moments (such as our covariance or affilia-

tion examples), while our approach can be applied in such cases. Our method is an extension

of Aradillas-López, Gandhi, and Quint (2016) to the case of estimated conditioning functions.

It shares conceptual similarities to other CMI criterion function based approaches such as those

of Andrews and Shi (2013), Lee, Song, and Whang (2013), Lee, Song, and Whang (2018), Arm-

strong (2015), Armstrong (2014), Chetverikov (2017), Armstrong and Chan (2016) and Armstrong

(2018), but with key differences. Regarding the scaling of the CMI violations, while the aforemen-

tioned methods use test-statistics that measure violations scaled by their standard errors, ours first

aggregates these violations and then scales the aggregate violation. Our tuning parameter bn is

similar to that used by Armstrong (2014) when scaling individual moment inequality violations.

Armstrong (2014) shows that for a test based on a Kolmogorov-Smirnov statistic this can lead to

improvements in estimation rates and local asymptotic power relative to using bounded weights.

For the statistic considered here, which is based on aggregate moment inequality violations, trun-

cation through the decreasing sequence bn ensures that the violation is asymptotically weighted

by its inverse standard error which, combined with our regularization, is used to establish the

asymptotic validity of fixed standard normal critical values.

The use of the decreasing sequence bn to measure violations of the inequalities allows our

procedure to adapt asymptotically to the measure of the contact sets. This avoids the need to

estimate the contact sets in a first step, as is done, e.g, in the method of Lee, Song, and Whang

(2018). It also helps us avoid conservative methods based on least-favorable configurations where

the standard errors are computed assuming that the inequalities are binding everywhere, as is

done, e.g, in Lee, Song, and Whang (2013). Regularizing the estimator for the asymptotic vari-

ance of our statistic allows us to standardize it in a way that produces asymptotically pivotal

properties. Adapting asymptotically to the contact sets and the pivotal features of our test are

novel features of our approach, shared by the conditional functional inequalities test proposed in

Aradillas-López, Gandhi, and Quint (2016). In Aradillas-López, Gandhi, and Quint (2016), the

authors show that the type of one-sided Cramér–von Mises (CvM) test-statistic we employ can

perform as well or better than other non-CvM tests, including methods based on sup-norm statis-

tics, particularly in cases where the nonparametric functions are flat near the contact sets. On the

other hand, sup-norm statistics would out-perform procedures like ours when violations to the

inequalities take the form of localized spikes. Finally we note that all existing methods require

22



the choice of either tuning parameters or instrument functions and that, like in our case, a general

theory of how to choose these tuning parameters has been left to future work. A formal analy-

sis of how to adapt the aforementioned existing methods to the case of estimated conditioning

functions is outside the scope of this paper.

5 Monte Carlo experiments

We apply our method to test for conditional, first-order stochastic dominance relationship be-

tween two scalar random variables, (Y1,Y2). Our conjecture is FY1|X(t|X) ≤ FY2|X(t|X) F−a.e X, ∀ t.
Let Y ≡ (Y1,Y2) and S(Y ,t) ≡ 1 {Y1 ≤ t} −1 {Y2 ≤ t}. Our FOSD conjecture is rewritten as,

EF[S(Y ,t)|X] ≤ 0 F−a.e X, ∀ t (29)

5.1 Designs

X includes eight independent, continuously distributed covariates, with X1,X5 ∼N (0,1), X2,X6 ∼
logistic, X3,X7 ∼ log-normal, and X4,X8 ∼ U [−1,1]. In addition, we have two i.i.d, unobservable

shocks, ε1, ε2 ∼N (0,1), independent of X. Let mI (X) ≡ −X1 +X2 +X3 +X4 and mII (X) ≡ −X5 +X6 +

X7 +X8. We produced seven data generating processes (DGPs), described in Table 1.

Table 1: Monte Carlo designs
Design Description Is the FOSD inequality (29) satisfied?
DGP 1 Y1 = mI (X) ∨ mII (X) + ε1

Y2 =mI (X)∧mII (X) + ε2

Yes, and it is satisfied as a strict inequal-
ity w.p.1 for each t ∈R.

DGP 2 Y1 = mI (X) + ε1
Y2 =mI (X) + ε2

Yes, and it holds as an equality w.p.1 for
each t ∈R.

DGP 3 Y1 = mI (X) + ε1
Y2 =mI (X)∨mII (X) + ε2

No. It is violated with probability 50%50%50%
for each t ∈R.

DGP 4 Y1 = mI (X) + 1.5 + ε1
Y2 = (mI (X) + 1.5)∨ (mII (X)−1.5) +ε2

No. It is violated with probability ≈ 20%≈ 20%≈ 20%
for each t ∈R.

DGP 5 Y1 = mI (X) + 3.2 + ε1
Y2 = (mI (X) + 3.2)∨ (mII (X)−3.2) +ε2

No. It is violated with probability ≈ 5%≈ 5%≈ 5%
for each t ∈R.

DGP 6 Y1 = mI (X) + 4.1 + ε1
Y2 = (mI (X) + 4.1)∨ (mII (X)−4.1) +ε2

No. It is violated with probability≈ 2.5%≈ 2.5%≈ 2.5%
for each t ∈R.

DGP 7 Y1 = mI (X) + 5.4 + ε1
Y2 = (mI (X) + 5.4)∨ (mII (X)−5.4) +ε2

No. It is violated with probability ≈ 1%≈ 1%≈ 1%
for each t ∈R.

Our first goal is to evaluate our procedure in two extreme scenarios where the null hypothesis is

satisfied: when the inequalities are satisfied as strict inequalities w.p.1. (DPG 1), and when they
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are binding w.p.1 (DGP 2). Our second goal is to study its power properties as the probability

that the inequalities are violated diminishes. In DGPs 3-7, the probability of a violation goes from

50% (DGP 3) to only 1% (DGP 7).

5.2 Conditioning function employed

We consider a case where X is aggregated into a single linear index g(X,θ̂) = X ′θ̂, where θ̂ is

estimated through an OLS regression of ∆Y ≡ Y1 − Y2 on X. This index is not designed to be

“optimal” in any way, but instead is meant to depict a plausible way in which an applied re-

searcher may want to aggregate X. Group Zi ≡ (∆Yi ,X ′i )
′, and define θ∗F ≡ (EF[XX ′])−1 ·EF[X∆Y ],

νi ≡
(
∆Yi −X ′iθ

∗
F

)
, and ψθF (Zi) ≡ (EF[XX ′])−1 ·Xiνi . As shown formally in Appendix B, under con-

ditions that are satisfied by our designs, the OLS estimator satisfies the restrictions in Assumption

1, with4 θ̂ = θ∗F + 1
n

∑n
i=1ψ

θ
F (Zi)+εθn . Thus, our population conditioning function is g(x,θ∗F) ≡ x′θ∗F ,

and our goal is to test

EF[S(Y ,t)|X ′θ∗F] ≤ 0 F−a.s, ∀ t (29’)

Note that (29’) follows from (29) by iterated expectations. Thus, a rejection of (29’) would lead to

a rejection of the FOSD null hypothesis in (29).

5.3 Test statistic

Our test is conducted using the test-statistic described in Section 4. First, T̂2 is constructed as

described in equations (13)-(14),

T̂2 ≡
∫
t

1
n

n∑
i=1

Q̂(Xi , t, θ̂)1
{
Q̂(Xi , t, θ̂) ≥ −bn

}
φ(Xi)

dW (t), with Q̂(x, t, θ̂) ≡ R̂(x, t, θ̂)

f̂g(g(x, θ̂))
,

R̂p(x, t,θ) =
1

n · hn

n∑
j=1

(
1{Y1j ≤ t} −1{Y2j ≤ t}

)
ω(X ′j θ̂)K

 (Xj − x)′θ̂

hn

 , f̂g (g(x,θ)) =
1

n · hn

n∑
j=1

K

 (Xj − x)′θ̂

hn



5.3.1 Testing range and tuning parameters

For τ ∈ (0,1), let ψ(τ) denote the τ− quantile of the r.v ψ. Let Y (τ) ≡ Y1(τ) ∨ Y2(τ) and Y (1−τ) ≡
Y1(1−τ) ∧ Y2(1−τ). Our testing range T for the index variable t was set to T = [Y (τ), Y (1−τ)], with

τ = 10−3, with the weight function dW set to be the uniform measure over T . Our testing range X
was set to, X =

{
x ∈R8: X(τ) ≤ x ≤ X(1−τ) , (X ′θ̂)(τ) ≤ x′θ̂ ≤ (X ′θ̂)(1−τ)

}
, where, once again, τ = 10−3

4Appendix B also shows that the remaining conditions in Assumption 1 are satisfied with rn = n1/2, any τ and δ
such that 0 < τ < 1/2, and 0 < δ < 1/2, and for any q ≥ 2.
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and where X(τ) ≤ x ≤ X(1−τ) denotes element-wise inequalities5. As weight function, we simply

used φ(Xi) = ω(X ′i θ̂) = 1{Xi ∈ X}.
We follow a conventional approach to choose hn, letting hn = ch · n−αh , where αh > 0 denotes

the rate of convergence of hn. To satisfy the bandwidth convergence restrictions in Assumption 4,

we set αh = 1/8−10−5. We chose ch according to “rule of thumb” recommendations (see Silverman

(1986, Section 3.4)), setting ch = 0.9 ·min{σ̂ (X ′θ̂) , [(X ′θ̂)(0.75) − (X ′θ̂)(0.25)]/1.34}. We chose our

remaining tuning parameters, bn and κ2, to be proportional to a measure of the scale of Q̂(·).
Let B ≡ sup

(x,t)∈X×T

∣∣∣Q̂(x, t, θ̂)
∣∣∣. We set κ2 = ck · B and bn = cb · B · n−αb , with αb = 1/4 + 3/4 · 10−5,

which satisfies the bandwidth convergence restrictions in Assumption 4. By construction, small

values of cb and ck enhance the power properties of our test, but could lead to over-rejection

of the null hypothesis when the latter is binding w.p.1 (DGP 2). In our experiments we found

that an aggressive (i.e, small) choice for cb coupled with a relatively more conservative choice

for ck achieved a good compromise between power and size. We obtained good results in all our

experiments by choosing cb = 10−4 and ck = 0.01·(1/ log(n)). Note that our choice of ck implies that

the regularization parameter κ2 vanishes (slowly) asymptotically. In Appendix A (Section A4.1),

we show conditions under which this is valid. These conditions are satisfied in our experiments.

Regarding our choice of kernel, the restrictions in Assumption 4 are satisfied6 if we use a

bias-reducing kernel of order M = 5. We employed a symmetric kernel with support [−S,S] of

the form, K(ψ) =
(
c1 · (S2 −ψ2)2 + c2 · (S2 −ψ2)4 + c3 · (S2 −ψ2)6

)
·1{|ψ| ≤ S}, where c1, c2 and c3 are

chosen to satisfy7
∫ S
−S K(ψ)dψ = 1,

∫ S
−S ψ

2K(ψ)dψ = 0 and
∫ S
−S ψ

4K(ψ)dψ = 0. In our experiments

we chose S = 5, so the support of the kernel is [−5,5].

5.4 Results

The results of our experiments are summarized in Table 2 for a range of sample sizes n between

250 and 4,000, and a target significance level of 5%. Overall, with our tuning parameter choices,

our rejection frequencies are in line with the asymptotic predictions of Theorem 1 in terms of size

and power. Our first finding is that our test has remarkable power even when the probability

of violation is low. When this probability is 5% (DGP 5), our test rejects the null hypothesis

with probability greater than 50% in samples as small as n = 500. This figure jumps to 78%

when n = 1,000. If violations occur with probability 50% (DGP 3), our test will reject the null

5Our testing range was obtained for each sample generated in our experiments by using the corresponding sample
quantiles.

6In Appendix A we show that, if we set αh = 1
4(D+1) −

ε′+δ′
2(D+1) and αb = 1

4 +∆b, where ε′
2 < ∆b <

ε′+δ′
2 , with ε′ > 0 and

δ′ > 0 small enough (as in our experiments), then the bandwidth convergence restrictions in Assumption 4 are satisfied
with M ≥ 2D + 3. Thus, we can use a bias-reducing kernel of order M = 2D + 3. Since D = 1 in our experiments, a
bias-reducing kernel of order M = 5 satisfies our restrictions.

7Due to the symmetry of K(·) around zero, it satisfies
∫ S
−S ψ

jK(ψ)dψ = 0 for all odd j. In particular, it also satisfies∫ S
−S ψ

5K(ψ)dψ = 0, so ours is technically a bias-reducing kernel of order 6.
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with frequency greater than 98% when n = 1,000. Our test also has nontrivial power when the

probability of a violation is very small. For example, when the inequalities are violated with

probability 1% (DGP 7), our test rejects with a frequency greater than 13% when n = 100. This

figure grows to 20% when n = 1,000 and 40% when n = 2,000. For samples of size n = 4,000,

our test will reject the null hypothesis with frequency 74% when FOSD is violated with just 1%

probability.

The power performance of our test with our tuning parameter choices did not come at the

expense of distortions in size. As our results show, the rejection frequencies were close to 5% in

both DGPs 1 and 2 for all sample sizes. This was particularly welcome news for DGP 2, where the

FOSD inequalities are binding w.p.1. The tuning parameter κ2 plays an important role in DGP 1,

where the FOSD inequalities hold strictly w.p.1, and regularization is crucial to achieve our target

size asymptotically. Our choice for this tuning parameter (whose intuition was described above)

brought our finite sample rejection rates in line with our asymptotic predictions.

Table 2: Monte Carlo results. Rejection frequencies with 2,000 simulations in each case.

Sample size DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7
n = 250 0.0% 6.3% 96.3% 82.0% 33.8% 21.5% 13.0%
n = 500 0.0% 4.3% 98.5% 94.3% 53.1% 29.6% 15.7%
n = 1,000 0.3% 4.1% 99.0% 98.0% 77.7% 47.9% 20.1%
n = 2,000 2.1% 6.1% 99.3% 99.2% 97.6% 81.3% 39.8%
n = 3,000 4.1% 5.2% 99.4% 99.4% 99.0% 94.1% 56.9%
n = 4,000 4.7% 4.7% 99.7% 99.7% 99.5% 97.4% 74.2%
• Target significance level 5% in all cases.

6 Concluding remarks

Many economic models produce testable implications in the form of functional inequalities, which

can be tested nonparametrically. In many instances the data may consist of a rich collection of

conditioning variables, and researchers may want to aggregate them into lower-dimensional con-

ditioning functions or “indices” in an effort to mitigate curse of dimensionality issues that would

arise in small samples. Motivated by this problem, we introduced a test for functional inequal-

ities conditional on estimated functions. We focused on the case where the researcher chooses a

parametric form for these conditioning functions and estimates its parameters in a first step. The

researcher then proceeds to construct a test of the functional inequalities in question, conditional

on the estimated functions. Taking the choice of the conditioning functions and their estimators
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as given, we proposed tests based on one-sided CvM statistics which adapt to the properties of

the contact sets (the set of values of conditioning variables where the inequalities are binding)

and have asymptotically pivotal properties. Their construction can be applied to single or mul-

tiple functional inequalities. Furthermore, our general conditions for the first-step estimators

encompass a wide variety of extremum estimators as special cases. In Monte Carlo experiments,

our test displayed good size control and power properties, capable of detecting violations to the

inequalities that occur with very small probability.

Appendix A

A1 Proposition 1

This section outlines the steps of the proof of Proposition 1. The step-by-step details are in-

cluded in the Econometric Supplement of the paper. As we defined in Section 4.2, for any pair

x1, x2 and θ ∈ Θ, denote ∆g(x1,x2,θ) ≡ g(x1,θ) − g(x2,θ). For a given x, t, θ, our estimators

are f̂g(g(x,θ)) ≡ 1
n·hDn

∑n
i=1K

(
∆g(Xi ,x,θ)

hn

)
, R̂p(x, t,θ) ≡ 1

n·hDn

∑n
i=1Sp(Yi , t)ωp(g(Xi ,θ))K

(
∆g(Xi ,x,θ)

hn

)
, and

Q̂p(x, t, θ̂) ≡ R̂p(x,t,θ̂)

f̂g (g(x,θ̂))
, with Q̂(x, t, θ̂) ≡

(
Q̂1(x, t, θ̂), . . . , Q̂P (x, t, θ̂)

)′
.

A1.1 Two key preliminary results for Q̂(x, t, θ̂)−QF(x, t,θ∗F)Q̂(x, t, θ̂)−QF(x, t,θ∗F)Q̂(x, t, θ̂)−QF(x, t,θ∗F)

Let Ωd,`
fg

, Ωd,`
Rp ,1

, ΩRp ,2 and Ω`
Rp ,3

be as defined in Assumption 2. For a given (x, t) ∈ X ×T , let

Ξ`,fg (x,θ
∗
F) ≡

D∑
d=1

∂gd(x,θ∗F)
∂θ`

·
∂fg(g(x,θ∗F))

∂gd
−
∂
[
Ω
d,`
fg

(g(x,θ∗F)) · fg(g(x,θ∗F))
]

∂gd

 ,
Ξfg (x,θ

∗
F)︸     ︷︷     ︸

1×k

≡
(
Ξ1,fg (x,θ

∗
F), . . . ,Ξk,fg (x,θ

∗
F)

)
,

Ξ`,Rp(x, t,θ
∗
F) ≡

D∑
d=1

∂
[
ΩRp ,2(g(x,θ∗F), t)fg(g(x,θ∗F))

]
∂gd

·
∂gd(x,θ∗F)
∂θ`

−
∂
[
Ω
d,`
Rp ,1

(g(x,θ∗F), t)fg(g(x,θ∗F))
]

∂gd

+Ω`
Rp ,3

(g(x,θ∗F), t) · fg(g(x,θ∗F))

 ,
ΞRp(x, t,θ

∗
F)︸        ︷︷        ︸

1×k

≡
(
Ξ1,Rp (x, t,θ

∗
F), . . . ,Ξk,Rp (x, t,θ

∗
F)

)
.

(A1)
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Note that, for each p, d, `, Ωd,`
Rp ,1

(g, t) = ΩRp ,2(g, t) = Ω`
Rp ,3

(g, t) = 0 ∀ g < G, and therefore,

ΞRp(x, t,θ
∗
F) = 0 ∀ (x, t) : g(x,θ∗F) < G. (A2)

Let Ξfg (x,θ
∗
F) and ΞRp(x, t,θ

∗
F) be as described in (A1) and, for each p, define

ΞQp(x, t,θ
∗
F)︸        ︷︷        ︸

1×k

≡
ΞRp (x, t,θ

∗
F)−Qp,F(x, t,θ∗F) ·Ξfg (x,θ

∗
F)

fg(g(x,θ∗F))
(A3)

Note from (A2) and the definition of Qp,F that

ΞQp(x, t,θ
∗
F) = 0 ∀ (x, t) : g(x,θ∗F) < G. (A4)

Let,

ψ
Qp
F (Vi ,x, t,θ

∗
F ,hn) ≡ 1

hDn

{(
Sp(Yi , t)− Γp,F(x, t,θ∗F)

fg(g(x,θ∗F))

)
·ωp(g(Xi ,θ

∗
F)) ·K

(
∆g(Xi ,x,θ∗F)

hn

)
−EF

[(
Sp(Yi , t)− Γp,F(x, t,θ∗F)

fg(g(x,θ∗F))

)
·ωp(g(Xi ,θ

∗
F)) ·K

(
∆g(Xi ,x,θ∗F)

hn

)]}
+ΞQp (x, t,θ

∗
F)ψθF (Zi), with

ψQF (Vi ,x, t,θ
∗
F ,hn) ≡

(
ψQ1
F (Vi ,x, t,θ

∗
F ,hn), . . . ,ψQPF (Vi ,x, t,θ

∗
F ,hn)

)′
.

(A5)

Proposition S1 in the Econometric Supplement shows that, under Assumptions 1-4,

Q̂(x, t, θ̂) =QF(x, t,θ∗F) +
1
n

n∑
i=1

ψQF (Vi ,x, t,θ
∗
F ,hn) + ζQn (x, t), where

sup
(x,t)∈X×T

∥∥∥∥ζQn (x, t)
∥∥∥∥ = op

(
1

n1/2+ε

)
,

sup
(x,t)∈X×T

∥∥∥Q̂(x, t, θ̂)−QF(x, t,θ∗F)
∥∥∥ = op

(
1

n1/4+ε/2

)
 uniformly over F ,

where ε > 0 is the constant described in Assumption 4. In addition, we also show that

sup
F∈F

PF

 sup
(x,t)∈X

∣∣∣Q̂(x, t, θ̂)−QF(x, t,θ∗F)
∣∣∣ ≥ bn −→ 0. (A6)

Combined with Assumptions 1-5, we show in the Econometric Supplement that (A6) yields,

sup
F∈F

PF

 sup
(x,t)∈X

∣∣∣B(Q̂(x, t, θ̂))−B(QF(x, t,θ∗F))
∣∣∣ ≥ bn −→ 0, (A7)
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and we have the following linear representation result,

B(Q̂(x, t, θ̂)) = B(QF(x, t,θ∗F)) +
1
n

n∑
i=1

ψBF (Vi ,x, t,θ
∗
F ,hn) + ζBn (x, t), where,

ψBF (Vi ,x, t,θ
∗
F ,hn) ≡ ∇QB(QF(x, t,θ∗F))ψQF (Vi ,x, t,θ

∗
F ,hn) =

P∑
p=1

∂B
(
QF(x, t,θ∗F)

)
∂Qp

ψ
Qp
F (Vi ,x, t,θ

∗
F ,hn),

sup
(x,t)∈X×T

∥∥∥ζBn (x, t)
∥∥∥ = op

(
1

n1/2+ε

)
, and

sup
(x,t)∈X×T

∣∣∣B(Q̂(x, t, θ̂))−B(QF(x, t,θ∗F))
∣∣∣ = op

(
1

n1/4+ε/2

)
 uniformly over F ,

(A8)

where ε > 0 is the constant described in Assumption 4 and ψQF , ψ
Qp
F are as described in (A5).

A1.2 Steps of the proof of Proposition 1

The results in (A7)-(A8) are the building blocks of the proof of Proposition 1. We outline the
main steps of the proof here, with all the details included in the Econometric Supplement. Recall
that T2,F ≡

∫
t
T0,F(t)dW (t), where T0,F(t) ≡ EF

[(
B
(
QF(X,t,θ∗F)

))
+
φ(X,t)

]
, and our estimators are

T̂2 ≡
∫
t
T̂0(t)dW (t), where T̂0(t) ≡ 1

n

∑n
i=1B

(
Q̂(Xi , t, θ̂)

)
1

{
B
(
Q̂(Xi , t, θ̂)

)
≥ −bn

}
φ(Xi). Let T̃0,F(t) ≡

1
n

∑n
i=1B

(
Q̂(Xi , t, θ̂)

)
1

{
B
(
QF(Xi , t,θ∗F)

)
≥ 0

}
φ(Xi). Note that T̃0,F(t) takes T̂0(t) and replaces the

indicator function 1
{
B
(
Q̂(Xi , t, θ̂)

)
≥ −bn

}
with 1

{
B
(
QF(Xi , t,θ∗F)

)
≥ 0

}
. Let T̂0(t)−T0,F(t) ≡ ξaT0,n

(t).
Note that,∣∣∣∣1 {

B
(
Q̂(Xi , t, θ̂)

)
≥ −bn

}
−1

{
B
(
QF(Xi , t,θ

∗
F)

)
≥ 0

}∣∣∣∣
= 1

{
B
(
Q̂(Xi , t, θ̂)

)
≥ −bn , − 2bn ≤ B

(
QF(Xi , t,θ

∗
F)

)
< 0

}
+1

{
B
(
Q̂(Xi , t, θ̂)

)
≥ −bn , B

(
QF(Xi , t,θ

∗
F)

)
< −2bn

}
+1

{
B
(
Q̂(Xi , t, θ̂)

)
< −bn , B

(
QF(Xi , t,θ

∗
F)

)
≥ 0

}
≤ 1

{
−2bn ≤ B

(
QF(Xi , t,θ

∗
F)

)
< 0

}
+1

{∣∣∣∣B (
Q̂(Xi , t, θ̂)

)
−B

(
QF(Xi , t,θ

∗
F)

)∣∣∣∣ ≥ bn}
From here, we obtain,∣∣∣ξaT0,n

(t)
∣∣∣

≤
2bn + sup

(x,t)∈X×T

∣∣∣∣B (
Q̂(x, t, θ̂)

)
−B

(
QF(x, t,θ∗F)

)∣∣∣∣× 1
n

n∑
i=1

φ(Xi , t)1
{
−2bn ≤ B

(
QF(Xi , t,θ

∗
F)

)
< 0

}
+

1
n

n∑
i=1

∣∣∣∣B (
Q̂(Xi , t, θ̂)

)∣∣∣∣φ(Xi , t)1
{∣∣∣∣B (

Q̂(Xi , t, θ̂)
)
−B

(
QF(Xi , t,θ

∗
F)

)∣∣∣∣ ≥ bn}
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In the Econometric Supplement we show, sup
(x,t)∈X×T

∣∣∣∣B (
Q̂(x, t, θ̂)

)
−B

(
Q(x, t,θ∗F)

)∣∣∣∣ = op
(

1
n1/4+ε/2

)
uni-

formly over F , where ε > 0 is as described in Assumption 4. Thus, uniformly over F ,

∣∣∣ξaT0,n
(t)

∣∣∣ ≤ (
2bn + op

( 1
n1/4+ε/2

))
× 1
n

n∑
i=1

φ(Xi , t)1
{
−2bn ≤ B

(
Q(Xi , t,θ

∗
F)

)
< 0

}
+

1
n

n∑
i=1

∣∣∣∣B (
Q̂(Xi , t, θ̂)

)∣∣∣∣φ(Xi)1
{∣∣∣∣B (

Q̂(Xi , t, θ̂)
)
−B

(
Q(Xi , t,θ

∗
F)

)∣∣∣∣ ≥ bn} . (A9)

In the Econometric Supplement we analyze the two terms in (A9). For a given b > 0, t ∈ T ,

let maT0,n
(b, t) ≡ 1

n

∑n
i=1

(
φ(Xi)1

{
−b ≤ B

(
QF(Xi , t,θ∗F)

)
< 0

}
−EF

[
φ(Xi)1

{
−b ≤ B

(
QF(Xi , t,θ∗F)

)
< 0

}])
.

From Assumption 6, we show that, sup
0<b<b0

t∈T

∣∣∣maT0,n
(b, t)

∣∣∣ = Op
(

1
n1/2

)
uniformly over F . For n large

enough we have 0 < 2bn ≤ b0. Therefore, for n large enough,

∣∣∣maT0,n
(2bn, t)

∣∣∣ ≤ sup
0<b<b0

t∈T

∣∣∣maT0,n
(b, t)

∣∣∣ =Op
( 1
n1/2

)
uniformly over F . (A10)

We have 1
n

∑n
i=1φ(Xi)1

{
−2bn ≤ B

(
QF(Xi , t,θ∗F)

)
< 0

}
=maT0,n

(2bn, t) +EF
[
φ(X)1

{
−2bn ≤ B

(
QF(X,t,θ∗F)

)
< 0

}]
.

From Assumption 7 and the bounded properties of φ(·), there exist finite constants b2 > 0 and

CB,2 > 0 such that, for all 0 < b ≤ b2, sup
t∈T

EF
[
φ(X)1

{
−b ≤ B

(
QF(X,t,θ∗F)

)
< 0

}]
≤ φCB,2 ·b ∀ F ∈ F .

For n large enough, 0 < 2bn ≤ b2 ∧ b0, and from Assumption 4, we have n1/2 · bn −→ ∞. This,

combined with equation (A10) and Assumption 7 yields,

sup
t∈T

1
n

n∑
i=1

φ(Xi)1
{
−2bn ≤ B

(
QF(Xi , t,θ

∗
F)

)
< 0

}
≤Op

( 1
n1/2

)
+O(bn) = bn ·

(
Op

(
1

bn ·n1/2

)
+O(1)

)
= bn ·

(
op(1) +O(1)

)
=Op(bn) uniformly over F .

(A11)

Next, under our assumptions, sup
(x,t)∈X×T

∣∣∣∣B (
Q̂(x, t, θ̂)

)∣∣∣∣ =Op(1) uniformly over F . Therefore,

sup
t∈T

1
n

n∑
i=1

∣∣∣∣B (
Q̂(Xi , t, θ̂)

)∣∣∣∣φ(Xi)1
{∣∣∣∣B (

Q̂(Xi , t, θ̂)
)
−B

(
Q(Xi , t,θ

∗
F)

)∣∣∣∣ ≥ bn}
≤ sup

(x,t)∈X×T

∣∣∣∣B (
Q̂(x, t, θ̂)

)∣∣∣∣× sup
t∈T

1
n

n∑
i=1

φ(Xi)1
{∣∣∣∣B (

Q̂(Xi , t, θ̂)
)
−B

(
Q(Xi , t,θ

∗
F)

)∣∣∣∣ ≥ bn}
=Op(1)×

sup
t∈T

1
n

n∑
i=1

φ(Xi)1
{∣∣∣∣B (

Q̂(Xi , t, θ̂)
)
−B

(
Q(Xi , t,θ

∗
F)

)∣∣∣∣ ≥ bn}
 , uniformly over F .
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Next, note that

sup
F∈F

PF

sup
t∈T

1
n

n∑
i=1

φ(Xi)1
{∣∣∣∣B (

Q̂(Xi , t, θ̂)
)
−B

(
Q(Xi , t,θ

∗
F)

)∣∣∣∣ ≥ bn} , 0


≤sup
F∈F

PF

 sup
(x,t)∈X×T

∣∣∣B(Q̂(x, t, θ̂))−B(QF(x, t,θ∗F))
∣∣∣ ≥ bn −→ 0

where the last result follows from (A6). It follows from here that, for any δ > 0 and ∆ > 0,

sup
F∈F

PF

(
sup
t∈T

1
n

∑n
i=1φ(Xi)1

{∣∣∣∣B (
Q̂(Xi , t, θ̂)

)
−B

(
Q(Xi , t,θ∗F)

)∣∣∣∣ ≥ bn} ≥ δ
n1/2+∆

)
−→ 0. Immediately, this im-

plies that, sup
t∈T

1
n

∑n
i=1φ(Xi)1

{∣∣∣∣B (
Q̂(Xi , t, θ̂)

)
−B

(
Q(Xi , t,θ∗F)

)∣∣∣∣ ≥ bn} = op
(

1
n1/2+∆

)
∀ ∆ > 0, uni-

formly over F . Therefore,

sup
t∈T

1
n

n∑
i=1

∣∣∣∣B (
Q̂(Xi , t, θ̂)

)∣∣∣∣φ(Xi)1
{∣∣∣∣B (

Q̂(Xi , t, θ̂)
)
−B

(
Q(Xi , t,θ

∗
F)

)∣∣∣∣ ≥ bn} = op
( 1
n1/2+∆

)
∀ ∆ > 0, (A12)

uniformly over F . Plugging the results in (A11) and (A12) into (A9), for any ∆ > 0 we have

sup
t∈T

∣∣∣ξaT0,n
(t)

∣∣∣ ≤ (
2bn + op

( 1
n1/4+ε/2

))
×Op (bn) + op

( 1
n1/2+∆

)
=Op

(
b2
n

)
+ op

(
bn

n1/4+ε/2

)
+ op

( 1
n1/2+∆

)
uniformly over F .

Take any ∆ > 0 and note that
(

bn
n1/4+ε/2

)
· n1/2+∆ =

(
n1/2+2∆−ε · b2

n

)1/2
. In Assumption 4 we stated

that there exists δ0 > 0 such that n1/2+δ0 · b2
n −→ 0. Therefore, bn

n1/4+ε/2 = o
(

1
n1/2+∆

)
∀ 0 < ∆ ≤ δ0

2 .

From here, we obtain sup
t∈T

∣∣∣ξaT0,n
(t)

∣∣∣ = op
(

1
n1/2+δ0/2

)
uniformly over F . Therefore, using the linear

representation result in (A8),

T̂0(t) = T̃0,F(t) + ξaT0,n
(t)

=
1
n

n∑
i=1

B
(
Q̂(Xi , t, θ̂)

)
1
{
B
(
QF(Xi , t,θ

∗
F)

)
≥ 0

}
φ(Xi) + ξaT0,n

(t)

=
1
n

n∑
i=1

(
B(QF(Xi , t,θ

∗
F)) +

1
n

n∑
j=1

ψBF (Vj ,Xi , t,θ
∗
F ,hn) + ζBn (Xi , t)

)
1
{
B
(
QF(Xi , t,θ

∗
F)

)
≥ 0

}
φ(Xi) + ξaT0,n

(t)

=
1
n

n∑
i=1

(
B
(
QF(Xi , t,θ

∗
F)

))
+φ(Xi) +

1
n2

n∑
i=1

n∑
j=1

ψBF (Vj ,Xi , t,θ
∗
F ,hn)1

{
B
(
QF(Xi , t,θ

∗
F)

)
≥ 0

}
φ(Xi , t)

+
1
n

n∑
i=1

ζBn (Xi , t)1
{
B
(
QF(Xi , t,θ

∗
F)

)
≥ 0

}
φ(Xi , t) + ξaT0,n

(t).
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Recall that T0,F(t) ≡ EF
[(
B
(
QF(X,t,θ∗F)

))
+
φ(X)

]
. Thus, from the above expression we have,

T̂0(t) =T0,F(t) +
1
n

n∑
i=1

((
B
(
QF(Xi , t,θ

∗
F)

))
+φ(Xi)− T0,F(t)

)
+

1
n2

n∑
i=1

n∑
j=1

ψBF (Vj ,Xi , t,θ
∗
F ,hn)1

{
B
(
QF(Xi , t,θ

∗
F)

)
≥ 0

}
φ(Xi)

+
1
n

n∑
i=1

ζBn (Xi , t)1
{
B
(
QF(Xi , t,θ

∗
F)

)
≥ 0

}
φ(Xi)︸                                                   ︷︷                                                   ︸

≡ξbT0 ,n
(t)

+ξaT0,n
(t).

(A13)

From the results in (A8), we have,

sup
t∈T

∣∣∣ξbT0,n
(t)

∣∣∣ ≡ ∣∣∣∣∣∣∣1n
n∑
i=1

ζBn (Xi , t)1
{
B
(
QF(Xi , t,θ

∗
F)

)
≥ 0

}
φ(Xi)

∣∣∣∣∣∣∣ ≤ φ · sup
(x,t)∈X×T

∣∣∣ζBn (x, t)
∣∣∣

= op
( 1
n1/2+ε

)
uniformly over F

(A14)

The proof proceeds from here by computing the Hoeffding decomposition (see Serfling (1980,

pages 177-178) or Sherman (1994, equations (6)-(7))) of the U-process on the right-hand side of

(A13). Let ΞQp (x, t,θ
∗
F) be as defined in equation (A3) and define,

Ξ
p
T0,F

(t) ≡ EF

∂B
(
QF(X,t,θ∗F)

)
∂Qp

1
{
B
(
QF(X,t,θ∗F)

)
≥ 0

}
φ(X)ΞQp(X,t,θ

∗
F)

 , ΞT0,F(t) ≡
P∑
p=1

Ξ
p
T0,F

(t)

(A15)

Let Ωp
T0

(y, t,g) be as defined in Assumption 7 (eq. (18)). In the Econometric Supplement we show,

1
n2

n∑
i=1

n∑
j=1

ψBF (Vj ,Xi , t,θ
∗
F ,hn)1

{
B
(
QF(Xi , t,θ

∗
F)

)
≥ 0

}
φ(Xi)

=
1
n

n∑
i=1


 P∑
p=1

Ω
p
T0

(Yi , t,g(Xi ,θ
∗
F)) ·ωp(g(Xi ,θ

∗
F))

+ΞT0,F(t)ψθF (Zi)

+ ξcT0,n
(t),

(A16)

where sup
t∈T

∣∣∣ξcT0,n
(t)

∣∣∣ = op
(

1
n1/2+ε

)
uniformly over F , with ε > 0 as described in Assumption 4. Let

ψT0
F (Vi , t) ≡

((
B
(
QF(Xi , t,θ

∗
F)

))
+φ(Xi)− T0,F(t)

)
+

P∑
p=1

Ω
p
T0

(Yi , t,g(Xi ,θ
∗
F)) ·ωp(g(Xi ,θ

∗
F)) +ΞT0,F(t)ψθF (Zi).

(A17)
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By inspection, we can verify that ψT0
F (V ,t) has two key features,

(i) EF
[
ψT0
F (V ,t)

]
= 0 ∀ t ∈ T , ∀ F ∈ F ,

(ii) PF
(
B
(
ΓF(X,t,θ∗F)

)
< 0

∣∣∣ X ∈ X ∗F) = 1 =⇒ PF
(
ψT0
F (V ,t) = 0

)
= 1.

(A18)

Let ∆ ≡ ε∧ (δ0/2). Plugging (A16) and (A14) into (A13), we have

T̂0(t) = T0,F(t) +
1
n

n∑
i=1

ψT0
F (Vi , t) + εT0

n (t), where sup
t∈T

∣∣∣∣εT0
n (t)

∣∣∣∣ = op
( 1
n1/2+∆

)
uniformly over F .

(A19)

Since T̂2 ≡
∫
t
T̂0(t)dW (t) and T2,F ≡

∫
t
T0,F(t)dW (t) (with the normalization

∫
t∈T dW (t) = 1), the

result in (A19) yields,

T̂2 = T2,F +
1
n

n∑
i=1

ψT2
F (Vi) + εT2

n , where ψT2
F (Vi) ≡

∫
t∈T

ψT0
F (Vi , t)dW (t), εT2

n ≡
∫
t∈T

εT0
n (t)dW (t),

and
∣∣∣∣εT2
n

∣∣∣∣ ≤ sup
t∈T

∣∣∣∣εT0
n (t)

∣∣∣∣ = op
( 1
n1/2+∆

)
uniformly over F .

(A20)

This is the result in Proposition 1. �

A1.3 Properties of the influence functionψT2
F (V )ψT2
F (V )ψT2
F (V )

From (A18) and (A20), we obtain the following properties for the influence function ψT2
F (V ),

(i) EF
[
ψT2
F (V )

]
= 0 ∀ F ∈ F ,

(ii) PF
(
B
(
ΓF(X,t,θ∗F)

)
< 0

∣∣∣ X ∈ X ∗F) = 1 forW−a.e t ∈ T =⇒ PF
(
ψT2
F (V ) = 0

)
= 1.

(A21)

Part (i) of (A21) follows directly from part (i) of (A18) since,

EF
[
ψT2
F (V )

]
= EF

[∫
t
ψT0
F (V ,t)dW (t)

]
=

∫
t

(
EF

[
ψT0
F (V ,t)

])
︸             ︷︷             ︸

=0 ∀ t∈T

dW (t) = 0.

Similarly, part (ii) of (A21) follows directly from part (ii) of (A18) since,

PF
(
B
(
ΓF(X,t,θ∗F)

)
< 0

∣∣∣ X ∈ X ∗F) = 1 forW−a.e t ∈ T =⇒ PF
(
ψT0
F (V ,t) = 0 forW−a.e t ∈ T

)
= 1,

and PF
(
ψT0
F (V ,t) = 0 forW−a.e t ∈ T

)
= 1 =⇒ PF

(
ψT2
F (V ) = 0

)
= PF

(∫
t
ψT0
F (V ,t)dW (t) = 0

)
= 1.

The two properties in (A21) are those described in the statement of Proposition 1. �
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A2 An estimator for the influence functionψT2
F (V )ψT2
F (V )ψT2
F (V )

Our test relies on an estimator for σ2
2,F ≡ Var[ψT2

F (V )]. To this end, we construct an estima-

tor for ψT2
F (V ) based on its characterization in equations (A17)- (A20). As before, let f̂g(g) ≡

1
nhDn

∑n
i=1K

(
g(Xi ,θ̂)−g

hn

)
. Our estimators for the functionals described in Assumption 2 are,

Ω̂
d,`
fg

(g) ≡
Âd,`fg (g)

f̂g (g)
, where Âd,`fg (g) ≡ 1

nhDn

n∑
i=1

∂gd(Xi , θ̂)
∂θ`

K

(
g(Xi , θ̂)− g

hn

)
,

Ω̂
d,`
Rp ,1

(g, t) ≡
Âd,`Rp ,1(g, t)

f̂g (g)
, where Âd,`Rp ,1(g, t) ≡ 1

nhDn

n∑
i=1

Sp(Yi , t)ωp(g(Xi , θ̂))
∂gd(Xi , θ̂)
∂θ`

K

(
g(Xi , θ̂)− g

hn

)
,

Ω̂Rp ,2(g, t) ≡
ÂRp ,2(g, t)

f̂g (g)
, where ÂRp ,2(g, t) ≡ 1

nhDn

n∑
i=1

Sp(Yi , t)ωp(g(Xi , θ̂))K
(
g(Xi , θ̂)− g

hn

)
,

Ω̂`
Rp ,3

(g, t) ≡
Â`Rp ,3(g, t)

f̂g (g)
, where Â`Rp ,3(g, t) ≡ 1

nhDn

n∑
i=1

Sp(Yi , t)
∂ωp(g(Xi , θ̂))

∂θ`
K

(
g(Xi , θ̂)− g

hn

)
,

From the above definitions, we have
∂Âd,`fg (g)

∂gd
= − 1

nhD+1
n

∑n
i=1

∂gd (Xi ,θ̂)
∂θ`

∂K
(
g(Xi ,θ̂)−g

hn

)
∂gd

,

∂Âd,`Rp ,1(g, t)

∂gd
= − 1

nhD+1
n

n∑
i=1

Sp(Yi , t)ωp(g(Xi , θ̂))
∂gd(Xi , θ̂)
∂θ`

∂K
(
g(Xi ,θ̂)−g

hn

)
∂gd

, and

∂ÂRp ,2(g, t)

∂gd
= − 1

nhD+1
n

n∑
i=1

Sp(Yi , t)ωp(g(Xi , θ̂))
∂K

(
g(Xi ,θ̂)−g

hn

)
∂gd

.

Let Ξfg (x,θ
∗
F), ΞRp (x, t,θ

∗
F) and ΞQp (x, t,θ

∗
F) be the functionals defined in equations (A1) and (A3).

Our estimators for these functionals are,

Ξ̂`,fg (x, θ̂) ≡
D∑
d=1

∂gd(x, θ̂)
∂θ`

·
∂f̂g(g(x, θ̂))

∂gd
−
∂Âd,`fg (g(x, θ̂)

∂gd

 ,
Ξ̂fg (x, θ̂) ≡

(
Ξ̂1,fg (x, θ̂), . . . , Ξ̂k,fg (x, θ̂)

)
,

Ξ̂`,Rp(x, t, θ̂) ≡
D∑
d=1

∂ÂRp ,2(g(x, θ̂), t)

∂gd
·
∂gd(x, θ̂)
∂θ`

−
∂Âd,`Rp ,1(g(x, θ̂), t)

∂gd
+ Â`Rp ,3(g(x, θ̂), t)

 ,
Ξ̂Rp(x, t, θ̂) ≡

(
Ξ̂1,Rp (x, t, θ̂), . . . , Ξ̂k,Rp (x, t, θ̂)

)
,

Ξ̂Qp(x, t, θ̂) ≡
Ξ̂Rp (x, t, θ̂)− Q̂p(x, t, θ̂) · Ξ̂fg (x, θ̂)

f̂g(g(x, θ̂))
,

34



For a given t we estimate the functional ΞT0,F(t) described in Proposition 1, equation (A15) with

Ξ̂
p
T0

(t) ≡ 1
n

n∑
i=1

∂B
(
Q̂(Xi , t, θ̂)

)
∂Q̂p

1

{
B
(
Q̂(Xi , t, θ̂)

)
≥ −bn

}
φ(Xi , t)Ξ̂Qp (Xi , t, θ̂), and Ξ̂T0

(t) ≡
P∑
p=1

Ξ̂
p
T0

(t).

Next, for a given x, t, we estimate Γ̂p(x, t, θ̂) =
1

n·hDn

∑n
i=1 Sp(Yi ,t)K

(
∆g(Xi ,x,θ̂)

hn

)
f̂g (g(x,θ̂))

. For a given (y,g, t), we

estimate the functional Ωp
T0

(y, t,g) described in Assumption 7, equation (18) with

Ω̂
p
T0

(y, t,g) =

1
n·hDn

∑n
i=1

(
Sp(y, t)− Γ̂p(Xi , t, θ̂)

)
∂B(Q̂(Xi ,t,θ̂))

∂Qp
φ(Xi)1

{
B
(
Q̂(Xi , t, θ̂)

)
≥ −bn

}
K

(
g(Xi ,θ̂)−g

hn

)
f̂g(g)

Based on (A17)- (A20), our estimator for the influence function ψT2
F (V ) is,

ψ̂T2(Vi) ≡
(∫

t
B
(
Q̂(Xi , t, θ̂)

)
1

{
B
(
Q̂(Xi , t, θ̂)

)
≥ −bn

}
dW (t)φ(Xi)− T̂2

)
+

P∑
p=1

∫
t
Ω̂
p
T0

(Yi , t,g(Xi , θ̂))dW (t) ·ω(g(Xi , θ̂)) +
∫
t
Ξ̂T0

(t)dW (t)ψ̂θ(Zi)
(A22)

A2.1 Estimator for σ2
2,Fσ2
2,Fσ2
2,F

Our estimator for σ2
2,F is σ̂2

2 ≡
1
n

∑n
i=1 ψ̂

T2(Vi)2. As we show in the Econometric Supplement, under

the conditions in Assumptions 1-6, 7 and 8,

1
n

n∑
i=1

∣∣∣∣ψ̂T2(Vi)−ψ
T2
F (Vi)

∣∣∣∣2 = op(1) uniformly over F . (A23)

Next, under the conditions of Proposition 1, there exists a finite σ2 > 0 such that EF
[
ψT2
F (V )2

]
≤ σ2

for all F ∈ F . From here, a Chebyshev inequality yields,∣∣∣∣∣∣∣1n
n∑
i=1

ψT2
F (Vi)

2 − σ2
2,F

∣∣∣∣∣∣∣ = op(1), uniformly over F . (A24)

(A23) and (A24) yield, ∣∣∣σ̂2
2 − σ

2
2,F

∣∣∣ = op(1), uniformly over F . (A25)

This is the result stated in equation (23) in the paper.
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A3 Bandwidths that satisfy Assumption 4

We focus on bandwidth sequences of the form hn ∝ n−αh and bn ∝ n−αb . Since bn plays an important

role in our problem, we focus on the fastest rates of convergence for it that is compatible with

Assumption 4. Let αb = 1
4 +∆b. To satisfy the restrictions n1/2+ε′ ·b2

n −→ 0 and n1/2 ·hD+1
n ·bn −→∞,

we must have ε′
2 < ∆b <

1
4−(D+1)·αh. Thus, we must have αh <

1
4(D+1)−

ε′

2(D+1) . Accordingly, let αh =
1

4(D+1)−∆h, where ∆h >
ε′

2(D+1) . Thus, we can express ∆h = ε′+δ′
2(D+1) with δ′ > 0. Set8 ε′ <

(
1

2D(D+1) ∧
1
8

)
.

Then, having αh = 1
4(D+1) −∆h automatically satisfies the condition n1/2−ε′ · (h2D

n ∧hD+2
n ) −→∞. The

last bandwidth convergence restriction we need to satisfy is n1/2+ε′ ·hMn −→ 0. We are interested in

the smallest integer M that can satisfy this condition given the restrictions on αh. The condition

will be satisfied if and only if M ·
(1−4(D+1)∆h

4(D+1)

)
> 1

2 + ε′. Since ∆h = ε′+δ′
2(D+1) , this becomes M >( 4(D+1)

1−2(ε′+δ′)

)
·
(

1
2 + ε′

)
. Note that

( 4(D+1)
1−2(ε′+δ′)

)
·
(

1
2 + ε′

)
> 2(D + 1) = 2D + 2, so the smallest integer that

can be greater than the right-hand side of the previous expression is 2D + 3. Accordingly, choose

ε′ > 0 and δ′ > 0 small enough that
( 4(D+1)

1−2(ε′+δ′)

)
·
(

1
2 + ε′

)
< 2D + 3. Then, M = 2D + 3 satisfies our

restriction and this is the smallest integer that can do so. In summary, the bandwidth convergence

rates would be of the form αh = 1
4(D+1) −

ε′+δ′
2(D+1) and αb = 1

4 +∆b, where ε′
2 < ∆b <

ε′+δ′
2 , with ε′ > 0

and δ′ > 0 small enough such that ε′ <
(

1
2D(D+1) ∧

1
8

)
and

( 4(D+1)
1−2(ε′+δ′)

)
·
(

1
2 + ε′

)
< 2D + 3. Then the

bandwidth convergence restrictions in Assumption 4 are satisfied with M ≥ 2D + 3. Thus, we can

use a bias-reducing kernel of order M = 2D + 3.

A4 Extensions

A4.1 Allowing κ2,n −→ 0κ2,n −→ 0κ2,n −→ 0

Assumption 9 allows for σ2,F to be arbitrarily close to zero over F \ F . Suppose we rule this out

and we maintain the following (stronger) version of Assumption 9.

Assumption 9’ (A strengthening of Assumption 9) There exists σ > 0 and B <∞ such that σ2,F ≥ σ
and EF

[∣∣∣ψT2
F (V )

∣∣∣3] ≤ B for all F ∈ F \F .

The above states that, for any F ∈ F , either σ2,F = 0, or σ2,F is bounded away from zero by some
σ > 0. Let κ2,n be any positive sequence such that κ2,n → 0, n∆ · κ2,n → ∞, where ∆ > 0 is the
constant described in Proposition 1. Under Assumption 9’ we can replace the constant κ2 with

the sequence κ2,n→ 0. Our modified test-statistic would then be t̃2 =
√
nT̂2

(σ̂2∨κ2,n) . Going back to (25),

note that
∣∣∣∣∣ √n·εT2

n

(σ̂2∨κ2,n)

∣∣∣∣∣ ≤ ∣∣∣∣∣√n·εT2
n

κ2,n

∣∣∣∣∣ = op

(
n1/2

n1/2+∆·κ2,n

)
= op

(
1

n∆·κ2,n

)
= op(1), uniformly over F . Therefore,

the results in (26) are preserved for t̃2. The stronger conditions in Assumption 9’ imply that

8We will have 1
2D(D+1) ∧

1
8 = 1

2D(D+1) and h2D
n ∧ hD+2

n = h2D
n for all D ≥ 2.
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sup
F∈F \F

∣∣∣∣σ2,F∨κ2,n
σ2,F

− 1
∣∣∣∣→ 0. Thus, by the Berry-Esseen Theorem and the conditions in Assumption 9’,

lim
n→∞

sup
F∈F \F

∣∣∣∣∣∣∣PF
 1
√
n

n∑
i=1

ψT2
F (Vi)

(σ2,F ∨κ2,n)
≥ z1−α

−α
∣∣∣∣∣∣∣ = 0.

This strengthens the result in (29). These results combined yield,

limsup
n→∞

sup
F∈F 0

PF
(̃
t2 ≥ z1−α

)
≤ α, lim

n→∞
sup

F∈F 0\F

∣∣∣∣PF (̃t2 ≥ z1−α
)
−α

∣∣∣∣ = 0.

This is a stronger version of the result we showed in (30). Under Assumption 9’, replacing t̂2 with

t̃2, the result in part (i) of Theorem 1 (uniformly asymptotically level α) strengthens to,

lim
n→∞

sup
F∈F 0\F

∣∣∣∣PF (̃t2 ≥ z1−α
)
−α

∣∣∣∣ = 0.

Part (ii) of Theorem 1 (consistency) remains unchanged, and part (iii) (nontrivial asymptotic

power) is preserved after we replace κ2 with κ2,n, redefining the limits sa2 and sb2 accordingly.

A4.2 Testing multiple inequalities

Our approach can be readily extended to testing multiple functional inequalities of the form (5).

Suppose we have a model that predicts,

Br(ΓF(x, t,θ∗F)) ≤ 0 for F−a.e x ∈ SX and ∀ t ∈ T , for r = 1, . . . ,R.

Suppose each Br satisfies the condition in (7) for weight functions (ωp,r )
P
p=1, so, for each r,

Br(Γ1 ·ω1,r , . . . ,ΓP ·ωP ,r ) = Br(Γ1, . . . ,ΓP ) · Hr(ω1,r , . . . ,ωP ,r ),

where

 Hr(·) ≥ 0,

Hr(ω1,r , . . . ,ωP ,r ) > 0 ⇐⇒ ωp,r > 0 ∀ p.

Assume for simplicity the same target testing range X ∗F =
{
x ∈ SX : x ∈ X and g(x,θ∗F) ∈ G

}
for each

r. As in (6), letQrp,F(x, t,θ∗F) ≡ Γp,F(x, t,θ∗F)·ωp,r(g(x,θ∗F)),QrF(x, t,θ∗F) ≡
(
Qr1,F(x, t,θ∗F), . . . ,QrP ,F(x, t,θ∗F)

)′
,

and ωr(g(x,θ∗F) ≡
(
ω1,r(g(x,θ∗F)), . . . ,ωP ,r(g(x,θ∗F))

)′
. Then (8) holds for each r = 1, . . . ,R, and we

have, Br
(
QrF(x, t,θ∗F)

)
= Br

(
ΓF(x, t,θ∗F)

)
· Hr

(
ωr(g(x,θ∗F))

)
, where Hr(·) ≥ 0, and Hr(ωr(g(x,θ∗F)) > 0

iff gr(x,θ∗F) ∈ G. For each r, let φr(x) be a function satisfying φr(x) ≥ 0 for all x and φr(x) > 0 if

and only if x ∈ X . For a given t ∈ T let T r0,F(t) ≡ EFX
[(
Br

(
QrF(X,t,θ∗F)

))
+
φr(X)

]
. Let dW r be a pre-

specified weight function for the index parameter t for the rth restriction. One way to generalize
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T2,F is by aggregating the R restrictions as9,

T2,F ≡
R∑
r=1

[∫
t
T r0,F(t)dW r(t)

]
(A26)

As in the single functional-inequality case, T2,F has the following key properties,

• T2,F ≥ 0.

• T2,F = 0⇐⇒ Br(ΓF(x, t,θ∗F)) ≤ 0 for F−a.e x ∈ X ∗F , andW−a.e t ∈ T for each r.

For each r, construct the estimator Q̂rp(x, t, θ̂) in the manner described in equation (13), and group

Q̂r(x, t, θ̂) ≡
(
Q̂r1(x, t, θ̂), . . . , Q̂rP (x, t, θ̂)

)′
. We can estimate T2,F with,

T̂2 ≡
R∑
r=1

∫
t

1
n

n∑
i=1

Br
(
Q̂r(Xi , t, θ̂)

)
1

{
Br

(
Q̂r(Xi , t, θ̂)

)
≥ −br,n

}
φ(Xi)

dW r(t)

 ≡ R∑
r=1

[∫
t
T̂ r0 (t)dW r(t)

]
,

where T̂ r0 (t) ≡ 1
n

n∑
i=1

Br
(
Q̂r(Xi , t, θ̂)

)
1

{
B
(
Q̂(Xi , t, θ̂)

)
≥ −br,n

}
φ(Xi).

(A27)

Each br,n satisfies the restrictions in Assumption 4. If the assumptions leading to Proposition 1 are

satisfied by each of the R restrictions, then each of the summands in (A27) will satisfy the linear

representation result in Proposition 1. From here, we would have

T̂2 = T2,F +
1
n

n∑
i=1

ψT2
F (Vi) + εT2

n , where |εT2
n | = op

( 1
n1/2+∆

)
uniformly over F .

∆ > 0 is a constant with the features described in Proposition 1. ψT2
F (Vi) corresponds to the sum

of the influence functions for each of the R restrictions, each one with the structure described in

equations (A17)-(A20). From here, the results in Proposition 1 would yield,

(i) EF
[
ψT2
F (V )

]
= 0 ∀ F ∈ F ,

(ii) PF
(
Br

(
ΓF(X,t,θ∗F)

)
< 0

∣∣∣ X ∈ X ∗F) = 1 forW−a.e t ∈ T , ∀ r = 1, . . . ,R =⇒ PF
(
ψT2
F (V ) = 0

)
= 1.

(A28)

9We can aggregate using different weights for each of the r = 1, . . . ,R restrictions,

T2,F =
R∑
r=1

[∫
t
T r0,F (t)dW r (t)

]
·γr ,

where γr is the weight given to the rth restriction. For simplicity, (A26) considers the uniform-weight case.

38



Our test-statistic would once again be of the form t̂2 =
√
n·T̂2

(σ̂2∨κ2) , as in (24). From here, if we maintain

the integrability condition in Assumption 9, the test that rejects H0 iff t̂2 ≥ z1−α will have the

asymptotic properties described in Theorem 1.
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