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Abstract

This paper computes semiparametric efficiency bounds for finite-dimensional parameters in

discrete choice models with nonparametric regressors in the form of conditional expectations.

These can include expectations about exogenous events as well as expectations about the choices

of other agents. Thus, the models studied here include incomplete-information games, social-

interactions models as well as single-agent discrete choice models with uncertainty as special

cases. Our bounds rely on the assumption of rational expectations and on regularity conditions of

equilibrium beliefs. The paper focuses on binary-choice models but the derivation of the bounds

illustrates how our approach can be extended to multinomial choice cases. Explicit efficiency

bound expressions for the models examined here had not been derived before. Furthermore,

since we also characterize the efficient influence functions, our results can also potentially be

used to construct semiparametrically efficient estimators for these models.

JEL Codes: C14, C31, C25, C35, C57.

1 Introduction

This paper computes semiparametric efficiency bounds for finite-dimensional parameters in bi-

nary choice models that include nonparametric regressors. These regressors represent agents’ ex-

pectations about exogenous events and/or about the expected choices of others. They include

incomplete-information games and binary choice models under uncertainty as special cases. We

compute efficiency bounds assuming rational expectations and the self-consistency conditions of

equilibrium beliefs. As a result, the nonparametric regressors in the model are functionals of the

unknown parameters (nonparametric distributions as well as the finite-dimensional parameters of

interest) and the equilibrium properties of the model determine the structure of the efficiency

bounds. In their computation we rely on the method of representers proposed by Severini and

∗email: aaradill@psu.edu. Pennsylvania State University. Department of Economics, 518 Kern Graduate Building,
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Tripathi (2001). Even though the paper focuses on binary-choice models, the description of the

approach used as well as the steps of the derivation should help to illuminate how to apply this

method to analyze richer discrete choice models. Semiparametric efficiency with nonparametric or

“generated” regressors has been studied in linear models, e.g, in Rilstone (1993) and Aradillas-

López (2019), and for partially linear models in Li and Wooldridge (2002). To my knowledge,

efficiency bounds with nonparametric regressors have not been computed in discrete-choice mod-

els, particularly in the case where the distribution of unobserved shocks is nonparametric. This

paper will derive these bounds, along with the efficient influence function in models where there is

also a strategic-interaction component. The models studied here will encompass social-interaction

models, incomplete-information games and single-agent discrete choice models with uncertainty as

special cases.

The paper proceeds as follows. Section 2 presents an overview of the method of representers,

which we will apply to compute the efficiency bounds. Section 3 presents results for a global-

interaction model which assumes that agents treat the choices of everybody else symmetrically.

This model is a good starting point since the approach taken there to compute the bounds extends

naturally to incomplete-information games, which are studied in Section 4. Section 5 discusses

efficient estimation. While our results can enable researchers to apply existing methods based on

the expression of the efficient influence function, we also sketch a possible estimation strategy based

on a semi-empirical likelihood approach subject to conditional moment restrictions. Concluding

remarks are included in Section 6. All proofs are included in the Appendix.

2 Computing efficiency bounds using representers: an outline

Our derivation of the bounds uses the representer approach proposed by Severini and Tripathi

(2001) (henceforth ST). This method relies on the fact that, if the parameter of interest is a

pathwise differentiable functional, the efficiency bound can be obtained by using the appropriate

Hilbert space, invoking the Riesz-Fréchet Theorem and finding the representer described in that

theorem. Our discussion here follows Section 2 in ST.

Notational conventions

We will let S(z) denote the support of a random variable z. λ will denote the Lebesgue measure

and L2(S, λ), the set of all real-valued functions on S that are square integrable with respect to

Lebesgue measure. For a random variable z, we will let L2(S, λz) denote the set of all functions

defined on S which are square integrable with respect to the probability distribution of z.

Let z1, . . . , zn be d× 1 iid random vectors with Lebesgue density p0(z). Assume for simplicity

that p0 has full support1 on Rd and let us express p0(z) = τ2
0 (z), with τ0 ∈ Γ and Γ is a subset

1As the discussion that follows will illustrate, bounded support or point-masses can be readily incorporated into
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of the unit ball in L2(Rd;λ). Assume for now that τ0 is an unknown function and therefore an

infinite-dimensional parameter. In the models we will study below, τ0 itself will be a functional of

other parameters, both finite and infinite-dimensional. Working with τ0 =
√
p0 has the advantage

that τ0 ∈ L2(Rd;λ) while this may not be the case for p0 itself.

Denote the parameter of interest as ρ(τ0) ∈ R, where ρ is a pathwise differentiable functional

and let ∇ρ denote the pathwise derivative of ρ. Ultimately, our focus will be a finite-dimensional

parameter vector θ0, in which case ρ(τ0) = c′θ0, where c is an arbitrary vector2 . The objective

is to obtain efficiency bounds for regular estimators of ρ(τ0). Regular estimators are defined in

Newey (1990, page 102). In essence, they require that the asymptotic distribution of the estimator

be stable in a neighborhood of the true model (i.e, in a neighborhood of τ0).

The method described in ST for computing efficiency bounds is based on the intuition provided

by Stein (1956), who introduced the notion of efficiency bounds by noting that the problem of

estimating a real-valued parameter with nonparametric components is at least as difficult (to first

order of approximation) as any one-dimensional subproblem contained in it. Fix some t0 > 0 and

let t 7→ τt denote a curve from [0, t0] on to Γ that passes through τ0 at t = 0 (i.e, τt|t=0 = τ0). Let

τ̇ denote the slope of τt at t = 0. τ̇ is an element of the vector space L2(Rd;λ) which is tangent3

to Γ at τ0. Let T (Γ, τ0) denote the tangent cone that consists of all τ̇ ’s that are tangent to Γ at τ0.

Finally, let lin T(Γ, τ0) denote the smallest closed (in the L2(Rd;λ) norm) linear space containing

T (Γ, τ0).

Let `z(t) = log τ2
t (z). The score and the Fisher information for estimating t = 0 are given,

respectively by

S0(z) =
d`z(t)

dt

∣∣∣∣
t=0

=
2τ̇(z)

τ0(z)
and iF =

∫
R
d
S2

0(z)τ2
0 (z)dz = 4

∫
R
d
τ̇2(z)dz.

ST equip lin T(Γ, τ0) with the Fisher-information inner product 〈·, ·〉F defined as

〈τ̇1, τ̇2〉F = 4

∫
R
d
τ̇1(z)τ̇2(z)dz ∀ τ̇1, τ̇1 ∈ lin T(Γ, τ0).

Let t̂n be any regular,
√
n−consistent estimator of t = 0 in the subproblem given by τt and let

asyvar
{√

n · t̂n
}

denote the asymptotic variance of
√
n · t̂n. The information inequality implies

that asyvar
{√

n · t̂n
}
≥ 1/iF = ‖τ̇‖−2

F . Next, since τt is ultimately a device to compute efficiency

bounds, we should focus on subproblems that are informative about our parameter of interest ρ(τ0).

the analysis.
2This shows that focusing on the case where ρ(τ0) is a scalar can be done without loss of generality in the case

that will preoccupy us.
3Suppose M is a subset of a normed vector space (X, ‖ · ‖X). Take a point x0 ∈M . We say that a vector ẋ ∈ X

is tangent to M at x0 if there exists t0 > 0 and a mapping t 7→ rt into X satisfying ‖rt‖ = o(t) as t ↓ 0, such that
xt ≡ x0 + tẋ + rt ∈ M ∀ t ∈ [0, t0]. The curve t 7→ xt passes through x0 at t = 0 and ẋ is the slope of this curve at
t = 0.
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To this end, normalize ρ and reparameterize τt so that ρ(τt) = t for t ∈ [0, t0]. Thus, estimating

t = 0 will be equivalent to estimating ρ(τ0). It follows that, for all the subproblems of interest,

asyvar
{√

n
[
ρ(τt̂n)− ρ(τ0)

]}
= asyvar

{√
n · t̂n

}
≥ ‖τ̇‖−2

F . Next, by definition, ∇ρ is a continuous

linear functional4 and, for the suproblems we are interested in, it satisfies ∇ρ(τ̇) = 1 (implying

that τ̇ 6= 0). Refer to such τ̇ ’s as feasible.

Thus, in searching for the lower bound (l.b.), we would look to maximize ‖τ̇‖−2
F over those τ̇ ’s

in lin T(Γ, τ0) that satisfy τ̇ 6= 0 and ∇ρ(τ̇) = 1. That is,

l.b. = sup
{
‖τ̇‖−2

F : τ̇ ∈ lin T(Γ, τ0), τ̇ 6= 0, ∇ρ(τ̇) = 1
}
.

Suppose ∇ρ(τ̇) is a nonzero constant (a property shared by all feasible τ̇ ’s). Then, τ̃ ≡ τ̇ /∇ρ(τ̇) ∈
lin T(Γ, τ0). In our search for l.b. we can focus on such τ̃ ’s. Since ∇ρ is a linear functional, we

have ∇ρ(τ̃) = 1 and therefore τ̃ is feasible. Furthermore, linearity of ∇ρ implies that

‖τ̃‖−1
F =

∥∥∥∥ τ̇

∇ρ(τ̇)

∥∥∥∥−1

F

=
|∇ρ(τ̇)|
‖τ̇‖F

=

∣∣∣∣∇ρ( τ̇

‖τ̇‖F

)∣∣∣∣
Obviously, we have

∥∥∥ τ̇
‖τ̇‖F

∥∥∥
F

= 1. Therefore, going back to the notation of τ̇ instead of τ̃ , the lower

bound l.b. can be re-expressed as

l.b. = sup
{
|∇ρ(τ̇)|2 : τ̇ ∈ lin T(Γ, τ0), τ̇ 6= 0, ‖τ̇‖F = 1

}
.

Since ∇ρ is a continuous linear functional on the tangent space lin T(Γ, τ0) equipped with ‖ · ‖F ,

its norm (see Luenberger (1969, Section 5.2)) is given by

‖∇ρ‖∗ = sup
{
|∇ρ(τ̇)| : τ̇ ∈ lin T(Γ, τ0), τ̇ 6= 0, ‖τ̇‖F = 1

}
.

Therefore, l.b. = ‖∇ρ‖2∗. The key insight in ST is that the problem of computing l.b can be

solved by invoking the Riesz-Fréchet Theorem (R-F Theorem henceforth) which states5 that, since(
lin T(Γ, τ0), 〈·, ·〉F

)
is a Hilbert space and ∇ρ is a continuous, linear functional defined in it, there

exists a unique τ∗ ∈ lin T(Γ, τ0) such that

∇ρ(τ̇) = 〈τ∗, τ̇〉F ∀ τ̇ ∈ lin T(Γ, τ0) and ‖∇ρ‖∗ = ‖τ∗‖F . (R-F)

τ∗ is called the representer of the linear functional ∇ρ. Thus, computing l.b. is done in two steps:

Step 1: Find the representer τ∗ by solving the condition (R-F).

4Let M , ẋ and xt be as defined in footnote 3. A functional ρ : M → R is said to be pathwise differentiable at x0

if, for any xt, there exists a continuous linear functional ∇ : X → R such that
∣∣∣ ρ(xt)−ρ(x0)

t
−∇ρ(ẋ)

∣∣∣→ 0 as t ↓ 0.
5See Luenberger (1969, Section 5.3, Theorem 2) or Young (1988, Theorem 6.8).
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Step 2: Compute l.b. = ‖τ∗‖2F = 〈τ∗, τ∗〉F

Note that, since

l.b = ‖τ∗‖2F = 4

∫
R
d
τ∗(z)τ∗(z)dz =

∫
R
d

(
2 · τ

∗(z)

τ0(z)

)
·
(

2 · τ
∗(z)

τ0(z)

)
τ2

0 (z)dz

= E

[(
2
τ∗(z)

τ0(z)

)
·
(

2
τ∗(z)

τ0(z)

)]
,

it follows that the efficient influence function (Newey (1990, Section 3)) is given by 2τ∗(z)
τ0(z) (the score

function evaluated at the representer). See Severini and Tripathi (2001, page 30) for more details

about the connection between the representer approach and the one described in Newey (1990).

3 A global interaction model with rational expectations

Our first model is a binary-choice problem faced by a symmetric population of agents, who, prior to

making their choice, have to construct beliefs (conditional expectations) about the expected choice

made by a “representative” agent and about the outcome of an exogenous (i.e, non-strategic)

event. This example of a social-interaction model encompasses both global interaction models

(Brock and Durlauf (2001, Section 2.2)) and single-agent binary choice models under uncertainty

(Ahn and Manski (1993) and Ahn (1995)) as special cases. It also extends naturally to the type of

incomplete-information games with asymmetric interaction effects that we will study in Section 4.

3.1 Description of the model

Consider a population of symmetric agents, each of which must make a binary decision, labeled

y ∈ {0, 1}. Suppose the payoff of agent i of choosing yi = 0 is normalized to zero, and the payoff

of choosing yi = 1 is given by

ui(1) = x′ib0 + s′d0 + a0m(1)− νi,

where m(1) denotes the proportion of agents in the population that choose y = 1. (b′0, d
′
0, a0)′

represent payoff parameters parameters. Suppose agents must choose simultaneously and before

knowing the realization of s, which represents the outcome of some exogenous (i.e, non-strategic)

event. The realization of (x′i, νi)
′ is observed by agent i before making her choice. We will be

interested in a setting where, after choices are made, the econometrician observes the realization

of (y, x′, s). Suppose νi is a payoff shifter independent across agents and independent of s, and

suppose that each agent i conditions her beliefs on the realization of xi. We can think of xi as the

reference variables used by i to construct her beliefs. Accordingly, suppose the decision rule for
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agent i is described by the model

yi = 1

{
x′ib0 + Êi[s|xi]′d0 + a0Êi[y|xi]− νi ≥ 0

}
.

(b′0, d
′
0, a0)′ are unknown parameters, and xi ∈ Rdx and s ∈ Rds . The notation Êi denotes agent i’s

subjective beliefs, conditional on the realization of xi ∈ Rdx . Our model nests two classes of models.

First, the presence of Êi[y|xi] as one of the regressors includes global interaction models studied in

Brock and Durlauf (2001, Section 2.2) as a special case. In global interaction models, agents assign

an identical weight to the expected choice of every other member of the population, effectively

playing a game against the representative agent. Second, the presence of agents’ beliefs about

the exogenous (non-strategic) event Êi[s|xi] includes the binary choice model under uncertainty

analyzed in Ahn and Manski (1993) and Ahn (1995) also as a special case. This is the first paper

to formally derive and present semiparametric efficiency bounds for either of these models. In

particular, our results will leave the distributions of all covariates involved (including unobserved

shocks) nonparametrically specified.

In the context of social-interactions models (see Manski (1993), Manski (1995, Section 7.2)), xi

can be viewed as group reference variables and s would denote a collection of group characteristics

unobserved by agents at the time of making their choices. The parameters in d0 would capture what

Manski (1995, Section 7.2) calls contextual effects and a0 would capture an endogenous effect. If

the above decision rule arises from a game-theoretic model, a0 would capture a strategic-interaction

effect while s would denote a collection of non-strategic outcomes (states of the world, etc.) that are

unobserved by agents at the time of making their choices. Finally, νi is latent variable unobserved

by the econometrician.

Except for some index-exclusion restrictions (described below), the distribution of εi conditional

on observables will be treated nonparametrically. Therefore, we will make the type of scale normal-

ization typically assumed for identification purposes. Suppose we can partition x = (x1, x
′
2)′ and,

accordingly b0 = (b0,1, b
′
0,2)′, where an underlying theoretical model predicts6 b0,1 > 0. Denote

1

b0,1
·
(
x′ib0 + Êi[s|xi]′d0 + a0Êi[y|xi]− νi

)
= x1,i + x′2,iβ0 + Êi[s|xi]′γ0 + α0Êi[y|xi]− εi,

where β0 ≡ b0,2
b0,1

′
, γ0 ≡ d0

b0,1
, α0 ≡ a0

b0,1
and εi ≡ νi

b0,1
. Our model is observationally equivalent to the

following,

yi = 1

{
x1,i + x′2,iβ0 + Êi[s|xi]′γ0 + α0Êi[y|xi]− εi ≥ 0

}
. (1)

Assumption 1A (rational expectations) Agents use rational expectations in the construction

of their beliefs. For each agent i, we have Êi[s|x] = E[s|x] ≡ µ0(x) (the true conditional expectation

6It is enough to predict that b0,1 6= 0, as its sign can be estimated at a fast rate. If it is negative, we would use
−x1,i instead of x1,i as the regressor. Thus, without loss of generality we assume that b0,1 > 0.
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of s given x).

We focus on settings where the econometrician observes (y, x′, s′)′, while µ0(x) and Êi[y|x] are

treated as nonparametric regressors. Henceforth, denote

θ0 ≡ (β′0, γ
′
0, α0)′ and v0 ≡ x1 + x′2β0 + µ0(x)′γ0

Note that v0 is a deterministic function of x. Our bounds will be derived under the following

conditions.

Assumption 2A

(i) (Distributional properties of εεε): ε|x, s ∼ ε|x. Let Pr(ε ≤ ε|x) ≡ G0(ε|x), with cor-

responding conditional density given by g2
0(ε|x). We assume that G0(ε|x) is absolutely con-

tinuous w.p.1, with support R. For identification purposes and as a location-normalization,

we assume that there exists a constant cκ and a known κ ∈ (0, 1) such that G0(cκ|x) = κ

w.p.1. For the existence of a
√
n−consistent estimator, we assume the single-index exclusion

restriction that g2
0 depends upon x only through the index v0. That is, g2

0(·|x) = g2
0(·|v0).

(ii) (Self-consistent beliefs, regularity and selection mechanism): For a given π ∈ [0, 1]

let ϕ(x, π) = π − G0(v0 + α0π|x). A solution (in π) to the fixed-point problem ϕ(x, π) = 0

is regular if it satisfies ∇πϕ(x, π) 6= 0 (i.e, 1 − α0g
2
0(v0 + α0π|x) 6= 0). We assume that

each agent i selects, as their beliefs Êi[y|x], a regular solution to the fixed-point problem

ϕ(x, π) = 0 and we denote this solution as π0(x). We assume that, w.p.1, all agents use the

same selection mechanism to choose π0(x), and that this mechanism is degenerate conditional

on x (i.e, it selects a unique regular solution w.p.1). Regularity implies that, if we define

D0(x) ≡ 1− α0g
2
0(v0 + α0π0(x)|x), then |D0(x)| ≥ d > 0 w.p.1.

(iii) (A full-rank condition) Let v ≡ (x′2, µ0(x)′, π0(x))′ ∈ Rd. The support of v is not contained

in any proper linear subspace of Rd

Identification, regular estimators and Assumptions 1A-2A

While the quantile invariance assumption is done for identification purposes, it would not, by itself,

guarantee the existence of a
√
n−consistent estimator (see, e.g, Manski (1975), Kim and Pollard

(1990)). To this end, we add the single-index exclusion restriction (see Klein and Spady (1993),

Ahn (1995)). Together, Assumptions 1A and 2A (in particular, the degeneracy property of the

belief-selection mechanism) imply that

Pr(y = 1|x)︸ ︷︷ ︸
=π0(x)

= Pr
(
y = 1

∣∣∣x1 + x′2β0 + E[s|x]′γ0 + α0Pr(y = 1|x)︸ ︷︷ ︸
=x1+x′2β0+µ(x)′γ0+α0π0(x)

)
. (2)
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Since beliefs are nonparametrically identified regressors given our assumptions, identification and

a
√
n−consistent estimator of θ0 can proceed from (2), for example, using single-index model semi-

parametric estimators (see Powell, Stock, and Stoker (1989), Klein and Spady (1993), Ichimura

(1993)). The key feature of our model is the presence of nonparametric regressors in the linear

index, and the purpose of the paper is to characterize how the semiparametric efficiency bound

depends on the presence of these regressors. The efficiency bounds derived here will leave the dis-

tribution of shocks nonparametrically specified, and rely only on a quantile-independence restriction

as described in part (i) of our assumption.

Existence and regularity of self-consistent beliefs and Assumption 2A

Existence of an equilibrium can be established as follows. Given that beliefs are well-defined prob-

abilities, both π and G0 belong to the [0, 1] interval. From here continuity of G0 implies that we

can invoke Brouwer’s fixed-point theorem to prove the existence of a solution in π to the condition

ϕ(x, π) = 0 for any x (see Mas-Colell, Whinston, and Green (1995, Theorem M.I.1)). Combined

with the unbounded support property of G0, we can show the existence of at least one regu-

lar solution7 for any x. Uniqueness of a fixed-point solution and regularity will be guaranteed

if α0 ≤ 0, since D0(x) = 1 − α0g
2
0(v0 + α0π0(x)|x). Thus, our assumptions about equilibrium

selection are non-redundant only if α0 > 0. Assuming a degenerate equilibrium selection mech-

anism has been a commonly imposed assumption for identification in a number of previous pa-

pers involving incomplete-information games (see, e.g, Brock and Durlauf (2001), Pesendorfer and

Schmidt-Dengler (2008), Aradillas-López (2012)).

The assumption of regularity of π0(x) will be key to our results. Using the implicit function

theorem, regularity means that π0 is a well-behaved functional of the unknown parameters of the

model. In particular, regularity allows for the following. If we let t→ πt denote a curve from [0, t0]

that passes through π0 at t = 0 and we let π̇(x) = dπt
dt {πt(x)}

∣∣∣
t=0

denote its tangent vector, then π̇

will be a well-behaved functional of the tangent vectors (ḟ, ġ, θ̇). This relationship will be described

in Section 3.2.1 below. Our definition of regularity (as a full-rank condition for the Jacobian of the

equilibrium system) is entirely analogous to the definition of a regular Walrasian equilibrium price

vector in a competitive economy (see Mas-Colell, Whinston, and Green (1995, Definition 17.D.1)).

A notational simplification based on Assumption 2A

The exclusion restriction g2
0(·|x) = g2

0(·|v0) in Assumption 2A implies π0(x) = π0(v0) and, denoting

u(v0) ≡ v0 + α0π(x) = v0 + α0π(v0),

7If 1−α0g
2
0(v0 +α0π|x) 6= 0 ∀ π ∈ [0, 1], then all solutions must be regular, but this is a much stronger condition

than we assume.
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then we will have Pr(y = 1|x) = π(v0) = G0(u(v0)|v0). From now on, we will abbreviate

G0(u(v0)|v0) ≡ G0(v0) and g2
0(u(v0)|v0) ≡ g2

0(v0),

and we will denote D0(x) as D0(v0). Therefore,

D0(v0) ≡ 1− α0g
2
0(v0).

Going forward, we will use the above notation for convenience.

3.2 Computing the efficiency bound in the global interaction model

Let

G =

{
g ∈ L2(R× Rdx ;λ× λx) : g(ε|x) = g(ε|v0),

∫
R

g2(ε|x)dε = 1, g2(ε|x) > 0, g(ε|x) is bounded

and continuous, and

∫ cκ

−∞
g2(ε|x)dε = κ w.p.1.

}
.

(3)

Then, Assumption 2A implies that g0 ∈ G.

Let f2
0 (·|x) denote the conditional density of s given x. And let m2

0(·) denote the marginal density

of x. Define

F =

{
f ∈ L2(Rds × Rdx ;λ× λx) : f(s|x) > 0,

∫
Rds

f2(s|x)ds = 1 w.p.1.

}
;

M =

{
m ∈ L2(Rdx ;λ) : m(x) > 0,

∫
Rdx

m2(x)dx = 1

}
.

(4)

Then, f0 ∈ F and m0 ∈ M. For simplicity, on the case where both s and (in particular) x are

continuously distributed. The steps in the proof of our main result will show how to extend this

to cases where these regressors have point masses. The unknown parameters of the model are

τ0 = (θ0, g0, f0,m0). The nonparametric regressors µ0 are functionals of f0 and the nonparametric

regressors π0 are functionals of f0 and g0.

Using the same arguments as Lemmas B.1 and B.2 in ST, the tangent spaces for G, F and M can
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be shown to be as follows,

lin T (G, g0) =

{
ġ ∈ L2(R×Rdx ;λ× λx): ġ(ε|x) = ġ(ε|v0),

∫
R

ġ(ε|x)g0(ε|x)dε = 0,

and

∫ cκ

−∞
ġ(ε|x)g0(ε|x)dε = 0 w.p.1.

}
lin T (F , f0) =

{
ḟ ∈ L2(Rds × Rdx ;λ× λx):

∫
R
ds

ḟ(s|x)f0(s|x)ds = 0 w.p.1.

}
lin T (M,m0) =

{
ṁ ∈ L2(Rdx ;λ):

∫
Rdx

ṁ(x)m0(x)dx = 0

}
.

(5)

Let τ̇ = (θ̇, ġ, ḟ, ṁ). This vector belongs to the product tangent space

Ṫ = R
d × lin T (G, g0)× lin T (H, h0)× lin T (F , f0)× lin T (M,m0).

3.2.1 Tangent vectors for the nonparametric regressors in the global interaction

model

The distinguishing feature of our model is the presence of two types of nonparametric regressors: µ0

and π0. These are functionals of the unknown parameters of the model and, as a result, their tangent

vectors µ̇ and π̇ will be functionals of τ̇ . While an expression for µ̇ will follow straightforwardly

from the definition of µ0, the characterization of π̇ will rely on the regularity and self-consistency

conditions of Assumption 2A.

From our previous assumptions, the conditional pmf of y|x, denoted as p2
0(y|x) is given by

p2
0(y|x) = [G0(v0)]y [1−G0(v0)]1−y and the joint density of (y, s, x) is p2

0(y|x)f2
0 (s|x)m2

0(x). For

some t0 > 0 let t 7→ (θt, gt, ft,mt)︸ ︷︷ ︸
≡τt

be a curve from [0, t0] into Rd × G × F ×M. Let µt(x) =∫
R
ds sf

2
t (s|x)ds and let πt(x) be defined implicitly as

πt(x) =

∫ x1+x′2βt+µt(x)′γt+αtπt(x)

−∞
g2
t (ε|x)dε. (6)

Let µ̇(x) = d
dt {µt(x)}

∣∣
t=0

. Then, µ̇(x) = 2
∫
R
ds sḟ(s|x)f0(s|x)ds. Next, let π̇(x) = d

dt {πt(x)}
∣∣
t=0

.

We can obtain an expression for π̇(x) from (6) combined with our previous assumptions. First,

define8

∆̇(v0) = 2

∫ u(v0)

−∞
ġ(ε|v0)g0(ε|v0)dε, A0(x) ≡ g2

0(v0) · v′, B0(v0) ≡ g2
0(v0) · γ′0

8Recall that we defined previously v0 ≡ x1 + x′2β0 + µ0(x)′γ0 and v ≡ (x′2, µ0(x)′, π0(x))′.
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From (6) and the regularity conditions in Assumption 2A we obtain

π̇(x) = D0(v0)−1
(
A0(x)θ̇ +B0(v0)µ̇(x) + ∆̇(v0)

)
(7)

3.2.2 Characterizing the score and the Fisher-information inner product in the global

interaction model

As a function of t, the conditional pmf of y|x is

p2
t (y|x) =

[∫ x1+x′2βt+µt(x)′γt+αtπt(x)

−∞
g2
t (ε|x)dε

]y [
1−

∫ x1+x′2βt+µt(x)′γt+αtπt(x)

−∞
g2
t (ε|x)dε

]1−y

and the joint density of (y, s, x) is qt(y, s, x) = p2
t (y|x)f2

t (s|x)m2
t (x). Denote

T0(v0) ≡ G0(v0) [1−G0(v0)] .

The score for estimating t = 0 in this model becomes

S0 =

(
y −G0(v0)

T0(v0)

)
·
[
g2

0(v0)
(
v′θ̇ + γ′0µ̇(x) + α0π̇(x)

)
+ ∆̇(v0)

]
+ 2

ḟ(s|x)

f0(s|x)
+ 2

ṁ(x)

m0(x)

Using the expression in (7), the score simplifies to

S0 =

(
y −G0(v0)

T0(v0)

)
·

[
g2

0(v0) ·
(
v′ + α0D0(v0)−1A0(x)

)
θ̇

+ g2
0(v0) ·

(
γ′0 + α0D0(v0)−1B0(v0)

)
µ̇(x)

+
(
g2

0(v0)α0D0(v0)−1 + 1
)

∆̇(v0)

]
+ 2

ḟ(s|x)

f0(s|x)
+ 2

ṁ(x)

m0(x)

(8)

Let

Mθ(x)︸ ︷︷ ︸
d×1

=
(
v +A0(x)′D0(v0)−1α0

)
· g2

0(v0)√
T0(v0)

Mµ(v0)︸ ︷︷ ︸
ds×1

=
(
γ0 +B0(v0)′D0(v0)−1α0

)
· g2

0(v0)√
T0(v0)

M∆(v0)︸ ︷︷ ︸
1×1

=
(
g2

0(v0)D0(v0)−1α0 + 1
)
· 1√

T0(v0)

(9)

Using iterated expectations, we have

E
[
S2

0

]
= E

[(
Mθ(x)′θ̇ +Mµ(x)′µ̇(x) +M∆(v0)∆̇(v0)

)2
]

+ 4E

[∫
R
ds

ḟ(s|x)2ds

]
+ 4

∫
R
dx

ṁ(x)2dx

11



And the Fisher-information inner product is therefore given by

〈τ̇1, τ̇2〉F =

E
[(
Mθ(x)′θ̇1 +Mµ(x)′µ̇1(x) +M∆(v0)∆̇1(v0)

)
·
(
Mθ(x)′θ̇2 +Mµ(x)′µ̇2(x) +M∆(v0)∆̇2(v0)

)]
+ 4E

[∫
R
ds

ḟ1(s|x)ḟ2(s|x)ds

]
+ 4

∫
R
dx

ṁ1(x)ṁ2(x)dx

(10)

From here, using the representer method outlined in Section 2 we compute the semiparametric

efficiency bound for
√
n−consistent, regular estimators of c′θ0, for an arbitrary c, by finding the

representer τ∗ ∈ Ṫ that satisfies 〈τ∗, τ̇〉F = c′θ̇ ∀ τ̇ ∈ Ṫ . Once the representer is characterized,

the efficiency bound is given by l.b = ‖τ∗‖2F = 〈τ∗, τ∗〉F . Since c is arbitrary, the efficiency bound

for
√
n−consistent, regular estimators of θ0 will be obtained from here.

The efficient influence function for for
√
n−consistent, regular estimators of c′θ0 is given by the

score function evaluated at the representer. Using (8) and (9), once the representer τ∗ is computed,

the efficient influence function is given by

ϕ =

(
y −G0(v0)√

T0(v0)

)
·
[
Mθ(x)′θ∗ +Mµ(v0)′µ∗(x) +M∆(v0)∆∗(v0)

]
+ 2

f∗(s|x)

f0(s|x)
+ 2

m∗(x)

m0(x)
(11)

Since c is arbitrary, the efficient influence function for
√
n−consistent, regular estimators of θ0 will

be obtained from here.

3.2.3 Efficiency bound for the global interaction model

Proposition 1 Let Mθ and Mµ be as defined in (9) and let

Γ(x)︸︷︷︸
1×1

=
(
1 +Mµ(v0)′V ar[s|x]Mµ(v0)

)−1
,

Φ∗(x)︸ ︷︷ ︸
d×1

=
(
Mθ(x)− E[Mθ(x)Γ(x)|v0] · E [Γ(x)|v0]−1

)
Γ(x)

and

Σ∗θ = E
[
Φ∗(x)Φ∗(x)′

]
+ E

[
Φ∗(x)Mµ(v0)′V ar[s|x]Mµ(v0)Φ∗(x)′

]
.

If Σ∗θ is invertible, the semiparametric efficiency bound for
√
n-consistent, regular estimators of θ0

in Model (1) under Assumptions 1A-2A is well-defined and is equal to Σ∗−1
θ . And the efficient

influence function is given by

ψ(y, s, x, θ0) = Σ∗θ
−1Φ∗(x) ·

[
T0(v0)−1/2

(
y −G0(v0)

)
−Mµ(v0)′

(
s− E[s|x])

)]
.
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Invertibility of Σ∗θ is a key condition for
√
n−consistency and a finite efficiency bound. Note that

the expressions in Proposition 1 simplify to

Γ(x) =
D0(v0)

√
T0(v0)

T0(v0) ·D0(v0)2 + γ′0V ar[s|x]γ0 · g4
0(v0)

,

Φ∗(x) =

(
v − E [v · Γ(x)|v0]

E [Γ(x)|v0]

)
· Γ(x)g2

0(v0),

Proof: In the appendix. �

4 A binary choice game with incomplete information

Here we extend the global interaction model of the previous section to an incomplete-information

game with (potentially) asymmetric interaction effects. As our results will show, the efficiency

bound can be described as a generalization of the expression derived in Proposition 1.

4.1 Description of the game

The game is played between P players, labeled q = 1, . . . , P , each of which must choose a binary

action yq ∈ {0, 1}. We will follow the notational convention of letting the subscript ‘−q’ refer to

all players except q. In particular, y−q ≡ (y1, . . . , yq−1, yq+1, . . . , yP )′. Choices are made simultane-

ously. Let now i refer to the ith game. Suppose the payoff of player q in game i of choosing yq = 0

is normalized to zero, and the payoff of choosing yq = 1 is given by

uq,i(1) = x′q,ibq0 + s′dq0 + y′−q,iaq0 − νq,i.

The strategic interaction parameters for player q are given by

aq0 =
(
a1
q0, . . . , a

q−1
q0 , aq+1

q0 , . . . , aPq0

)
.

arq0 captures the strategic effect of player r on player q. We allow for pairwise asymmetries in these

effects: we can have arq0 6= ar
′
q0 and/or arq0 6= aqr0. The overall strategic interaction effect on player

q is summarized by the term

y′−q,iaq0 =
∑
r 6=q

yr,i · arq0.

Once again, suppose agents must make their choices simultaneously and before observing the re-

alization of s. Group
˜
x ≡ ∪

q
xq ∈ Rdx . Suppose that, prior to making her choice, every player q

observes the realization of
˜
x and of νq, but that the latter is private information for player q. Sup-

pose νq is independent of ν−q and that agents condition their subjective beliefs on the realization of

˜
x. Once again, agents maximize their expected payoff given their beliefs. Accordingly, the decision
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rule for player q in game i is described by the model

yq,i = 1
{
x′q,ibq0 + Êq,i[s|

˜
xi]
′dq0 + Êq,i[y−q|

˜
xi]
′aq0 − νq,i ≥ 0

}
.

As before, Êq,i denotes the subjective expectation of player q, conditional on
˜
xi. As in the global-

interaction model we need a scale normalization. Partition xq = (x1q, x
′
2q)
′ and bq0 = (bq0,1, b

′
q0,2)′,

where an underlying theoretical model predicts9 bq0,1 > 0. Let βq0 ≡
b′q0,2
bq0,1

, γq0 ≡
d′q0
bq0,1

, αq0 ≡
a′q0
bq0,1

and εq,i ≡ νq,i
bq0,1

. This model is observationally equivalent to

yq,i = 1

{
x1q,i + x′2q,iβq0 + Êq,i [s|

˜
xi]
′ γq0 + Êq,i [y−q|

˜
xi]
′ αq0 − εq,i ≥ 0

}
. (12)

The decision rule in (12) is a direct counterpart of Equation (1) in the global interactions model

studied previously. We will let

θq0 ≡
(
β′q0, γ

′
q0, α

′
q0

)′ ∈ Rdq , and θ0 ≡
(
θ′10, θ′20, . . . , θ

′
P0

)′ ∈ Rd.

Note that

αq0 =
(
α1
q0, . . . , α

q−1
q0 , αq+1

q0 , . . . , αPq0

)
.

where αrq0 captures the (normalized) strategic effect of player r on player q. As we did in the global

interaction case, we will maintain rational expectations and regularity of equilibrium beliefs.

Assumption 1B (rational expectations in the game) We assume that εq⊥εr|
˜
x for all q 6= r,

and the realization of
˜
x is public information. Accordingly, players condition their beliefs on

˜
x,

as described in (12). Players use rational expectations in the construction of their beliefs. Thus,

Êq,i [s|
˜
xi] = E [s|

˜
xi] ≡ µ0(

˜
x) (the true conditional expectation of s given

˜
x).

Similarly to the global interaction model studied previously, we will define

vq0 = x1q + x′2qβq0 + µ0(x)′γq0.

In what follows, it will be useful to define

αq0 =
(
α1
q0, . . . , α

q−1
q0 , 0, αq+1

q0 , . . . , αPq0

)
,

so we can express Êq,i [y−q|
˜
xi]
′ αq0 = Êq,i [y|

˜
xi]
′ αq0 and therefore by Assumption 1B, Equation (12)

becomes

yq,i = 1

{
vq0,i + Êq,i [y|

˜
xi]
′ αq0 − εq,i ≥ 0

}
.

9See footnote 6.
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As we did in the global interaction model, we will obtain efficiency bounds here assuming regularity

of the solution to the equilibrium conditions of the game. To this end we will extend the conditions

in Assumption 2A to this setting.

Assumption 2B

(i) (Distributional properties of εqεqεq): εq|
˜
x, s ∼ εq|

˜
x. Let Pr(εq ≤ ε|

˜
x) ≡ Gq0(ε|

˜
x), with

corresponding density given by g2
q0(ε|

˜
x). We assume that Gq0(ε|

˜
x) is absolutely continuous

w.p.1, with support R. For identification purposes and as a location-normalization, we assume

that there exists a constant cκ and a known κ ∈ (0, 1) such that Gq0(cκ|
˜
x) = κ w.p.1. For the

existence of a
√
n−consistent estimator, we will assume a multiple-index exclusion restriction.

Let
˜
v0 ≡ (v10, v20, . . . , vP0)′. Then each g2

q0 depends on
˜
x only through

˜
v0. That is, g2

q0(·|
˜
x) =

g2
q0(·|

˜
v0) for each q = 1, . . . , P .

(ii) (Equilibrium beliefs, regularity and selection mechanism):

For a given
˜
π ≡ (π1, . . . , πP )′ ∈ [0, 1]P , let

˜
H(

˜
x,

˜
π) =

(
G10(v10 +

˜
π′α10|

˜
x), G20(v20 +

˜
π′α20|

˜
x), . . . , GP0(vP0 +

˜
π′αP0|

˜
x)
)′
,

˜
ϕ(

˜
x,

˜
π) =

˜
π −

˜
H(

˜
x,

˜
π).

A solution (in
˜
π) to the fixed-point problem

˜
ϕ(

˜
x,

˜
π) = 0 is regular if the Jacobian ∇

˜
π
˜
ϕ(

˜
x,

˜
π)

is invertible. We assume that players select, as their beliefs Êq[y|
˜
x], a regular solution to

the fixed point problem
˜
ϕ(

˜
x,

˜
π) = 0 and we denote this solution as

˜
π0(

˜
x). We assume that,

w.p.1, players use the same selection mechanism to choose
˜
π0(

˜
x), and that this mechanism is

degenerate conditional on
˜
x (i.e, it selects a unique regular solution w.p.1). Regularity implies

that ∇
˜
π
˜
ϕ(

˜
x,

˜
π0(

˜
x)) ≡

˜
D0(

˜
x) is invertible w.p.1.

(iii) (A full-rank condition) For each q let vq ≡ (x′2q, µ0(
˜
x)′,

˜
π0(

˜
x)′) ∈ Rdq . The support of vq

is not contained in any proper linear subspace of Rdq .

Identification, regular estimators and Assumptions 1B- 2B

Assumptions 1B and 2B (in particular, the degeneracy property of the equilibrium selection mech-

anism) combined imply that

Pr(yq = 1|
˜
x) = Pr

(
yq = 1

∣∣x1q + x′2qβq0 + E[s|
˜
x]′γq0 + E[y−q|

˜
x]′αq0

)
∀ q. (13)

Since the nonparametric regressors that appear in (13) are identified, identification of θ0 and a
√
n−consistent estimator can follow from here, for example, using procedures designed for multiple-

index models (see Ichimura and Lee (1991), Donkers and Schafgans (2008), Ahn, Ichimura, Powell,

and Ruud (2018)). The main feature of our model is that these indices depend on nonparametric
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regressors (beliefs) and the goal of the paper is to characterize how the presence of these nonpara-

metric regressors affects the semiparametric efficiency bounds. As in the global interaction model

studied previously, the efficiency bounds we will derive for the incomplete-information game leave

the distribution of shocks nonparametrically specified, relying only on a quantile-independence

restriction10.

Existence and regularity of equilibrium beliefs and Assumption 2B

As in the global interactions model, existence of equilibrium beliefs in our game follows from

Brouwer’s fixed point theorem, since both
˜
π and

˜
H(

˜
x,

˜
π) belong in [0, 1]P and

˜
H is continuous.

A sufficient condition for all equilibria to be regular would be for the Jacobian ∇
˜
π
˜
ϕ(

˜
x,

˜
π) to be

invertible for all
˜
π ∈ [0, 1]P , but this is much stronger than what we need.

A notational simplification based on Assumption 2B

The exclusion restriction g2
q0(·|

˜
x) = g2

q0(·|
˜
v0) implies that equilibrium beliefs

˜
π0(

˜
x) are functionals

of
˜
v0. That is,

˜
π0(

˜
x) =

˜
π0(

˜
v0). Extending the notation we used previously in the global interactions

model we will denote from now on

uq0(
˜
v0) ≡ vq0 +

˜
π0(

˜
v0)′αq0

g2
q0(

˜
v0) ≡ g2

q0(
˜
v0|

˜
v0),

Gq0(
˜
v0) ≡ Gq0(

˜
v0|

˜
v0),

And letting
˜
IP be the P ×P identity matrix, the Jacobian described in part (ii) of Assumption 2B

can be expressed as a functional of
˜
v0,

˜
D0(

˜
v0) ≡ ∇

˜
π
˜
ϕ(

˜
x,

˜
π0(

˜
v0)) =

˜
IP −


g2

10(
˜
v0) · α′10

g2
20(

˜
v0) · α′20

...

g2
P0(

˜
v0) · α′P0


︸ ︷︷ ︸

P×P

Regularity implies that
˜
D0(

˜
v0) is invertible w.p.1.

4.2 Computing the efficiency bound in the incomplete-information game

The conditions in Assumption 2B imply that each gq0 belongs in the space G described in Equation

(3). Furthermore, if we denote dim(
˜
x) ≡ dx and dim(s) ≡ ds we let f2

0 (·|
˜
x) denote the conditional

10Identification in incomplete-information games has been achieved under alternative assumptions, such as
excluded-regressor restrictions in Lewbel and Tang (2015).
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density of s given
˜
x and we let m2

0(
˜
x) denote the marginal density of

˜
x, then f0 ∈ F and m0 ∈

M, as described in Equation (4). Accordingly, the corresponding tangent spaces lin T (G, gq0),

lin T (F , f0) and lin T (M,m0) are as described in Equation 5. The unknown parameters of this

model are τ0 =
(
θ0, {gq0}Pq=1, f0,m0

)
∈

˜
Γ. The nonparametric regressors µ0 and

˜
π0 are a functionals

of f0 and {gq0}Pq=1, respectively. As we have done before, fix some t0 > 0 and let t 7→ τt denote

a curve from [0, t0] to
˜
Γ that passes through τ0 at t = 0 and let τ̇ = (θ̇, {ġq}Pq=1, ḟ, ṁ) denote the

slope of τt at t = 0. This vector belongs to the product tangent space

Ṫ = R
d ×

(
×Pq=1lin T (G, gq0)

)
× lin T (H, h0)× lin T (F , f0)× lin T (M,m0).

4.2.1 Tangent vectors for the nonparametric regressors in the incomplete-information

game

Our model has once again two types of nonparametric regressors. The rational expectations µ0 for

the non-strategic outcome s and the equilibrium beliefs
˜
π0. These are functionals of the unknown

parameters in the model and their tangent vectors µ̇ and
˜
π̇ are functionals of τ̇ . As in the global

interaction model, µ̇ will follow straightforwardly from the definition of µ0, while
˜
π̇ will be derived

invoking the assumed regularity properties of equilibrium beliefs.

By definition, µ̇(
˜
x) = d

dt {µt(˜
x)}

∣∣
t=0

and ˙
˜
π(

˜
x) = d

dt {˜
πt(

˜
x)}

∣∣
t=0

. Since µt(
˜
x) =

∫
R
ds sf

2
t (s|

˜
x)ds,

we have µ̇(
˜
x) = 2

∫
R
ds sḟ(s|

˜
x)f0(s|

˜
x)ds. Next,

˜
πt(

˜
x) can be defined implicitly by the system

˜
πt(

˜
x) =


π1t(

˜
x)

π2t(
˜
x)

...

πPt(
˜
x)

 =


∫ x11+x′21β1t+µt(

˜
x)′γ1t+

˜
πt(

˜
x)′α1t

−∞ g2
1t(ε|

˜
x)dε∫ x12+x′22β2t+µt(

˜
x)′γ2t+

˜
πt(

˜
x)′α2t

−∞ g2
2t(ε|

˜
x)dε

...∫ x1P+x′2P βPt+µt(˜
x)′γPt+

˜
πt(

˜
x)′αPt

−∞ g2
Pt(ε|˜

x)dε


where αqt =

(
α1
qt, . . . , α

q−1
qt , 0, αq+1

qt , . . . , αPqt

)′
. Letting

∆̇q(
˜
v0) = 2

∫ uq(
˜
v0)

−∞
ġq(ε|

˜
v0) · gq0(ε|

˜
v0)dε,
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we have

˙
˜
π(

˜
x) =


π̇1(

˜
x)

π̇2(
˜
x)

...

π̇P (
˜
x)

 =


g2

10(
˜
v0) ·

(
v′1θ̇1 + µ̇(

˜
x)′γ10 + ˙

˜
π(

˜
x)′α10

)
+ ∆̇1(

˜
v0)

g2
20(

˜
v0) ·

(
v′2θ̇2 + µ̇(

˜
x)′γ20 + ˙

˜
π(

˜
x)′α20

)
+ ∆̇2(

˜
v0)

...

g2
P0(

˜
v0) ·

(
v′P θ̇P + µ̇(

˜
x)′γP0 + ˙

˜
π(

˜
x)′αP0

)
+ ∆̇P (

˜
v0)



=⇒

˜
IP −

g2
10(

˜
v0) · α′10

g2
20(

˜
v0) · α′20

...

g2
P0(

˜
v0) · α′P0


︸ ︷︷ ︸

=
˜
D0(

˜
v0)

·


π̇1(

˜
x)

π̇2(
˜
x)

...

π̇P (
˜
x)

 =


g2

10(
˜
v0) · v′1θ̇1

g2
20(

˜
v0) · v′2θ̇2

...

g2
P0(

˜
v0) · v′P θ̇P

+


g2

10(
˜
v0) · γ′10µ̇(

˜
x)

g2
20(

˜
v0) · γ′20µ̇(

˜
x)

...

g2
P0(

˜
v0) · γ′P0µ̇(

˜
x)

+


∆̇1(

˜
v0)

∆̇2(
˜
v0)

...

∆̇P (
˜
v0)



Thus, if we define

˜
A0(

˜
x) =


g2

10(
˜
v0) · v′1 0′ · · · 0′

0′ g2
20(

˜
v0) · v′2 · · · 0′

...
...

. . .
...

0′ 0′ 0′ g2
P0(

˜
v0) · v′P


︸ ︷︷ ︸

P×d

, ˙
˜
∆(

˜
v0) =

(
∆̇1(

˜
v0), ∆̇2(

˜
v0), . . . , ∆̇P (

˜
v0)
)′

︸ ︷︷ ︸
P×1

˜
B0(

˜
v0) =


g2

10(
˜
v0) · γ′10

g2
20(

˜
v0) · γ′20

...

g2
P0(

˜
v0) · γ′P0


︸ ︷︷ ︸

P×ds

, θ̇ =
(
θ̇1, θ̇2, . . . , θ̇P

)′
︸ ︷︷ ︸

d×1

Then, by the regularity condition in Assumption 2B we can express
˜
πt(

˜
x) compactly as

˙
˜
π(

˜
x) =

˜
D0(

˜
v0)−1 ·

(
˜
A0(

˜
x)θ̇ +

˜
B0(

˜
v0)µ̇(

˜
x) + ˙

˜
∆(

˜
v0)
)
. (14)

This is a direct generalization of Equation (7) in the global interactions model studied previously.
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4.2.2 Characterizing the score and the Fisher-information inner product in the incomplete-

information game

As a function of t, the conditional pmf of yq|
˜
x is

p2
qt(yq|

˜
x) =[∫ x1q+x′2qβqt+µt(

˜
x)′γqt+

˜
πt(

˜
y)′αqt

−∞
gqt(ε|

˜
x)dε

]yq [
1−

∫ x1q+x′2qβqt+µt(
˜
x)′γqt+

˜
πt(

˜
y)′αqt

−∞
gqt(ε|

˜
x)dε

]1−yq

and the joint density of (
˜
y, s,

˜
x) is

∏P
q=1 p

2
qt(yq|

˜
x)f2

t (s|
˜
x)m2

t (
˜
x). Denote

Tq0(
˜
v0) = Gq0(

˜
v0)[1−Gq0(

˜
v0)].

The score for estimating t = 0 in this model becomes

S0 =
P∑
q=1

(
yq −Gq0(

˜
v0)

Tq0(
˜
v0)

)
·
[
g2
q0(

˜
v0) ·

(
v′q θ̇q + γ′q0µ̇(

˜
x) + α′q0 ˙

˜
π(

˜
x)
)

+ ∆̇q(
˜
v0)
]

+ 2
ḟ(s|

˜
x)

f0(s|
˜
x)

+ 2
ṁ(

˜
x)

m0(
˜
x)

Let ιq︸︷︷︸
P×1

≡ (0, 0, . . . , 0︸ ︷︷ ︸
q − 1 zeros

, 1, 0, . . . , 0︸ ︷︷ ︸
P − q zeros

)′ (the unit vector in RP with zeros everywhere and 1 in the qth

position). Recall that dim(vq) = dim(θq0) ≡ dq and dim(θ0) =
∑P

q=1 dq ≡ d. Define

vq︸︷︷︸
d×1

≡ (0′, 0′, . . . , 0′︸ ︷︷ ︸∑q−1
r=1 dr
zeros

, v′q, 0
′, . . . , 0′︸ ︷︷ ︸∑P
r=q+1 dr
zeros

)′

Plugging the expression in (14) and grouping terms, the score simplifies to

S0 =
P∑
q=1

(
yq −Gq0(

˜
v0)

Tq0(
˜
v0)

)
·

[
g2
q0(

˜
v0) ·

(
v′q + α′q0

˜
D0(

˜
v0)−1

˜
A0(

˜
x)
)
θ̇

+ g2
q0(

˜
v0) ·

(
˜
γ′q0 + α′q0

˜
D0(

˜
v0)−1

˜
B0(

˜
v0)
)
µ̇(

˜
x)

+
(
g2
q0(

˜
v0) · α′q0

˜
D0(

˜
v0)−1 + ι′q

)
˜
∆̇(

˜
v0)

]
+ 2

ḟ(s|
˜
x)

f0(s|
˜
x)

+ 2
ṁ(

˜
x)

m0(
˜
x)

(15)

19



Let

Mqθ(
˜
x)︸ ︷︷ ︸

d×1

=
(
vq +

˜
A0(

˜
x)′
(

˜
D0(

˜
v0)−1

)′
αq0

)
·
g2
q0(

˜
v0)√

Tq0(
˜
v0)

,

Mqµ(
˜
v0)︸ ︷︷ ︸

ds×1

=
(

˜
γq0 +

˜
B0(

˜
v0)′

(
˜
D0(

˜
v0)−1

)′
αq0

)
·
g2
q0(

˜
v0)√

Tq0(
˜
v0)

,

Mq∆(
˜
v0)︸ ︷︷ ︸

P×1

=
(
g2
q0(

˜
v0)
(

˜
D0(

˜
v0)−1

)′
αq0 + ιq

)
· 1√

Tq0(
˜
v0)

,

˜
Mθ(

˜
x)︸ ︷︷ ︸

d×P

= (M1θ(
˜
x), . . . ,MPθ(

˜
x)) ,

˜
Mµ(

˜
v0)︸ ︷︷ ︸

ds×P

= (M1µ(
˜
v0), . . . ,MPµ(

˜
v0)) ,

˜
M∆(

˜
v0)︸ ︷︷ ︸

P×P

= (M1∆(
˜
v0), . . . ,MP∆(

˜
v0)

(16)

Using iterated expectations11,

E
[
S2

0

]
=

P∑
q=1

E

[(
Mqθ(

˜
x)′θ̇ +Mqµ(

˜
v0)′µ̇(

˜
x) +Mq∆(

˜
v0)′

˜
∆̇(

˜
v0)
)2
]

+ 4E

[∫
rds

ḟ(s|
˜
x)2ds

]
+ 4

∫
Rdx

ṁ(x)2dx

= E

[(
θ̇′

˜
Mθ(

˜
x) + µ̇(

˜
x)′

˜
Mµ(

˜
v0) +

˜
∆̇(

˜
v0)′

˜
M∆(

˜
v0)
)2
]

+ 4E

[∫
rds

ḟ(s|
˜
x)2ds

]
+ 4

∫
Rdx

ṁ(x)2dx

And from here, the Fisher-information inner product becomes

〈τ̇1, τ̇2〉F =

E

[(
θ̇′1

˜
Mθ(

˜
x) + µ̇1(

˜
x)′

˜
Mµ(

˜
v0) +

˜
∆̇1(

˜
v0)′

˜
M∆(

˜
v0)
)
·
(

˜
Mθ(

˜
x)′θ̇2 +

˜
Mµ(

˜
v0)′µ̇2(

˜
x) +

˜
M∆(

˜
v0)

˜
∆̇2(

˜
v0)
)′]

+ 4E

[∫
R
ds

ḟ1(s|
˜
x)ḟ2(s|

˜
x)ds

]
+ 4

∫
R
dx

ṁ1(
˜
x)ṁ2(

˜
x)dx

(17)

This is a direct generalization of the expression in (10) for the global interaction model. Once again,

the bound is computed by finding the representer τ∗ ∈ Ṫ that satisfies 〈τ∗, τ̇〉F = c′θ̇ ∀ τ̇ ∈ Ṫ ,

where c is an arbitrary vector.

11Note that Mqθ(
˜
x)′θ̇ +Mqµ(

˜
v0)′µ̇(

˜
x) +Mq∆(

˜
v0)′

˜
∆̇(

˜
v0) is a scalar.
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4.2.3 Efficiency bound for the incomplete-information game

Proposition 2 Once again, let
˜
IP denote the P×P identity matrix. Assume

˜
IP+

˜
Mµ(

˜
v0)′V ar[s|

˜
x]

˜
Mµ(

˜
v0)

is invertible w.p.1 and define

˜
Γ(

˜
x)︸︷︷︸

P×P

=
[̃
IP +

˜
Mµ(

˜
v0)′V ar[s|

˜
x]

˜
Mµ(

˜
v0)
]−1

,

˜
Φ∗(

˜
x)︸ ︷︷ ︸

d×P

=
(

˜
Mθ(

˜
x)− E [

˜
Mθ(

˜
x)

˜
Γ(

˜
x)|

˜
v0] · E [

˜
Γ(

˜
x)|

˜
v0]−1

)
˜
Γ(

˜
x)

and

˜
Σ∗θ = E

[
˜
Φ∗(

˜
x)

˜
Φ∗(

˜
x)′
]

+ E
[
˜
Φ∗(

˜
x)

˜
Mµ(

˜
v0)′V ar[s|

˜
x]

˜
Mµ(

˜
v0)

˜
Φ∗(

˜
x)′
]
.

If
˜
Σ∗θ is invertible, the semiparametric efficiency bound for

√
n−consistent, regular estimators of

θ0 in Model (12) under Assumptions 1B-2B is well-defined and is equal to
˜
Σ∗θ
−1. And the efficient

influence function is given by

˜
ψ(

˜
y, s,

˜
x, θ0) =

˜
Σ∗θ
−1

˜
Φ∗(

˜
x) ·

[
diag(

˜
T0(

˜
v0)−1/2) ·

(
˜
y −

˜
G0(

˜
v0)
)
−

˜
Mµ(

˜
v0)′
(
s− E[s|

˜
x]
)]
,

where

diag(
˜
T0(

˜
v0)−1/2)︸ ︷︷ ︸

P×P

=


T10(

˜
v0)−1/2 0 . . . 0

0 T20(
˜
v0)−1/2 . . . 0

...
...

. . .
...

0 0 · · · TP0(
˜
v0)−1/2

 ,

(
˜
y −

˜
G0(

˜
v0)
)︸ ︷︷ ︸

P×1

=


y1 −G10(

˜
v0)

y2 −G20(
˜
v0)

...

yP −GP0(
˜
v0)


Proof: In the appendix. �

Invertibility of
˜
Σ∗θ is a key condition for

√
n−consistency and a finite efficiency bound. A quick

comparison shows that the efficiency bound for the incomplete-information game is a generalization

of the one we found for the global interaction model in Proposition 1. This is not surprising because

the latter is a special case of a game that each individual plays against the “representative agent”. In

both models examined here, rational expectations and the assumption of regularity of equilibrium

beliefs play a crucial role in the computation of the bounds.
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5 Constructing efficient estimators

To my knowledge, no efficient estimators have been proposed for the type of models studied here;

particularly for the case where the distribution of unobserved disturbances is nonparametric (the

case that we focused on). Existing methods, both for binary choice models with uncertainty (Ahn

and Manski (1993) and Ahn (1995)) and for incomplete-information games (Aradillas-López (2012))

where the distribution of unobserved payoff shocks is unknown, rely on two-step procedures where

the nonparametric regressors are estimated separately in a first step and then plugged in a second

step into a criterion function which is then optimized to estimate the parameters of the model. By

their two-step nature, these estimators can be inefficient in some econometric models.

While the purpose of this paper is to compute efficiency bounds in these models, we can po-

tentially use our results to construct semiparametrically efficient estimators. For example, we can

apply our results to existing methods based on the features of the efficient influence function.

We will begin by describing these procedures and we will conclude with an outline of a possible

likelihood-based approach where the parameter θ along with the nonparametric regressors (beliefs)

are estimated simultaneously, subject to the rational-expectations and equilibrium-belief conditions.

5.1 Estimators based on the efficient influence function

Having an analytical expression of the efficient influence function and a
√
n−consistent estimator

allows us, under proper conditions, to construct a semiparametrically efficient estimator. Newey

(1990, Section 5) describes fundamental results on the construction of efficient estimators based

on the efficient influence function. The results described there are based on Bickel (1982), Schick

(1986) and Klaasen (1987). Their estimators are of the form

θ̃ = θ̂ +
1

n

n∑
i=1

ψ̂(yi, si, xi, θ̂), (18)

where ψ̂(·) is an estimator of the efficient influence function and θ̂ is a first-step estimator such

that
√
n(θ̂ − θ0) is bounded in probability. The methods proposed by the aforementioned authors

and described in Newey (1990, Section 5) rely on discretization of the parameter space and sample

splitting as ways to ensure that ψ̂(yi, si, xi, θ) converges at a rate faster than 1/
√
n. An inspection

of the efficient influence functions found in this paper shows that these can be estimated by methods

such as kernels or series. Properties of efficient influence functions estimated by kernels have been

studied, e.g, in Bickel (1982) and Bickel, Klaasen, Ritov, and Wellner (1998), while series-based

estimators have been studied, e.g, in Newey (2004). Whatever method is used, the results in this

paper provide a way to construct semiparametrically efficient estimators in strategic-interaction

models with rational expectations. To our knowledge, these appear to be the first such results for

these types of models; in particular, for constructing efficient estimators of incomplete-information
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games.

5.2 Possible likelihood-based approaches

An efficient, semiparametric likelihood-based approach would estimate the parameter θ along with

the nonparametric regressors (equilibrium beliefs) simultaneously. One potentially viable path

would be to extend the empirical likelihood method proposed in Kitamura, Tripathi, and Ahn (2004)

to our models. Their method is designed to construct efficient estimators for finite-dimensional

parameters subject to conditional moment restrictions. In our case, these restrictions would cor-

respond to the equilibrium conditions of beliefs. Our models would involve, in addition to a

finite-dimensional parameter, the equilibrium beliefs as nonparametric regressors. The procedure

could be designed to estimate, simultaneously, the parameters along with the equilibrium beliefs,

subject to the conditional moment restrictions implied by self-consistency of beliefs. A detailed

analysis of such an estimator and the conditions under which it would be asymptotically efficient

are beyond the scope of this paper and are left for future research.

6 Concluding remarks

Discrete choice models with conditional expectations as nonparametric regressors include examples

such as incomplete-information games, social-interactions models as well as single-agent discrete

choice models with uncertainty. Assuming rational expectations and equilibrium beliefs implies

that these regressors are functionals of the unknown parameters of the model. Therefore, the

semiparametric efficiency bound for
√
n−consistent, regular estimators of the finite-dimensional

parameters in these models is affected by the properties of the nonparametric regressors. Using

the method of representers in the tangent space proposed by Severini and Tripathi (2001) we

computed, for the first time, efficiency bounds for binary-choice examples of these models under

the assumptions of rational expectations and regularity of equilibrium beliefs. Even though the

goal of the paper is the derivation of the efficiency bounds, our results can potentially be applied

to construct efficient estimators. We discussed how they can be combined with existing methods

based on the features of the efficient influence function and we outlined a possible semi-empirical

likelihood based approach. Finally, the steps and arguments used in the derivation of our bounds

should hopefully provide a roadmap to help the reader extend the results beyond binary-choice

models.
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A Appendix

A.1 Proof of Proposition 1

We are interested in computing the efficiency bound for ρ(τ0) = c′θ0 for an arbitrary c. Our

goal is to find the representers τ∗ ≡ (θ∗, g∗, f∗,m∗) ∈ Ṫ that satisfy the R-F condition ∇ρ(τ̇) =

〈τ∗, τ̇〉F ∀ τ̇ ∈ Ṫ , with ∇ρ(τ̇) = c′θ̇ in this case. Firstly, we will set m∗ = 0, as this representer

will be ancillary to our problem. Secondly, it will be convenient to look for a solution to the

R-F condition where we can express f∗(s|x) = θ∗′ t∗(s|x)︸ ︷︷ ︸
d×1

and g∗(ε|v0) = θ∗′ λ∗(ε|x)︸ ︷︷ ︸
d×1

, where t∗ ∈

lin T (F , f0) and λ∗ ∈ lin T (G, g0) element-wise (note that any linear combination of elements

in these tangent spaces are, by definition, elements of the tangent spaces, too). By the R-F

Theorem, if such a solution exists, it is the unique solution to the R-F condition. As our proof

will show, this is the case. From the above expressions, we have µ∗(x) = δ∗(x)θ∗, where δ∗(x)︸ ︷︷ ︸
ds×d

=

2
∫
R
ds s ·t∗(s|x)′f0(s|x)ds and ∆∗(v0) = θ∗′η∗(v0), where η∗(v0)︸ ︷︷ ︸

d×1

= 2
∫ u(v0)
−∞ λ∗(ε|v0)g0(ε|v0)dε. Using

the objects defined in (9), the expression of the Fisher-information inner product in (10) becomes

〈τ∗, τ̇〉F =

θ∗′E
[(
Mθ(x) + δ∗(x)′Mµ(v0) + η∗(v0)M∆(v0)

)
·
(
Mθ(x)′θ̇ +Mµ(v0)′µ̇(x) +M∆(v0) · ∆̇(v0)

)]
+θ∗′E

[
4

∫
R
ds

t∗(s|x)f0(s|x)ds

]
Let

Φ∗(x) ≡Mθ(x) + δ∗(x)′Mµ(v0) + η∗(v0)M∆(v0).

Grouping terms, we obtain

〈τ∗, τ̇〉F = θ∗′E
[
Φ∗(x)Mθ(x)′

]
θ̇︸ ︷︷ ︸

(A1A)

+ θ∗′E
[
Φ∗(x)M∆(v0)∆̇(v0)

]
︸ ︷︷ ︸

(A1B)

+ θ∗′E

[∫
R
ds

{
2Φ∗(x)Mµ(v0)′sf0(s|x) + 4t∗(s|x)

}
ḟ(s|x)ds

]
︸ ︷︷ ︸

(A1C)

(A1)

to find the representer τ∗ that satisfies the R-F condition, we will first find the one that makes

both (A1B) and (A1C) equal to zero. To make (A1C) equal to zero, we choose the representer

t∗(s|x) = −1

2
Φ∗(x)Mµ(v0)′ (s− E[s|x]) f0(s|x). (A2)
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Note first that with this choice, (A1C) becomes

2θ∗′E

[
Φ∗(x)Mµ(v0)′E[s|x]

∫
R
ds

ḟ(s|x)f0(s|x)ds︸ ︷︷ ︸
=0 ∀ ḟ∈lin T (F ,f0)

]
= 0.

Next we need to verify that t∗ ∈ lin T (F , f0) element-wise. From (5), we need to show that∫
R
ds t
∗(s|x)f0(s|x)ds = 0 w.p.1. For any x, we have∫

R
ds

t∗(s|x)f0(s|x)ds = −1

2
Φ∗(x)Mµ(v0)′

∫
R
ds

(s− E[s|x]) f2
0 (s|x)ds︸ ︷︷ ︸

=0

= 0,

and therefore t∗ ∈ lin T (F , f0) element-wise. Recall that we defined δ∗(x) = 2
∫
R
ds st

∗(s|x)′f0(s|x)ds.

With our choice of representer t∗, we obtain

δ∗(x) = −
∫
R
ds

s · (s− E[s|x])′ f2
0 (s|x)dsMµ(v0)Φ∗(x)′

= −
∫
R
ds

(s− E[s|x]) · (s− E[s|x])′ f2
0 (s|x)dsMµ(v0)Φ∗(x)′

= −V ar[s|x]Mµ(v0)Φ∗(x)′

Next recall that we defined Φ∗(x) = Mθ(x) + δ∗(x)′Mµ(v0) + η∗(v0)M∆(v0). Denoting Γ(x) =

(1 +Mµ(v0)′V ar[s|x]Mµ(v0))−1 and using the above expression for δ∗(x), we obtain

Φ∗(x) = (Mθ(x) + η∗(v0)M∆(v0)) · Γ(x). (A3)

Our next step is to make (A1B) equal to zero. That is, we want θ∗′E
[
Φ∗(x)M∆(v0)∆̇(v0)

]
= 0.

We will accomplish this by forcing E [Φ∗(x)|v0] = 0 w.p.1. From the above expression for Φ∗(x),

this will be done if we make η∗(v0) = −E [Mθ(x)Γ(x)|v0]E[Γ(x)|v0]−1M∆(v0)−1. Since η∗(v0) =

2
∫ u(v0)
−∞ λ∗(ε|v0)g0(ε|v0)dε, we need to find a representer λ∗ ∈ lin T (G, g0) that satisfies

∫ u(v0)

−∞
λ∗(ε|v0)g0(ε|v0)dε = −1

2
E [Mθ(x)Γ(x)|v0]E[Γ(x)|v0]−1M∆(v0)−1. (A4)
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From (5), λ∗ ∈ lin T (G, g0) (element-wise) requires the conditions
∫
R
λ∗(ε|v0)g0(ε|v0)dε = 0 and∫ cκ

−∞ λ
∗(ε|v0)g0(ε|v0)dε = 0 w.p.1. Our choice for λ∗ is

λ∗(ε|v0) = −E [Mθ(x)Γ(x)|v0]E[Γ(x)|v0]−1M∆(v0)−1 ×

[
1 {u(v0) ≤ cκ} ·

(
1{ε ≤ u(v0)}∫ u(v0)
−∞ g2

0(ε|v0)dε

− 1{u(v0) < ε ≤ cκ}∫ cκ
u(v0) g

2
0(ε|v0)dε

)
+ 1 {u(v0) > cκ} ·

(
1{cκ < ε ≤ u(v0)}∫ u(v0)
cκ

g2
0(ε|v0)dε

− 1{ε > u(v0)}∫∞
u(v0) g

2
0(ε|v0)dε

)]
· g0(ε|v0)

(A5)

It is easy to verify that the representer λ∗ satisfies (A4), as well as
∫
R
λ∗(ε|v0)g0(ε|v0)dε = 0 and∫ cκ

−∞ λ
∗(ε|v0)g0(ε|v0)dε = 0 w.p.1, and therefore λ∗ ∈ lin T (G, g0). Thus, we now have

Φ∗(x) =
(
Mθ(x)− E[Mθ(x)Γ(x)|v0] · E [Γ(x)|v0]−1

)
Γ(x). (A6)

And our representers in (A2) and (A5) make both (A1B) and (A1C) equal to zero, and therefore

(A1) becomes 〈τ∗, τ̇〉F = θ∗′E [Φ∗(x)Mθ(x)′] θ̇ ∀ θ̇ ∈ Ṫ . From (A6) we have E[Φ∗(x)|v0] = 0.

Therefore,

E
[
Φ∗(x)Mθ(x)′

]
= E

[
Φ∗(x)

(
Mθ(x)− E[Mθ(x)Γ(x)|v0] · E [Γ(x)|v0]−1

)′
︸ ︷︷ ︸

=(Φ∗(x)·Γ(x)−1)′

]

= E
[
Φ∗(x) ·

(
Φ∗(x) · Γ(x)−1

)′]
= E

[
Φ∗(x)

(
Γ(x)−1

)
Φ∗(x)′

]
= E

[
Φ∗(x)

(
1 +Mµ(v0)′V ar[s|x]Mµ(v0)

)︸ ︷︷ ︸
=Γ(x)−1

Φ∗(x)′
]

= E
[
Φ∗(x)Φ∗(x)′

]
+ E

[
Φ∗(x)Mµ(v0)′V ar[s|x]Mµ(v0)Φ∗(x)′

]
≡ Σ∗θ

Therefore, (A1) becomes 〈τ∗, τ̇〉F = θ∗′Σ∗θ θ̇ ∀ θ̇ ∈ Ṫ , and the R-F condition becomes c′θ̇ = θ∗′Σ∗θ θ̇

∀ θ̇ ∈ Ṫ . Assuming that Σ∗θ is invertible, the representer that solves this condition is θ∗ = Σ∗θ
−1 ·c.

Our representers then become

τ∗ = (θ∗, g∗, f∗,m∗) =
(
θ∗, θ∗′λ∗, θ∗′t∗, 0

)
, with θ∗ = Σ∗θ

−1 · c,

and t∗, λ∗ as described in Equations (A2) and (A5). From here, invoking the R-F Theorem as

described in Section 2 we obtain the efficiency bound for
√
n−consistent, regular estimators of

ρ(θ0) = c′θ0,

l.b = 〈τ∗, τ∗〉F = θ∗′Σ∗θθ
∗ = c′Σ∗θ

−1Σ∗θΣ
∗
θ
−1 · c = c′Σ∗θ

−1c.

Since c is arbitrary, the lower bound for the asymptotic variance of
√
n−consistent, regular estima-

tors of θ0 is given by Σ∗θ
−1, which concludes the proof of Proposition 1. �
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A.2 Proof of Proposition 2

The steps of the proof completely mirror those of Proposition 1. As we did there, the first step is

to set m∗ = 0 and to look for a solution to the R-F condition where we can express the remaining

representers as f∗(s|
˜
x) = θ∗′ t∗(s|

˜
x)︸ ︷︷ ︸

d×1

and g∗q (ε|
˜
v0) = θ∗′ λ∗q(ε|

˜
v0)︸ ︷︷ ︸

d×1

, where t∗ ∈ lin T (F , f0) and

λ∗q ∈ lin T (G, g0) element-wise. Accordingly, if we define

η∗q (
˜
v0)︸ ︷︷ ︸

d×1

= 2

∫ uq0(
˜
v0)

−∞
λ∗q(ε|

˜
v0)gq0(ε|

˜
v0)dε and let

˜
η∗(

˜
v0)︸ ︷︷ ︸

d×P

≡ (η∗1(
˜
v0), . . . , η∗P (

˜
v0)) , (A7)

we can express
˜
∆∗(

˜
v0)︸ ︷︷ ︸

P×1

=
˜
η∗(

˜
v0)′θ∗. Similarly, defining δ∗(

˜
x)︸ ︷︷ ︸

ds×d

= 2
∫
R
ds st

∗(s|
˜
x)′f0(s|

˜
x)ds, we have

µ∗(
˜
x) = δ∗(

˜
x)θ∗. Finally, letting

˜
Φ∗(

˜
x)︸ ︷︷ ︸

d×P

=
˜
Mθ(

˜
x) + δ∗(

˜
x)′

˜
Mµ(

˜
v0) +

˜
η∗(

˜
v0)

˜
M∆(

˜
v0),

then using the Fisher-information inner product expression in (17), we have

〈τ∗, τ̇〉F = θ∗′E
[
˜
Φ∗(

˜
x)

˜
Mθ(

˜
x)′
]
θ̇︸ ︷︷ ︸

(A8A)

+ θ∗′E
[
˜
Φ∗(

˜
x)

˜
M∆(

˜
v0)

˜
∆̇(

˜
v0)
]

︸ ︷︷ ︸
(A8B)

+ θ∗′E

[∫
R
ds

{
2

˜
Φ∗(

˜
x)

˜
Mµ(

˜
v0)′sf0(s|

˜
x) + 4t∗(s|

˜
x)
}
ḟ(s|

˜
x)ds

]
︸ ︷︷ ︸

(A8C)

(A8)

The expression in (A8) is a direct generalization of (A1) in the proof of Proposition 1. Like we did

there, our goal is to find representers that make (A8B) and (A8C) equal to zero. Analogous steps

to those in the proof of Proposition 1 yield the representer

t∗(s|
˜
x) = −1

2 ˜
Φ∗(

˜
x)

˜
Mµ(

˜
v0)′ (s− E[s|

˜
x]) f0(s|

˜
x) (A9)

which is analogous to the representer in (A2), in the proof of Proposition 1. Note that
∫
R
ds t
∗(s|

˜
x)f0(s|

˜
x)ds =

0 w.p.1, and therefore t∗ ∈ lin T (F , f0) element-wise. Next let

˜
Γ(

˜
x) =

(̃
IP +

˜
Mµ(

˜
v0)′V ar[s|

˜
x]

˜
Mµ(

˜
v0)
)−1

.

From (A9), analogous steps to those leading to (A3) in the proof of Proposition 1 yield

˜
Φ∗(

˜
x) =

(
˜
Mθ(

˜
x) +

˜
η∗(

˜
v0)

˜
M∆(

˜
v0)
)

˜
Γ(

˜
x). (A10)
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This is directly analogous to the expression in (A3), in the proof of Proposition 1. As we did there,

our next step is to choose
˜
η∗ to ensure that E[

˜
Φ∗(

˜
x)|

˜
v0] = 0 w.p.1. This requires setting

˜
η∗(

˜
v0)︸ ︷︷ ︸

d×P

= −E [
˜
Mθ(

˜
x)

˜
Γ(

˜
x)|

˜
v0]E [

˜
Γ(

˜
x)|

˜
v0]−1

˜
M∆(

˜
v0)−1 (A11)

Let
˜
η∗[q](˜

v0) denote the qth column of
˜
η∗(

˜
v0), as defined above and recall that we defined η∗[q](˜

v0) =

2
∫ uq0(

˜
v0)

−∞ λ∗q(ε|
˜
v0)gq0(ε|

˜
v0)dε (see (A7)). Parallel to the proof of Proposition 1, the representers λ∗q

are chosen from here. Our choice for λ∗q is

λ∗q(ε|
˜
v0) =

1

2
·
˜
η∗[q](

˜
v0)×

[
1 {uq0(

˜
v0) ≤ cκ} ·

(
1{ε ≤ uq0(

˜
v0)}∫ uq0(

˜
v0)

−∞ g2q0(ε|
˜
v0)dε

− 1{uq0(
˜
v0) < ε ≤ cκ}∫ cκ

uq0(
˜
v0)

g2q0(ε|
˜
v0)dε

)
+ 1 {uq0(

˜
v0) > cκ} ·

1{cκ < ε ≤ uq0(
˜
v0)}∫ uq0(

˜
v0)

cκ
g2q0(ε|

˜
v0)dε

− 1{ε > uq0(
˜
v0)}∫∞

uq0(
˜
v0)

g2q0(ε|
˜
v0)dε

] · gq0(ε|
˜
v0)

(A12)

This ensures 2
∫ uq0(

˜
v0)

−∞ λ∗q(ε|
˜
v0)gq0(ε|

˜
v0)dε = η∗[q](˜

v0) w.p.1. In addition,
∫
R
λ∗q(ε|

˜
v0)gq0(ε|

˜
v0)dε = 0

and
∫ cκ
−∞ λ

∗
q(ε|

˜
v0)gq0(ε|

˜
v0)dε = 0 w.p.1, and therefore λ∗q ∈ lin T (G, g0). And we have

˜
Φ∗(

˜
x) =

(
˜
Mθ(

˜
x)− E[

˜
Mθ(

˜
x)

˜
Γ(

˜
x)|

˜
v0] · E [

˜
Γ(x)|

˜
v0]−1

)
˜
Γ(

˜
x). (A13)

And (A8) simplifies to 〈τ∗, τ̇〉F = θ∗′E [
˜
Φ∗(

˜
x)

˜
Mθ(

˜
x)′] θ̇ ∀ θ̇ ∈ Ṫ . The rest of the steps are entirely

analogous to those of the proof of Proposition 1. From (A13), we have E [
˜
Φ∗(

˜
x)|

˜
v0] = 0 w.p.1.

Therefore,

E
[
˜
Φ∗(

˜
x)

˜
Mθ(

˜
x)′
]

= E
[
˜
Φ∗(

˜
x)
(

˜
Mθ(

˜
x)− E [

˜
Mθ(

˜
x)

˜
Γ(

˜
x)|

˜
v0]E [

˜
Γ(

˜
x)|

˜
v0]−1

)′
︸ ︷︷ ︸

=(
˜
Φ∗(

˜
x)·

˜
Γ(

˜
x)−1)′

]

= E
[
˜
Φ∗(

˜
x)(

˜
Φ∗(

˜
x) ·

˜
Γ(

˜
x)−1)′

]
= E

[
˜
Φ∗(

˜
x)
(
˜
Γ(

˜
x)−1

)′
˜
Φ∗(

˜
x)′
]

= E
[
˜
Φ∗(

˜
x)
(̃
IP +

˜
Mµ(

˜
v0)′V ar[s|

˜
x]

˜
Mµ(

˜
v0)
)︸ ︷︷ ︸

=(
˜
Γ(

˜
x)−1)′

˜
Φ∗(

˜
x)′
]

= E
[
˜
Φ∗(

˜
x)

˜
Φ∗(

˜
x)′
]

+ E
[
˜
Φ∗(

˜
x)

˜
Mµ(

˜
v0)′V ar[s|

˜
x]

˜
Mµ(

˜
v0)

˜
Φ∗(

˜
x)′
]
≡

˜
Σ∗θ

And therefore (A8) simplifies to 〈τ∗, τ̇〉F = θ∗′
˜
Σ∗θ θ̇ ∀ θ̇ ∈ Ṫ . The R-F condition becomes c′θ̇ =

θ∗′
˜
Σ∗θ θ̇ ∀ θ̇ ∈ Ṫ . Assuming that

˜
Σ∗θ is invertible, the representer that satisfies the R-F condition

is therefore θ∗ =
˜
Σ∗θ
−1 · c. From here, the R-F Theorem described in Section 2 yields the efficiency

bound for
√
n−consistent, regular estimators of ρ(θ0) = c′θ0,

l.b = ‖τ∗‖2F = 〈τ∗, τ∗〉F = θ∗′
˜
Σ∗θθ

∗ = c′
˜
Σ∗θ
−1

˜
Σ∗θ

˜
Σ∗θ
−1 · c = c′

˜
Σ∗θ
−1c.
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Since c is arbitrary, the lower bound for the asymptotic variance of
√
n−consistent, regular estima-

tors of θ0 is given by
˜
Σ∗θ
−1, which concludes the proof of Proposition 2. �
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