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Abstract

We revisit the econometric analysis of normal-form discrete games where, instead
of assuming that all observations come from the same behavioral model (e.g, Nash
equilibrium), we pre-specify a collection of candidate behavioral models (each one
with potential multiple solutions) that could have generated each observation. As-
suming the existence of an observable instrument Z that controls for the dependence
between the behavior/solution selection mechanisms and payoff covariates, our global
model becomes a convolution of the candidate behavioral models, with the convolu-
tion weights being nonparametric functionals of Z. We show conditions under which
the parameters of the model are point-identified, and we propose conditional-GMM
estimation and inference procedures. We evaluate the performance of our conditional-
GMM estimator in Monte Carlo experiments. As an empirical illustration, we analyze
geographic entry decisions by the two dominant firms in the home improvement retail
industry in the United States (Lowe’s and Home Depot). Assuming coalitional cooper-
ation and Nash equilibrium as the two candidate behavioral models, we find evidence
that both types of behavior are present across markets, and that the probability of
cooperation decreases with market size.

Keywords: Estimation of games, uncertain behavior, multiple equilibria, semipara-
metric convolution.
JEL classification: C1, C14, C57.

1 Introduction

One of the main goals in the econometric analysis of games is the estimation of play-

ers’ payoff functions. This requires assuming a behavioral theory (e.g, Nash equilibrium)
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that links the outcomes observed to the underlying game. Thus, the behavioral model as-

sumed is key to the validity of the analysis, and having inferential methods that provide

some degree of behavioral robustness is a goal we should pursue. Allowing for behav-

ioral heterogeneity can be facilitated in experimental settings where the researcher has

precise knowledge about payoff functions (see, e.g, Crawford, Costa-Gomes, and Iriberri

(2013)), but it can be significantly more challenging with nonexperimental data where

payoff functions themselves are unknown and must be estimated. As a result, the econo-

metric analysis of games in nonexperimental settings typically relies on the assumption

that every observation in the data was produced by the same behavioral model, which is

assumed to be known (e.g, Nash equilibrium). This paper focuses on static discrete games

where the parameters of players’ normal-form payoff functions are the unknown object of

interest. Instead of assuming one behavioral model, we propose a “global” model where

we pre-specify a collection of candidate behavioral models, each one with potentially mul-

tiple solutions, that can produce each observation in the data. Unobservable behavior and

solution-selection mechanisms determine which behavioral model and which correspond-

ing solution are selected.

Assuming the existence of an observable instrument Z that controls for the dependence

between the selection mechanisms and payoff covariates, the predictions of our global

model can be written as a convolution of the predictions of the candidate solutions, with

the convolution weights being nonparametric functionals of Z. If our candidate solutions

are not observationally equivalent, the weights of the convolution can be semiparametri-

cally identified and point-identification of the payoff parameters can be obtained if the

latent selection mechanisms assign nonzero probability to behavioral models that have

identification power. In the absence of such restrictions, a CS for the parameters can be

constructed from our semiparametric convolution. In either case (estimation and infer-

ence), we propose conditional GMM procedures based on the semiparametric convolution

produced by our global model. Our setup allows inference of the normal-form parameters

as well as the convolution weights, which contain key information about the propensity of

the selection mechanisms to select each behavioral model, and each solution within each

behavioral model. While our framework depends on the availability of an instrument Z

that satisfies key exclusion restrictions, the validity of any proposed instrument Z can be

formally evaluated through consistent specification tests.

The paper proceeds as follows. Section 2 introduces our approach through a 2×2 game

with two candidate behavioral models: complete-information pure-strategy Nash equilib-

rium and (coalitional) cooperation. Section 3 expands the model in Section 2 by allowing

for mixed-strategies and by introducing incomplete-information Bayesian Nash equilib-

rium as a third candidate behavioral model. Section 4 goes beyond the 2 × 2 game and
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describes a general discrete game with P ≥ 2 players and a collection of candidate behav-

ioral models, each with potentially multiple solutions. In each section we discuss identifi-

cation, estimation and inference for the normal-form parameters and for the properties of

the underlying behavioral and solution-selection mechanisms. Section 5 conducts Monte

Carlo studies of the properties of our proposed conditional-GMM estimation approach

to recover payoff parameters and the identifiable properties of the underlying selection

mechanisms. As an empirical illustration in Section 6, we apply our methodology to an-

alyze geographic-market entry decisions by Lowe’s and Home Depot using cooperation

and Nash equilibrium as candidate behavioral models in each market. Our findings are

consistent with a mixture of both behavioral models where the probability of coopera-

tion decreases with market size. Section 7 concludes. Appendix A includes details of

our main econometric results, and an Empirical Supplement includes additional results

for our Monte Carlo experiments and our empirical illustration. An online Economet-

ric Supplement with step-by-step econometric derivations of our results can be found at

https://aaradill.github.io/econometric_supplement_uncertain_behavior.pdf

2 A 2× 22× 22× 2 game

Consider the following simultaneous 2× 2 normal-form game,

Table 1S-. A game of strategic substitutes

Y2 = 1 Y2 = 0

Y1 = 1 t1 −∆1 − ε1 , t2 −∆2 − ε2 t1 − ε1 , 0

Y1 = 0 0 , t2 − ε2 0 , 0

Consider the case of strategic substitutes (∆p ≥ 0 for p = 1,2) and complete-information,

where both players observe (tp,∆p, εp)2
p=1 before making their choices. We will expand our

model to include mixed strategies, additional candidate behavioral models, more players

and a richer action space in subsequent sections. Let Y ≡ {0,1} × {0,1} denote the action

space, with y ≡ (y1, y2) ∈ Y denoting a generic element of Y , and Y ≡ (Y1,Y2) denoting the

actual outcome of the game. Suppose we consider two candidate behavioral models,

(i) Noncooperative: Players play a pure-strategy Nash equilibrium (PSNE).

(i) Cooperative: Players engage in cooperative (coalitional) bargaining and select the

outcome Y ≡ (Y1,Y2) that maximizes the sum of their payoffs (i.e, the total value of

the coalition).

With transferable utility, maximization of joint payoffs is the prediction of Nash bargain-

ing (see Myerson (1990), Thomson (1994), or Watson (2013, Appendix D)). Figure 1 fixes
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(tp,∆p)2
p=1 and splits R2 into regions of realizations of (ε1, ε2) corresponding to each out-

come Y ∈ Y that constitute a solution to each of our candidate behavioral models. Co-

operation always yields a unique prediction for Y , while PSNE produces multiple predic-

tions in some regions, which is a well-known result (see Bjorn and Vuong (1984), Bresna-

han and Reiss (1990), Bresnahan and Reiss (1991b), Bresnahan and Reiss (1991a), Tamer

(2003), Berry and Tamer (2007)). However, both models produce a unique prediction for

S ≡ Y1 +Y2, as shown in Figure 2, so we will focus on this aggregate outcome.

2.1 A parameterization of normal-form payoff functions

We will assume that ε ≡ (ε1, ε2) are unobserved by the econometrician, and we will model

the remaining payoff shifters (tp,∆p)2
p=1 as follows. Let (Xns1 ,X

ns
2 ,X

s
1,X

s
2) be a collection of

covariates that are observable to the econometrician. Xnsp includes covariates that shift1

player p’s non-strategic payoff component tp, while Xsp denotes covariates that shift player

p’s strategic-interaction payoff component ∆p. Let (β10,β20,∆10,∆20) be unknown param-

eters. We will parameterize tp = Xnsp
′βp0 and ∆p ≡ Xsp′∆p0 for p = 1,2, so the normal-form

representation of the game is given by,

Table 2S-. A parameterized game of strategic substitutes

Y2 = 1 Y2 = 0

Y1 = 1 Xns1
′β10 −Xs1

′
∆10 − ε1 , Xns2

′β20 −Xs2
′
∆20 − ε2 Xns1

′β10 − ε1 , 0

Y1 = 0 0 , Xns2
′β20 − ε2 0 , 0

The values of (∆10,∆20), and the support of (Xs1,X
s
2) are such that Xsp

′∆p0 ≥ 0 w.p.1, so we

have a strategic-substitutes game. Constant strategic interaction effects is a special case

where Xsp ≡ 1 and Xsp
′∆p0 = ∆p0. Nonstrategic Xnsp and strategic Xsp payoff shifters can have

elements in common for each player and across players as long as the conditions we will

describe below are satisfied. We will group X ≡ (Xns1 ∪X
ns
2 ∪X

s
1∪X

s
2) and we will maintain

that players have complete information, so they observe the realization of (X,ε) and they

know the true values of the payoff parameters.

2.2 A parameterization for the joint distribution of εεε

We will consider a setting where the econometrician observes a sample of outcomes and

payoff covariates from this game, but does not know which of the two candidate behavioral

models produced each observation. Our approach will ultimately rely on a particular con-

volution of the parametric predictions of each candidate behavioral model. To obtain these

predictions we will parameterize the joint distribution of the unobserved payoff shifters ε.

1We will use the terms “payoff covariates” and “payoff shifters” interchangeably.
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Figure 1: Predicted outcomes for Y under cooperation and PSNE
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Figure 2: Predicted outcomes for S ≡ Y1 +Y2 under cooperation and PSNE
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Assumption G1 (A parametric distribution for εεε)

(i) ε ∼ F1,2(·, ·|ρ0), a parametric, jointly continuous distribution with unbounded support on
R

2 indexed by a scalar parameter ρ0 that captures the interdependence between ε1 and ε2.
We assume that ε are independent of X, although this can be relaxed if we parameterize the
conditional distribution of ε|X. We denote the marginal distributions as εp ∼ Fp(·).

(ii) Group the non-strategic parameters in our model as γ0 ≡ (β0,ρ0), with β0 ≡ (β10,β20), and
the strategic-interaction parameters as ∆0 ≡ (∆10,∆20). We will denote θ0 ≡ (γ0,∆0) ∈Θ, where
the parameter space Θ is assumed to be compact. We will denote a generic element in Θ as
θ ≡ (γ,∆), with γ ≡ (β1,β2,ρ) and ∆ ≡ (∆1,∆2).

(iii) Let ∇pF1,2(ϵ1,ϵ2|ρ) ≡ ∂F1,2(ϵ1,ϵ2|ρ)
∂ϵp

. Then,
∣∣∣∇pF1,2(ϵ1,ϵ2|ρ)

∣∣∣ ≤ D <∞ ∀ (ϵ1,ϵ2) ∈R2, ρ ∈Θ.
■

Since both of our candidate behavioral models are characterized by threshold-crossing

decision rules, the scale of εp cannot be separately identified from the scale of the payoff
parameters. For this reason, the variance of εp is fixed in Fp(·). In our strategic-substitutes

game, we will restrict Θ to satisfy Xs1
′
∆1 ≥ 0 and Xs2

′
∆2 ≥ 0 w.p.1 ∀ ∆ ∈Θ.

2.3 An expression for E[S |X]E[S |X]E[S |X] in each behavioral model

For a given (θ,X), the regions of ε ∈ R2 that predict each possible value of S ∈ {0,1,2} for

our candidate behavioral models are (see Figure 2),

Cooperative-behavior regions:

RCS (0|X,β) ≡
{
(ε1, ε2) ∈R2 : ε1 ≥ Xns1

′β1 , ε2 ≥ Xns2
′β2

}
,

RCS (2|X,β,∆) ≡
{
(ε1, ε2) ∈R2 : ε1 ≤ Xns1

′β1 −
(
Xs1
′
∆1 +Xs2

′
∆2

)
, ε2 ≤ Xns2

′β2 −
(
Xs1
′
∆1 +Xs2

′
∆2

)}
,

RCS (1|X,β,∆) ≡R2 \
(
RCS (0|X,β)∪RCS (2|X,β,∆)

)
.

Noncooperative-behavior regions:

RNCS (0|X,β) ≡
{
(ε1, ε2) ∈R2 : ε1 ≥ Xns1

′β1 , ε2 ≥ Xns2
′β2

}
,

RNCS (2|X,β,∆) ≡
{
(ε1, ε2) ∈R2 : ε1 ≤ Xns1

′β1 −Xs1
′
∆1 , ε2 ≤ Xns2

′β2 −Xs2
′
∆2

}
,

RNCS (1|X,β,∆) ≡R2 \
(
RNCS (0|X,β)∪RNCS (2|X,β,∆)

)
.

(1)
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Note that RCS (0|X,β) =RNCS (0|X,β) for any β. Thus,

If players’ behavior is cooperative:

S = 0 ·1
{
ε ∈ RCS (0|X,β0)

}
+ 1 ·1

{
ε ∈ RCS (1|X,β0,∆0)

}
+ 2 ·1

{
ε ∈ RCS (2|X,β0,∆0)

}
.

If players’ behavior is noncooperative:

S = 0 ·1
{
ε ∈ RNCS (0|X,β0)

}
+ 1 ·1

{
ε ∈ RNCS (1|X,β0,∆0)

}
+ 2 ·1

{
ε ∈ RNCS (2|X,β0,∆0)

}
.

(2)

From here, let

µCS (X,θ) ≡ F1(Xns1
′β1) +F2(Xns2

′β2)−F1,2(Xns1
′β1 , Xns2

′β2|ρ)

+F1,2(Xns1
′β1 −Xs1

′
∆1 −Xs2

′
∆2 , Xns2

′β2 −Xs1
′
∆1 −Xs2

′
∆2|ρ),

µNCS (X,θ) ≡ F1(Xns1
′β1) +F2(Xns2

′β2)−F1,2(Xns1
′β1 , Xns2

′β2|ρ)

+F1,2(Xns1
′β1 −Xs1

′
∆1 , Xns2

′β2 −Xs2
′
∆2|ρ).

(3)

Combining (2) and (3), we have E[S |X] = µCS (X,θ0) if players’ behavior is cooperative, and

E[S |X] = µNCS (X,θ0) if players’ behavior is noncooperative.

2.4 A global behavioral model that nests cooperative and noncooperative be-
havior

We will embed both of the candidate behavioral models into a global model, where the

realization of a behavioral selection mechanism ξ determines the behavioral model se-

lected. We denote ξ = 1 if players’ behavior is cooperative, and ξ = 2 if players’ behavior

is PSNE. The realization of ξ (and therefore the underlying behavioral model) is unob-

served by the econometrician, but it is observed by both players prior to playing the game.

Our global model allows for players to always cooperate or always play PSNE, but it ac-

commodates the case where players cooperate in some realizations of the game and follow

non-cooperative behavior in others. The precise way through which behavior is selected

(e.g, whether players observe a signal from “nature” prior to deciding whether to cooper-

ate, etc.) will be irrelevant as long as the mechanism ξ satisfies the exclusion restrictions

in Assumption G2. From (2), in our global behavioral model we have,

S =1{ξ = 1} ·
[
1

{
ε ∈ RCS (1|X,β0,∆0)

}
+ 2 ·1

{
ε ∈ RCS (2|X,β0,∆0)

}]
+1{ξ = 2} ·

[
1

{
ε ∈ RNCS (1|X,β0,∆0)

}
+ 2 ·1

{
ε ∈ RNCS (2|X,β0,∆0)

}] (4)
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2.4.1 Introducing an instrumentZZZ for the behavioral selection mechanism ξξξ

We will assume the existence of an observable Z that controls for the dependence between

the behavioral mechanism ξ and players’ payoff covariates.

Assumption G2 (An exclusion restriction for the behavioral selection mechanism) ξ⊥ε,
and there exists an observable Z such that ξ |(X,Z) ∼ ξ |Z. ■

We can weaken ξ⊥ε to the conditional independence restriction ξ⊥ε|(X,Z) if we assume a

parameterization Fε|X,Z(·, ·|X,Z,ρ0) for the conditional distribution of ε|(X,Z). Z can have

elements in common with X, with Z ⊂ X as a possibility. However, as we will make precise

below, we rule out the case where Z = X. From now on, we will group U ≡ X ∪ Z. Let

π(Z) ≡ P r(ξ = 1|Z) (the probability of cooperation conditional on Z), which we will leave

nonparametrically specified. By Assumption G2, E[S |U ] = π(Z) · µCS (X,θ0) + (1−π(Z)) ·
µNCS (X,θ0) in our global behavioral model. Thus, the predictions of our global model are

a convolution of the parametric predictions of each candidate behavioral model, and the

convolution weights are nonparametric functionals of Z. Let

mCS (X,θ) ≡ F1,2(Xns1
′β1 −Xs1

′
∆1 −Xs2

′
∆2 , Xns2

′β2 −Xs1
′
∆1 −Xs2

′
∆2|ρ),

mNCS (X,θ) ≡ F1,2(Xns1
′β1 −Xs1

′
∆1 , Xns2

′β2 −Xs2
′
∆2|ρ),

ΞS(X,θ) ≡mCS (X,θ)−mNCS (X,θ).

(5)

From (3), our expression for E[S |U ] simplifies to,

E[S |U ] =mNCS (X,θ0) +π(Z) ·ΞS(X,θ0). (6)

Our goal is to do inference on θ0 using the semiparametric convolution (6) when the econo-

metrician observes2 a random sample (Yi ,Xi ,Zi)
n
i=1 produced by our global model.

2.5 Identifiability of θ0θ0θ0 in our global behavioral model

Group mS(X,θ) ≡ (mCS (X,θ) , mNCS (X,θ)). From (6), our model predicts the exclusion re-

striction E[S |U ] = E[S |mS(X,θ0),Z]. We could pursue inference based on this restriction,

but (6) provides additional structure, which can facilitate identification and mitigate the

curse of dimensionality vis-a-vis a method based solely on E[S |U ] = E[S |mS(X,θ0),Z]. To

exploit the semiparametric convolution in (6), we will first construct an estimator for π(Z).

Identification of the behavioral weight π(Z) will require ruling out that both candidate

behavioral models are observationally equivalent. To this end, consider the following re-

striction.
2We only need to observe (Si ,Xi ,Zi )

n
i=1.

9



Assumption G3 (Presence of strategic-interaction effects) For almost every (a.e) realiza-
tion of Z, we have P r(Xs1

′
∆10 +Xs2

′
∆20 > 0 | Z) > 0. ■

Accordingly, from now on our parameter space Θ will be assumed to satisfy,

P r(Xs1
′
∆1 ≥ 0 and Xs2

′
∆2 ≥ 0) = 1

P r(Xs1
′
∆1 +Xs2

′
∆2 > 0 | Z) > 0, a.e Z

 ∀ ∆ ∈Θ. (7)

With constant strategic-interaction effects, (7) would be satisfied if ∆p ≥ c > 0 for p = 1,2,

∀ ∆ ∈ Θ. Without Assumption G3, both candidate behavioral models could be observa-

tionally equivalent, making it impossible to identify and estimate π(Z).

Notation: In what follows, we will often denote the dimension of a vector-valued object ξ

as Rdξ .

2.5.1 Identification and estimation of γ0γ0γ0 from P r(S = 0|X)P r(S = 0|X)P r(S = 0|X)

As we noted before, both of our candidate behavioral models produce identical predictions

for the event S = 0. From Figure 2, the regions defined for S = 0 are,

RCS (0|X,β) =RNCS (0|X,β) ≡RS(0|X,β) =
{
(ε1, ε2) ∈R2 : ε1 ≥ Xns1

′β1 , ε2 ≥ Xns2
′β2

}
Therefore, P r(S = 0|U ) = P r(S = 0|X) = P r (ε ∈ RS(0|X,β0)|X)). For a given γ ≡ (β1,β2,ρ)

and X, let

P0(X,γ) ≡ 1−F1(Xns1
′β1)−F2(Xns2

′β2) +F1,2(Xns1
′β1,X

ns
2
′β2|ρ). (8)

Our model yields P r(S = 0|X) =P0(X,γ0). Letting d0 ≡ 1{S = 0}, we can look at conditions

under which γ0 can be identified from the conditional likelihood of d0|X, given by

f (d0|X) =P0(X,γ0)d0 · (1−P0(X,γ0))1−d0 . (9)

For ℓ = 1,2, let ∇ℓF1,2(t1, t2|ρ) ≡ ∂F1,2(t1,t2|ρ)
∂tℓ

, and let ∇ρF1,2(t1, t2|ρ) ≡ ∂F1,2(t1,t2|ρ)
∂ρ . From (8),

∂P0(X,γ)
∂β1

= Xns1 ·
(
∇1F12(Xns1

′β1,X
ns
2
′β2|ρ)− f1(Xns1

′β1)
)
,

∂P0(X,γ)
∂β2

= Xns2 ·
(
∇2F12(Xns1

′β1,X
ns
2
′β2|ρ)− f2(Xns2

′β2)
)
,

∂P0(X,γ)
∂ρ

= ∇ρF1,2(Xns1
′β1,X

ns
2
′β2|ρ)
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And group

∂P0(X,γ)
∂γ

=
(
∂P0(X,γ)
∂β1

′
,
∂P0(X,γ)
∂β2

′
,
∂P0(X,γ)

∂ρ

)′
,

∂ logP0(X,γ)
∂γ

=
1

P0(X,γ)
·
∂P0(X,γ)

∂γ
.

Sufficient conditions for (local) identification of γ0 follow from full-rank properties of the

information matrix (see Rothenberg (1971)). We describe them next.

Assumption I1 (Existence of 2 + δ2 + δ2 + δ moments, an exclusion restriction for (Xns1 ,X
ns
2 )(Xns1 ,X
ns
2 )(Xns1 ,X
ns
2 ), and

a full-rank condition) We have E[∥X∥2+δ] < ∞ for some δ > 0. The true parameter value θ0

belongs in the interior of the parameter space Θ. For each p = 1,2, the support of Xnsp is not

contained in any proper linear subspace of RdXnsp , where dXnsp ≡ dim(Xnsp ). For p,q = {1,2}, there
exists a component Xnsp,j ∈Wp such that Xnsp,j <Wq. The elements of the information matrix

H0(γ) = E
[
∂ logP0(X,γ)

∂γ
·
∂ logP0(X,γ)

∂γ

′]
exist and are continuous functions of γ everywhere on Θ. Furthermore, there exists an open
neighborhood of γ0 where H0(γ) has constant rank, and H0(γ0) is nonsingular. ■

Local identification of γ0 follows from Assumption I1 using standard arguments (see

Rothenberg (1971, Theorem 1)). Without an exclusion restriction between Xns1 and Xns2 ,

the full-rank property in Assumption I1 may fail. γ̂ will henceforth denote the MLE esti-

mator for γ0 based on the likelihood function (9).

2.5.2 Identifiability of ∆0∆0∆0 under the assumption that players display noncooperative

behavior with strictly positive probability

We will maintain the restrictions in Assumption I1, so γ0 is identified and we will treat it as

known. We will show that ∆0 ≡ (∆10,∆20) is identifiable under the maintained assumption

that players display noncooperative behavior with nonzero positive probability. That is,

under the maintained assumption that P r(π(Z) < 1) > 0. Recall that t1 ≡ Xns1
′β10, and

t2 ≡ Xns2
′β20. From the definitions in (5), for any given ∆ ∈Θ,

mCS (X,γ0,∆) ≡ F1,2(t1 −Xs1
′
∆1 −Xs2

′
∆2 , t2 −Xs1

′
∆1 −Xs2

′
∆2|ρ0),

mNCS (X,γ0,∆) ≡ F1,2(t1 −Xs1
′
∆1 , t2 −Xs2

′
∆2|ρ0).

(10)

Recall that ΞS(X,θ) ≡mCS (X,θ)−mNCS (X,θ). From (6), we can express

S =mNCS (X,θ0) +π(Z) ·ΞS(X,θ0) + εS , where E[εS |U ] = 0. (11)
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So, E[εS ·ΞS(X,θ0)|Z] = 0, and π(Z) ·E[ΞS(X,θ0)2|Z] = E[(S −mNCS (X,θ0)) ·ΞS(X,θ0)| Z] a.e

Z. The restriction in Assumption G3 implies that E[ΞS(X,θ0)2|Z] > 0 a.e Z. Therefore,

π(Z) =
E[(S −mNCS (X,θ0)) ·ΞS(X,θ0)| Z]

E[ΞS(X,θ0)2|Z]
a.e Z. (12)

Note that E[ΞS(X,θ0)2|Z] = 0 would imply that both candidate behavioral models produce

the same prediction for a.e Z. The purpose of Assumption G3 is to rule this out. From (7),

we have E[ΞS(X,θ)2|Z] > 0 ∀ θ ∈ Θ, a.e Z. Thus, the following weights are well-defined ∀
θ ∈Θ, a.e Z,

π(Z,θ) ≡
E[(S −mNCS (X,θ)) ·ΞS(X,θ)| Z]

E[ΞS(X,θ)2|Z]
. (13)

From (12), we have π(Z,θ0) = π(Z) for a.e Z. For each θ ∈Θ, let

µS(U,θ) ≡mNCS (X,θ) +π(Z,θ) ·ΞS(X,θ). (14)

Then,

E[S |U ] = µS(U,θ0). (15)

Suppose players cooperate almost surely, so π(Z) = 1 w.p.1. In this case,

µS(U,θ0) =mCS (X,θ0) = F1,2(t1 −Xs1
′
∆10 −Xs2

′
∆20 , t2 −Xs1

′
∆10 −Xs2

′
∆20|ρ0).

∆0 would not identifiable unless Xs1 and Xs2 have no elements in common (ruling out con-

stant strategic interaction effects), or unless we reduce the dimensionality of ∆, for ex-

ample, by assuming ∆10 = ∆20. Let us focus for now on the case where players display

noncooperative behavior with nonzero probability, so P r(π(Z) < 1) > 0. We will come back

the case where players are allowed to cooperate almost surely in Section 2.7.

Assumption I2 (Strictly positive probability of noncooperative behavior) P r (π(Z) < 1) >

0, so players display noncooperative behavior with strictly positive probability. ■

Taking γ0 as identified and maintaining Assumption I2, we will study identification and

inference for ∆0 based on the conditional moment restriction (15). We will follow pre-

vious work (see, e.g, Bierens (1982), Bierens and Ploberger (1997), Chen and Fan (1999),

Dominguez and Lobato (2004), Khan and Tamer (2009) and Andrews and Shi (2013)), and

we will propose a conditional-GMM procedure that converts the conditional moments in

(15) into an infinite number of unconditional moments, and then aggregates them into a

CvM population statistic. In our construction we will consider the type of instrument-

function space proposed by Dominguez and Lobato (2004). Group V ≡ (S,U ) and let

12



ϕS(V ,θ) ≡ S −µS(U,θ). For any (u,θ) ∈RdU ×Θ let,

τ(u,θ) ≡ E [ϕS(V ,θ) ·1{U ≤ u}] . (16)

From (15), using iterated expectations we must have

τ(u,θ0) = 0 ∀ u ∈RdU . (17)

Dominguez and Lobato (2004, equation 2) can be invoked to show that E[ϕS(V ,θ)|U ] = 0

a.e U ⇔ τ(u,θ) = 0 for a.e u ∈ RdU , a result that follows from Billingsley (1995, Theo-

rem 16.10iii). We will use the space of instrument functions {1{U ≤ u} : u ∈ Supp(U )} to

transform (15) into an infinite collection of unconditional moment restrictions, and we

will aggregate them through the population statistic,

QS(θ) ≡ 1
2

∫
τ(u,θ)2dFU (u) =

1
2
·E

[
τ(U,θ)2

]
. (18)

QS(θ) ≥ 0 ∀ θ, and θ0 is a minimizer of QS(θ), satisfying QS(θ0) = 0. By the arguments in

Dominguez and Lobato (2004), any θ such that QS(θ) = 0 must satisfy E[S |U ] = µS(U,θ)

a.e. U . With γ0 being identified, we will focus on QS(γ0,∆) ≡ 1
2E[τ(U,γ0,∆)2], where

τ(u,γ0,∆) ≡ E[ϕS(V ,γ0,∆) ·1{U ≤ u}] and,

ϕS(V ,γ0,∆) = S −µS(U,γ0,∆) = S −mNCS (X,γ0,∆)−π(Z,γ0,∆) ·ΞS(X,γ0,∆) (19)

∆0 is identifiable ifQS(γ0,∆) > 0 ∀ ∆ ∈Θ : ∆ , ∆0, and ∆0 is locally identifiable if this holds ∀
∆ ∈ A, an open neighborhood of ∆0. Conversely, ∆ , ∆0 is observationally equivalent to ∆0

ifQS(γ0,∆) = 0. We maintain that θ0 belongs in the interior of Θ, so ∂QS (θ0)
∂∆ = 0. Local iden-

tifiability of ∆0 can follow from invertibility conditions of the Hessian ∂2QS (θ0)
∂∆∂∆′ . For p = 1,2,

denote ∇pF1,2(ϵ1,ϵ2|ρ) ≡ ∂F1,2(ϵ1,ϵ2|ρ)
∂ϵp

and let HNC
p (X,θ) ≡ ∇pF1,2(Xns1

′β1 − Xs1
′
∆1 , Xns2

′β2 −

Xs2
′
∆2|ρ), and HC(X,θ) ≡

∑2
q=1∇qF1,2(Xns1

′β1 − Xs1
′
∆1 − Xs2

′
∆2 , Xns2

′β2 − Xs1
′
∆1 − Xs2

′
∆2|ρ),

and denote Jp(U,θ) ≡ π(Z,θ) ·HC(X,θ) + (1−π(Z,θ)) ·HNC
p (X,θ). From here, let,

µ̇S,∆(U,θ) ≡


−J1(U,θ) ·XS1 +

E[J1(U,θ)·ΞS (X,θ)·XS1
∣∣∣ Z]

E[ΞS (X,θ)2
∣∣∣ Z] ·ΞS(X,θ)

−J2(U,θ) ·XS2 +
E[J2(U,θ)·ΞS (X,θ)·XS2

∣∣∣ Z]
E[ΞS (X,θ)2

∣∣∣ Z] ·ΞS(X,θ)


In Appendix A (Section 2.5.2), we show that,

∂2QS(θ0)
∂∆∂∆′

=
∫
E
[
µ̇S,∆(U,θ0) ·1{U ≤ u}

]
·E

[
µ̇S,∆(U,θ0)′ ·1{U ≤ u}

]
dFU (u). (20)
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From here, we can describe sufficient conditions for invertibility of ∂2QS (θ0)
∂∆∂∆′ .

Assumption I3 (A full rank restriction leading to local identification)

Maintain the conditions in Assumptions I1 and I2. In addition, for each p = 1,2, the support
of Xsp is not contained in any proper linear subspace of RdXsp , and there exists an open neighbor-
hood N of ∆0 such that

∫
E
[
µ̇S,∆(U,γ0,∆) ·1{U ≤ u}

]
·E

[
µ̇S,∆(U,γ0,∆)′ ·1{U ≤ u}

]
dFU (u) is

invertible for all ∆ ∈ N . ■

Assumption I3 does not require that (Xs1,X
s
2) have full rank, allowing for Xs1 = Xs2 as a

special case.

Remark 1 Assumption I3 cannot be satisfied if players cooperate almost surely, but it can be
satisfied if players display noncooperative behavior almost surely.

If π(Z) = 1 w.p.1 and players cooperate a.s, then Jp(U,θ0) =HC(X,θ0) and,

µ̇S,∆(U,θ0) ≡


−HC(X,θ0) ·XS1 +

E[HC (X,θ0)·ΞS (X,θ0)·XS1
∣∣∣ Z]

E[ΞS (X,θ0)2
∣∣∣ Z] ·ΞS(X,θ0)

−HC(X,θ0) ·XS2 +
E[HC (X,θ0)·ΞS (X,θ0)·XS2

∣∣∣ Z]
E[ΞS (X,θ0)2

∣∣∣ Z] ·ΞS(X,θ0).


Satisfying Assumption I3 would require (Xs1,X

s
2) to have full rank, which cannot be sat-

isfied if Xs1 and Xs2 have elements in common, confirming our previous claims regarding

almost sure cooperation. Now suppose players display noncooperative behavior almost

surely. In this case, π(Z) = 0 and Jp(U,θ0) =HNC
p (X,θ0). Thus,

µ̇S,∆(U,θ0) ≡


−HNC

1 (X,θ0) ·XS1 +
E[HNC

1 (X,θ0)·ΞS (X,θ0)·XS1
∣∣∣ Z]

E[ΞS (X,θ0)2
∣∣∣ Z] ·ΞS(X,θ0)

−HNC
2 (X,θ0) ·XS2 +

E[HNC
2 (X,θ0)·ΞS (X,θ0)·XS2

∣∣∣ Z]
E[ΞS (X,θ0)2

∣∣∣ Z] ·ΞS(X,θ0)


Assumption I3 can be satisfied even if XS1 = XS2 since P r(HNC

1 (X,θ0) , HNC
2 (X,θ0)) > 0

can follow from our exclusion restrictions between XNS1 and XNS2 . Global identification

requires that ∆0 be the unique minimizer of QS(γ0,∆) over ∆ ∈ Θ. This will occur if

P r (µS(U,θ0) , µS(U,γ0,∆)) > 0 ∀ ∆ , ∆0. To this end, consider the following restriction.

Assumption I4 ∀ ∆ , ∆′ in Θ and a.e Z, P r(mNCS (X,γ0,∆) , mNCS (X,γ0,∆
′) |Z) > 0, and

P r(mCS (X,γ0,∆)−mNCS (X,γ0,∆) ,mCS (X,γ0,∆
′)−mNCS (X,γ0,∆

′) |Z) > 0. ■

From (13)-(14), Assumption I4 yields P r (µS(U,θ0) , µS(U,γ0,∆)) > 0 ∀ ∆ , ∆0 in Θ, which

implies that ∆0 is the unique minimizer of QS(γ0,∆) over ∆ ∈Θ.
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2.6 An estimator for∆0∆0∆0 under the assumption that players display noncooper-
ative behavior with strictly positive probability

Recall that γ̂ ≡ (β̂′1, β̂
′
2, ρ̂)′ denotes our MLE estimator for γ0 ≡ (β′1i ,β

′
20ρ
′
0)′. Under the

restrictions in Assumption I1, γ̂ satisfies the usual MLE linear representation,

γ̂ = γ0 +
1
n

n∑
i=1

ψγ (Vi ;γ0) + op(n−1/2), (21)

where ψγ (Vi ;γ0) is the MLE influence function. Maintaining Assumptions I2-I4, our pro-

posal is to construct a conditional-GMM estimator for ∆0 that minimizes a sample ana-

log of QS(γ0,∆). We first construct a kernel-based estimator of the behavioral weight

π(Z,γ0,∆) described in (13). Let K : RdZ → R and hn → 0 denote a kernel function

and a bandwidth sequence respectively (whose properties we will describe below). Let

t̂1i ≡ Xns1i
′β̂1, t̂2i ≡ Xns2i

′β̂2. Following the definitions in (10), let,

mCS (Xi , γ̂ ,∆) ≡ F1,2

(̂
t1i −Xs1i

′
∆1 −Xs2i

′
∆2 , t̂2i −Xs1i

′
∆1 −Xs2i

′
∆2|ρ̂

)
,

mNCS (Xi , γ̂ ,∆) ≡ F1,2

(̂
t1i −Xs1i

′
∆1 , t̂2i −Xs2i

′
∆2|ρ̂

)
,

ΞS(Xi , γ̂ ,∆) ≡mCS (Xi , γ̂ ,∆)−mNCS (Xi , γ̂ ,∆).

Define,

π̂(z,θ) ≡
∑n
i=1

(
Si −mNCS (Xi ,θ)

)
·ΞS(Xi ,θ) ·K

(
Zi−z
hn

)
∑n
i=1ΞS(Xi ,θ)2 ·K

(
Zi−z
hn

) . (22)

From here, let

ϕ̂S(Vi , γ̂ ,∆) ≡ Si −mNCS (Xi , γ̂ ,∆)− π̂(Zi , γ̂ ,∆) ·ΞS(Xi , γ̂ ,∆). (23)

ϕ̂S(Vi , γ̂ ,∆) is an estimator for ϕS(Vi ,γ0,∆) as defined in (19). Let Z ⊆ Supp(Z) denote a

pre-specified inference range for Z, whose choice is assumed to ensure (under restrictions

we will described below) uniform asymptotic properties for π̂(z,θ) over Z ×Θ. For any

u ∈RdU , let 1Z{Ui ≤ u} ≡ 1{Ui ≤ u , Zi ∈ Z} and,

τ̂Z(u,θ) ≡ 1
n

n∑
i=1

ϕ̂S(Vi ,θ) ·1Z{Ui ≤ u}. (24)

τ̂Z(u,θ) is an estimator for τZ(u,θ) ≡ E [ϕS(V ,θ) ·1Z{U ≤ u}], which is the version of τ(u,θ)

when we restrict Z ∈ Z. As with τ(u,θ), we have τZ(u,θ0) = 0 ∀ u. Now let QS,Z(θ) ≡
1
2 ·

∫
τZ(u,θ)2dFU (u) = 1

2 ·E
[
τZ(U,θ)2

]
, which is a restricted version of QS(θ) when we in-

tegrate out Z over Z. We will characterize ∆0 as the minimizer ofQS,Z(γ0,∆). Accordingly,
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our sample objective function is,

Q̂S,Z(γ̂ ,∆) ≡ 1
2
· 1
n

n∑
j=1

τ̂Z(Uj , γ̂ ,∆)2 =
1
2
· 1
n

n∑
j=1

1
n

n∑
i=1

ϕ̂S(Vi , γ̂ ,∆) ·1Z{Ui ≤Uj}


2

(25)

our estimator for ∆0 is given by ∆̂ = argmin
∆∈Θ

Q̂S,Z(γ̂ ,∆). We will describe its asymptotic

properties under the following set of restrictions.

Assumption E1 (Bandwidth and kernel restrictions) Our nonnegative bandwidth sequence
satisfies n1/2 · h2dZ

n −→∞, and for an integer M ≥ 2dZ + 1, we have n1/2 · hMn −→ 0. Our kernel
K :RdZ −→R is bias-reducing of orderM (for the integerM described above), and is symmetric
around zero, with bounded support of the form [−S,S]. Our kernel is a function of bounded
variation, satisfying |K(ψ)| ≤ K ∀ ψ ∈RdZ , for some K <∞. ■

Next, we decribe smoothness restrictions involving some functionals of Z. These are com-

parable to commonly maintained assumptions in semiparametric models with nonpara-

metric components or “generated regressors”.

Assumption E2 (Smoothness restrictions of some functionals of ZZZ)

(i) Let M be the integer described in Assumption E1. The following functionals are M−times
differentiable with respect to z, with bounded derivatives for all (z,θ) ∈ Z×Θ: fZ(z), µΞSI (z,θ) ≡
E[(S−mNCS (X,θ)) ·ΞS(X,θ) |Z = z], µΞSII,2(z,θ) ≡ E[ΞS(X,θ)2 |Z = z], µΞSIII,θℓ (z,θ) ≡ E

[
∂ΞS (X,θ)
∂θℓ

·

(S −mNCS (X,θ)) |Z = z
]
, µΞSIV ,θℓ (z,θ) ≡ E

[∂mNC
S (X,θ)
∂θℓ

·ΞS(X,θ) |Z = z
]
, µΞSV ,θℓ (z,θ) ≡ E

[
∂ΞS (X,θ)
∂θℓ

·

ΞS(X,θ) |Z = z
]
, and µΞSV I,θℓ (z,θ) ≡ E

[
∂ΞS (X,θ)
∂θℓ

|Z = z
]
. These functionals are bounded above in

absolute value by some C <∞. fZ(z) and µΞSII,2(z,θ) are bounded below by some C > 0.

(ii) The following functionals are continuously differentiable with respect to z, with bounded
first derivative for all (z,θ) ∈ Z × Θ: δI,θℓ ,θj (z,θ) ≡ E

[
∂2ΞS (X,θ)
∂θj∂θℓ

· (S − mNCS (X,θ)) |Z = z
]
,

δII,θℓ ,θj (z,θ) ≡ E
[
∂ΞS (X,θ)
∂θℓ

· ∂m
NC
S (X,θ)
∂θj

|Z = z
]
, δIII,θℓ ,θj (z,θ) ≡ E

[∂2mNC
S (X,θ)

∂θj∂θℓ
·ΞS(X,θ) |Z = z

]
,

δIV ,θℓ ,θj (z,θ) ≡ E
[
∂2ΞS (X,θ)
∂θj∂θℓ

·ΞS(X,θ) |Z = z
]
, and δV ,θℓ ,θj (z,θ) ≡ E

[
∂ΞS (X,θ)
∂θℓ

· ∂ΞS (X,θ)
∂θj

|Z = z
]
.

■

Finally, we introduce some smoothness and regularity restrictions with respect to θ. These

are comparable to commonly maintained assumptions for extremum estimators.
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Assumption E3 (Lipschitz-restrictions with respect to θθθ)

Each of the functions below has the following type of Lipschitz property: |g(u,θ)− g(u,θ′)| ≤
G(u) ·∥θ −θ′∥ ∀ u ∈ Supp(U ) (unless noted otherwise), and ∀ θ,θ′ ∈Θ, where G(·) is a nonneg-
ative function that satisfies E[G(U )2+δ] <∞ for some δ > 0.

(i) The Lipschitz property holds for all x ∈ Supp(X) for the following functions: mNCS (x,θ),

mCS (x,θ), ∂m
C
S (x,θ)
∂θℓ

, ∂m
C
S (x,θ)
∂θℓ

, with G(X) satisfying E[G(X)2+δ] <∞ for some δ > 0.

(ii) The Lipschitz property holds for all z ∈ Z for the following functionals defined in Assumption
E2: µΞSI (z,θ), µΞSII,2(z,θ), µΞSIII,θℓ (z,θ), µΞSIV ,θℓ (z,θ), µΞSV ,θℓ (z,θ), µΞSV I,θℓ (z,θ). In each case, G(Z)

satisfies E[G(Z)2+δ] <∞ for some δ > 0.

(iii) The Lipschitz property holds for all z ∈ Z for the following functionals defined in Assump-
tion E2: δI,θℓ ,θj (z,θ), δII,θℓ ,θj (z,θ), δIII,θℓ ,θj (z,θ), δIV ,θℓ ,θj (z,θ), δV ,θℓ ,θj (z,θ). In each case,
G(Z) satisfies E[G(Z)2+δ] <∞ for some δ > 0. ■

Proposition 1 If the restrictions in Assumptions G1-G3, I1-I4 and E1-E3 hold, the estimator
∆̂ satisfies ∆̂

p
−→ ∆0, with an asymptotic linear representation of the form,

∆̂−∆0 =
1
n

n∑
i=1

ψ∆,n(Vi ;θ0) + op
(
n−1/2

)
, (26)

and
√
n ·

(
∆̂−∆0

) d−→N (0,Ω∆), where Ω∆ = limn→∞E
[
ψ∆,n(V ;θ0) ·ψ∆,n(V ;θ0)′

]
.

Proof: The proof follows standard arguments in semiparametric models. A description of

the influence function ψ∆,n(Vi ;θ0) is included in Appendix A (Section A5). The step-by-

step details are included in the online Econometric Supplement (Section S1). ■

Remark 2 Proposition 1 only requires the exclusion restriction ξ |(X,Z) ∼ ξ |Z in Assumption
G2 to be satisfied over our inference range Z. That is, we only need, Z ∈ Z ⇒ P r(ξ = 1|X,Z) =

P r(ξ = 1|Z).

2.6.1 Estimating the behavioral weightπ(z)π(z)π(z)

Equipped with θ̂ ≡ (γ̂ , ∆̂), we can estimate π(z), the probability of cooperation conditional

on Z = z, with π̂(z, θ̂), where π̂(z,θ) is as described in (22). Under the restrictions leading
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to Proposition 1, we can show that3 sup
θ∈Θ
z∈Z

|π̂(z,θ)−π(z,θ)| = op(1) and,

π̂(z,θ) = π(z,θ) +
1

n · hdzn

n∑
i=1

ψπn (Vi ;z,θ) +ϑπn (z,θ), where sup
θ∈Θ
z∈Z

∣∣∣ϑπn (z,θ)
∣∣∣ = op

(
n−1/2

)
,

(27)

The influence function ψπn (Vi ;z,θ) is described in the online Econometric Supplement

(equation S1.11). Since π(z) = π(z,θ0), Proposition 1 then yields sup
z∈Z

∣∣∣π̂(z, θ̂)−π(z)
∣∣∣ = op(1).

2.6.2 Testing the validity of ZZZ and our overall model through a consistent specifica-

tion tests

The validity of the instrument Z, and the restrictions leading to Proposition 1 can be

consistently tested using existing methods for semiparametric models. The goal would

be to test “H0 : E[S |U ] = µS(U,θ0) for a.e U” against “H1 : P r(E[S |U ] , µS(U,θ0)) > 0”.

Following Fan and Li (1996), Zheng (1996) and Aradillas-López (2012, Section 4), we can

focus on testing H0 : E[εSE[εS |U ]fU (U )] = 0, where εS ≡ S − µS(U,θ0) and fU (·) is the

density function of U . We can rewrite this as H0 : E[(E[εS |U ])2fU (U )] = 0, which would

hold iff E[S |U ] = µS(U,θ0) for a.e U . Assuming that U is jointly continuously distributed,

a test can be based on a analog test-statistic 1
n·(n−1)·bdUn

∑n
i=1

∑
j,i ε̂i · ε̂j · K

(
Ui−Uj
bn

)
, where

ε̂i ≡ Si − µ̂S(Ui , θ̂), bn → 0 is a nonnegative bandwidth sequence, and K : RdU → R is a

kernel function. Its asymptotic properties can be derived following the steps in Aradillas-

López (2012, Section 4), which studies semiparametric models with generated regressors

that share the asymptotic properties of π̂(z, θ̂) described in (27).

2.7 Inference for ∆0∆0∆0 when we allow for the possibility that players cooperate
almost surely

As we showed above, allowing for the possibility that π(Z) = 1 w.p.1 implies that ∆0 may

not be identified without further restrictions. In this case, our suggestion is to use (6)

to construct a confidence set (CS) for ∆0. Once again, we maintain Assumption I1 so γ0

is identified and estimable using MLE. While there are many ways to proceed, we il-

lustrate an approach based on functionals similar to those we used for our conditional-

GMM estimator in Section 2.6. Let Z and 1Z{U ≤ u} be as defined previously. Next,

let g : RdU → R be a real-valued, pre-specified, positive function4 of U . As before, let

3The step-by-step details can be found in the online Econometric Supplement (Section S1.1).
4Our results can be straightforwardly extended to a vector-valued instrument function g.
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ϕS(V ,θ) ≡ S −mNCS (X,θ)−π(Z,θ) ·ΞS(X,θ). For a given u ∈RdU , let

τg(u,θ) ≡ E [ϕS(V ,θ) · g(U ) ·1Z{U ≤ u}] , Mg(θ) ≡ E[τg(U,θ)]. (28)

By iterated expectations, Mg(θ0) = 0. Since γ0 is identified, our proposal would be to use

Mg(γ0,∆) to construct a CS for ∆. Let ΘI
g ≡ {∆ ∈ Θ : Mg(γ0,∆) = 0} be our target identified

set for ∆ based on the moment restriction Mg(θ0) = 0. Our sample statistic is

M̂g(γ̂ ,∆) =
1
n

n∑
j=1

τ̂g(Uj , γ̂ ,∆) =
1
n2

n∑
j=1

n∑
i=1

ϕ̂S(Vi , γ̂ ,∆) · g(Ui) ·1Z{Ui ≤Uj} (29)

Proposition 2 Suppose E[g(U )2+δ] < ∞ for some δ > 0. If the restrictions in Assumptions
G1-G3, I1, and E1-E3 hold, then

M̂g(γ̂ ,∆) =Mg(γ0,∆) +
1
n

n∑
i=1

ψMg ,n(Vi ;γ0,∆) + ς
Mg
n (∆), ∀ ∆ ∈Θ,

where E[ψMg ,n(V ;γ0,∆)] = 0 ∀ ∆ ∈Θ, sup
∆∈Θ

∣∣∣ςMg
n (∆)

∣∣∣ = op
(
n−1/2

) (30)

And over our target identified set ΘI
g , the result in (S2.25) simplifies to,

M̂g(γ̂ ,∆) =
1
n

n∑
i=1

ψMg ,n(Vi ;γ0,∆) + ς
Mg
n (∆) ∀ ∆ ∈ΘI

g , where sup
∆∈Θ

∣∣∣ςMg
n (∆)

∣∣∣ = op
(
n−1/2

)
.

(31)

Proof: The proof follows standard arguments in semiparametric models. A description of

the influence function ψMg ,n(Vi ;γ0,∆) is included in Appendix A (Section A6). The step-

by-step details can be found in the online Econometric Supplement (Section S2). ■

Suppose the data-generating process belongs to a family of distributions F . For each F ∈ F
denote the corresponding identified set as ΘI

g,F ≡ {∆ ∈ Θ : Mg,F(γ0,∆) = 0}. Note that

∆0 ∈ ΘI
g,F for any F. A CS with uniform asymptotic coverage properties over F ×ΘI

g,F

can be constructed based on Proposition 2 if we add the following restriction.

Assumption E4 Suppose the DGP F belongs to a family of distributions F that satisfy all the
restrictions in Assumptions G1-G3, I1, and E1-E3 and, in particular, suppose that the existence
of 2+δ moments in Assumptions I1 and E3, and the smoothness restrictions in Assumptions E2
and E3 hold uniformly over F (i.e, the bounds described for each one of those restrictions are
common to every F ∈ F ). In addition, suppose that the constant δ described in the existence of
2 + δ moment restrictions satisfies δ ≥ 1, and that for some δ ≥ 1 and C < ∞, the instrument
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function g also satisfies EF[|g(U )|2+δ] ≤ C for all F ∈ F . ■

Let σFMg ,n
(∆)2 ≡ EF

[
ψFMg ,n

(V ;γ0,∆)2
]

and σ̂Mg ,n(∆)2 = 1
n

∑n
i=1 ψ̂Mg ,n(Vi ; γ̂ ,∆)2, where ψ̂Mg ,n(v;γ,∆)

is an estimator of ψFMg ,n
(v;γ,∆). Based on Proposition 2, a CS for ∆0 with target asymptotic

coverage probability 1−α can be constructed as,

CS∆n (1−α) =

∆ ∈Θ :

∣∣∣∣∣∣∣n
1/2 · M̂g(γ̂ ,∆)

σ̂Mg ,n(∆)

∣∣∣∣∣∣∣ ≤ Φ−1
(
1− α

2

) (32)

In the online Econometric Supplement (Section S2.1) we show that, if Assumption E4

holds and if σ̂Mg ,n(∆)2 p
−→ σFMg ,n

(∆)2 uniformly over F ×Θ, then

lim
n→∞

sup
(F,∆)∈F ×Θ:

∆∈ΘI
g,F

∣∣∣∣PF (∆ ∈ CS∆n (1−α)
)
− (1−α)

∣∣∣∣ = 0,

so our CS would have correct asymptotic coverage probability for ∆0. An empty CS would

reject our model.

2.7.1 Inference for the behavioral weightπ(z)π(z)π(z)

Fix (z,∆) ∈ Supp(Z) ×Θ. Using (27), standard arguments imply that a 1 − α confidence
interval (CI) for π(z,γ0,∆) can be constructed as π̂(z, γ̂,∆) ± (n · hdZn )−1/2 · Φ−1(1 − α/2) ·
σ̂π(z, γ̂,∆), where σ̂2

π(z, γ̂,∆) is an estimator of E
[

1
h
dZ
n

ψπn (V ;z,γ0,∆)2
]
. If ∆0 were known,

it could be plugged into the previous expression to obtain the desired CI for π(z,θ0) =
π(z). Since ∆0 is unknown (and possibly nonidentifiable if π(Z) = 1 w.p.1), we can use a
Bonferroni bound together with CS∆n (1−α) to construct a valid 1− 2α CI for π(z),

CS
π(z)
n (1− 2α) = min

∆∈CS∆n (1−α)

π̂(z, γ̂,∆)− Φ−1(1−α/2)√
n · hdZn

· σ̂π(z, γ̂,∆)

 , max
∆∈CS∆n (1−α)

π̂(z, γ̂,∆) +
Φ−1(1−α/2)√

n · hdZn
· σ̂π(z, γ̂,∆)


 .

3 An expanded model

Let us maintain our normal-form parameterization and consider the following expanded
collection of candidate behavioral models: (1) Cooperation with complete information.

(2) Complete-information Nash equilibrium behavior allowing for mixed strategies. (3)

Incomplete-information Bayesian Nash equilibrium. We describe them next.
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3.1 Cooperation

This behavioral model remains as described previously. The relevant regions for each y ∈ Y
under cooperation are shown in the top panel of Figure 1. Let

RC(y|X,θ0) ≡
{
(ε1, ε2) ∈R2 : y is the optimal outcome under cooperation, given (X,θ0)

}
.

These regions are depicted on the top panel of Figure 1.

3.2 Complete-information Nash equilibrium behavior with mixed strategies

Suppose we allow for mixed strategies in our complete-information Nash equilibrium (NE)

model. For each y ∈ Y let

RNE(y|X,θ0) ≡
{
(ε1, ε2) ∈R2 : y is the unique NE of the game, given (X,θ0)

}
These regions can be obtained from Figure 1, where we can also obtain MNE

1 (X,θ0), the

multiple NE region. When ε ∈ MNE
1 (X,θ0), the game has two pure-strategy NE (PSNE),

(1,0) and (0,1), and one mixed-strategy NE (MSNE). We will index the multiple NE as

• NE #1: PSNE (1,0), • NE #2: PSNE (0,1), • NE #3: MSNE.

The possibility of selecting the MSNE means that S ≡ Y1 + Y2 is no longer uniquely pre-

dicted by our model. Thus, instead of S, we will focus directly on the predictions for Y

made by each of our candidate behavioral models. Let Y(ℓ) denote the (potential) outcome

that would be produced by NE ℓ ∈ {1,2,3} in the multiple NE regionMNE
1 (X,θ0). Denoting

P r(Y(ℓ) = y|X,ε) ≡ σ ℓM1,NE
(y|X,ε,θ0) and solving for the MSNE, we have

• For NE #1 (PSNE (1,0)): σ1
M1,NE

(y|X,ε,θ0) = 1{y = (1,0)},

• For NE #2 (PSNE (0,1)): σ2
M1,NE

(y|X,ε,θ0) = 1{y = (0,1)},

• For NE #3 (MSNE):

σ3
M1,NE

(y|X,ε,θ0) =
(
Xns2

′β20 − ε2

Xs2
′
∆20

)y1
(
1−

Xns2
′β20 − ε2

Xs2
′
∆20

)1−y1
(
Xns1

′β10 − ε1

Xs1
′
∆10

)y2
(
1−

Xns1
′β10 − ε1

Xs1
′
∆10

)1−y2

(33)

3.3 Incomplete-information Bayesian Nash equilibrium behavior

Let us expand our collection of candidate behavioral models to include noncooperative

behavior with incomplete information where, prior to making their choices, players observe

the realization of X, but the realization of εp is only privately observed by player p. Players
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also know the parameters of both players’ payoff functions. The assumed solution concept

in this case is Bayesian Nash equilibrium (BNE), where players maximize their expected

payoff given their subjective beliefs, so Y1 = 1{Xns1
′β10 − Xs1

′
∆10 · πe2 − ε1 ≥ 0} and Y2 =

1{Xns2
′β20−Xs2

′
∆20 ·πe1−ε2 ≥ 0}, where πe1 denotes player 2’s subjective belief for P r(Y1 = 1)

and πe2 denotes player 1’s subjective belief for P r(Y2 = 1). We assume that each player p

conditions her beliefs on X, and on Yp. Thus, πe2 denotes player 1’s subjective belief for

P r(Y2 = 1|X,Y1 = 1) and πe1 denotes player 2’s subjective belief for P r(Y1 = 1|X,Y2 = 1). In

this particular model we do not assume that players condition their beliefs directly on the

realization of their own εp. This implies a behavioral model where players do not know

(e.g, have not learned) the joint distribution of (ε1, ε2)|X, but know (e.g, have been able to

learn) the joint distribution of equilibrium outcomes (Y1,Y2)|X.

Let us describe BNE beliefs in this model. For a given ρ ∈Θ and c ∈R, let f 1(ε1;c|ρ) ≡∫ c
−∞ f1,2(ε1,ϵ2|ρ)dϵ2

F2(c) f 2(ε2;c|ρ) ≡
∫ c
−∞ f1,2(ϵ1,ε2|ρ)dϵ1

F1(c) . Note that f p(εp;c|ρ) is the density of εp condi-

tional on the event that ε−p ≤ c. Next, for (ca, cb) ∈R2, let H1(ca;cb|ρ) ≡
∫ ca
−∞ f 1(ϵ1;cb|ρ)dϵ1,

H2(ca;cb|ρ) ≡
∫ ca
−∞ f 2(ϵ2;cb|ρ)dϵ1, and for a given (X,θ) and π ≡ (π1,π2) ∈ [0,1]2 let

H(π;X,θ) ≡
π1 −H1(Xns1

′β1 −Xs1
′
∆1 ·π2 ; Xns2

′β2 −Xs2
′
∆2 ·π1|ρ)

π2 −H2(Xns2
′β2 −Xs2

′
∆2 ·π1 ; Xns1

′β1 −Xs1
′
∆1 ·π2|ρ)


BNE beliefs must solve H(π;X,θ) = 0 for π. Continuity implies existence of a solution by

Brouwer’s Fixed Point Theorem. Regularity and multiplicity can be studied through the

properties of ∇πH(π;X,θ), the Jacobian of H(π;X,θ) wrt π. Maintain the following.

Assumption G4 (Regularity of BNE) For a.e X and ∀ θ ∈ Θ, the Jacobian ∇πH(π;X,θ) is
invertible at any π that solves H(π;X,θ) = 0. ■

Assumption G4 guarantees that every BNE solution is regular, and that there is a finite

number of BNE solutions5. Let π∗(j)(X,θ) ≡ (π∗1(j)(X,θ),π∗2(j)(X,θ)) denote the jth solution

to the BNE conditions H(π;X,θ) = 0, which we will refer to as the jth BNE for (X,θ). We

will let J(X,θ) denote the total number of BNE for (X,θ). Brouwer’s Fixed Point Theo-

rem guarantees that J(X,θ) ≥ 1, and regularity guarantees that J(X,θ) < ∞ (see footnote

5). By Gale and Nikaido (1965, Theorem 7), BNE uniqueness can be obtained from prop-

erties of the principal minors of ∇πH(π;X,θ). Fix (X,θ), then H(π : X,θ) will be a uni-

valent mapping (of π) from [0,1]2 onto itself if the principal minors of ∇πH(π;X,θ) do

not vanish for any π ∈ [0,1]2. The Gale Nikaido conditions for our model can be found

in Appendix A (equation (A2)). In our BNE model, players’ actions are described by,

5The Index Theorem (Mas-Colell, Whinston, and Green (1995, Proposition 17.D.2)) can be used to show
that there exists an odd number of regular BNE solutions.
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Y1 = 1{Xns1
′β10 −Xs1

′
∆10 ·π∗2(X,θ0)− ε1 ≥ 0} and Y2 = 1{Xns2

′β20 −Xs2
′
∆20 ·π∗1(X,θ0)− ε2 ≥ 0},

where (π∗1(X,θ0), π∗2(X,θ0)) ≡ π∗(X,θ0) is the BNE selected by players. Let Y BNE(j) denote

the outcome that would be produced by BNE j, and let I1(j)(X,ε1,θ0) ≡ 1{Xns1
′β10−Xs1

′
∆10 ·

π∗2(j)(X,θ0) − ε1 ≥ 0}, and I2(j)(X,ε2,θ0) ≡ 1{Xns2
′β20 − Xs2

′
∆20 · π∗1(j)(X,θ0) − ε2 ≥ 0}. For

each y ≡ (y1, y2) ∈ Y , let I(j)(y|X,ε,θ0) ≡
∏2
p=1 Ip(j)(X,εp,θ0)yp ×(1−Ip(j)(X,εp,θ0))1−yp . Then

1{Y BNE(j) = y} = I(j)(y|X,ε,θ0) in our BNE behavioral model.

3.4 Behavioral and equilibrium selection mechanisms

The behavioral selection mechanism is given by ξ. We denote ξ = 1 if players’ behavior is

cooperative, ξ = 2 if players play NE with complete information, and ξ = 3 if players play

BNE with incomplete information. Whether the informational environment is an act of

“nature” or a strategic choice made by players is irrelevant to us as long as the exclusion

restrictions described below are satisfied. Note that two of our candidate behavioral mod-

els can have multiple solutions for Y . For this reason, we will introduce an equilibrium

selection mechanism λ2 that selects the NE in the multiple-equilibrium region when ξ = 2,

and an equilibrium selection mechanism λ3 that selects the BNE when ξ = 3. We have

λ2 ∈ {1,2,3}, where λ2 = ℓ indicates that NE ℓ is selected when ξ = 2 and ε ∈ MNE
1 (X,θ0),

and λ3 ∈ {1, . . . , J(X,θ0)}, where λ3 = j indicates the selection of the BNE π∗(j)(X,θ0) when

ξ = 3. For each y ∈ Y , our global behavioral model yields,

1{Y = y} = 1{ξ = 1} ·1{ε ∈ RC(y|X,β0,∆0)}

+1{ξ = 2} ·

1{ε ∈ RNE(y|X,β0,∆0)}+1{ε ∈MNE
1 (X,β0,∆0)} ·

3∑
ℓ=1

1{λ2 = ℓ} ·1{YNE(ℓ) = y}


+1{ξ = 3} ·

J(X,θ0)∑
j=1

1{λ3 = j} · I(j)(y|X,ε,θ0)

(34)

Next we extend our exclusion restriction to our expanded model.

Assumption G5 (Exclusion restrictions with cooperative, NE and BNE behavior) ξ⊥ε
and there exists an observable Z such that ξ |(X,Z) ∼ ξ |Z, with P r(ξ = 1|Z) ≡ π1(Z), P r(ξ =

2|Z) ≡ π2(Z) and P r(ξ = 3|Z) ≡ π3(Z). In addition, Z is such that,

P r(λ2 = ℓ|ξ = 2, ε,X,Z) = P r(λ2 = ℓ|ξ = 2,Z) ≡ω2(ℓ|Z) for ℓ = 1,2,3

P r(λ3 = j |ξ = 3, ε,X,Z) = P r(λ3 = j |ξ = 3,Z) ≡ω3(j |Z) for j = 1, . . . , J(X,θ0)

We will leave (πb(Z))3
b=1 and (ω2(ℓ|Z))3

ℓ=1 and (ω3(j |Z))J(X,θ0)
j=1 nonparametrically specified. ■
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The restriction ξ⊥ε can be relaxed to ξ⊥ε|(X,Z) if we parameterize the conditional dis-

tribution of ε|(X,Z). Since J(X,θ0), the number of BNE, can depend on X, our exclusion

restriction for λ3 implicitly requires that, either J(X,θ0) be constant across X, or that λ3 be

degenerate and not randomize across BNE. Since the number of complete-information NE

(three) in the multiple equilibrium region is independent of X, the exclusion restriction

for λ2 can be satisfied regardless of whether λ2 randomizes across the multiple NE.

Remark 3 (Inference rangeZZZ and Assumption G5) As we did previously, we will ultimately
choose an inference range Z for Z (see Section 3.5.2 below), and the exclusion restrictions in
Assumption G5 will only need to hold over Z. Furthermore, since the Gale Nikaido conditions
are directly verifiable for any (X,θ) (see Appendix A ,equation A2), Z can be potentially chosen
so that the BNE is unique over our inference range, ∀ θ ∈ Θ, eliminating the need to make
assumptions about the BNE equilibrium selection mechanism λ3.

For our cooperative behavioral model let,

gCR(y|X,θ0) ≡ Pr
(
ε ∈ RC(y|X,β0,∆0)

∣∣∣X)
=

∫
1

{
ε ∈ RC(y|X,β0,∆0)

}
f1,2(ε|ρ0)dε, (35)

Next, for our complete-information NE behavioral model denote,

gNER (y|X,θ0) ≡ Pr
(
ε ∈ RNE(y|X,β0,∆0)

∣∣∣X)
=

∫
1

{
ε ∈ RNE(y|X,β0,∆0)

}
f1,2(ε|ρ0)dε,

GM1
(X,θ0) ≡ Pr

(
ε ∈MNE

1 (X,β0,∆0)
∣∣∣X)

=
∫
1

{
ε ∈MNE

1 (X,β0,∆0)
}
f1,2(ε|ρ0)dε,

gℓM1,NE
(y|X,θ0) ≡

∫
σ ℓM1,NE

(y|X,ε,β0,∆0) ·1
{
ε ∈MNE

1 (X,β0,∆0)
}
f1,2(ε|ρ0)dε.

(36)

Finally, for our incomplete-information BNE behavioral model, let

g
j
BNE(y|X,θ0) ≡ E

[
I(j)(y|X,ε,θ0)|X

]
=

∫
I(j)(y|X,ε,θ0)f1,2(ε|ρ0)dε. (37)

Denote ϑ2(ℓ|Z) ≡ π2(Z) ·ω2(ℓ|Z) and ϑ3(j |Z) ≡ π3(Z) ·ω3(j |Z). Let pY (y|U ) ≡ P r(Y = y|U ).

Using (34) and Assumption G5,

pY (y|U ) = π1(Z) · gCR(y|X,θ0) +π2(Z) · gNER (y|X,θ0) +
3∑
ℓ=1

ϑ2(ℓ|Z) · gℓM1,NE
(y|X,θ0)

+
J(X,θ0)∑
j=1

ϑ3(j |Z) · gjBNE(y|X,θ0)
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Since
∑3
ℓ=1ω2(ℓ|Z) =

∑J(X,θ0)
j=1 ω3(j |Z) =

∑3
b=1π(Z) = 1, the above expression becomes

pY (y|U ) =m1(y|X,θ0) + δ(Z)′Ξ(y|X,θ0) ∀ y ∈ Y , (38)

where

δ(Z) ≡
(
π1(Z) , π2(Z) , (ϑ2(ℓ|Z))3

ℓ=2 , (ϑ3(j |Z))J(X,θ0)
j=2

)′
,

m1(y|X,θ0) ≡ g1
BNE(y|X,θ0)

m2(y|X,θ0) ≡
(
gCR(y|X,θ0)− g1

BNE(y|X,θ0) , gNER (y|X,θ0) + g1
M1,NE

(y|X,θ0)− g1
BNE(y|X,θ0)

)′
m3(y|X,θ0) ≡

((
gℓM1,NE

(y|X,θ0)− g1
M1,NE

(y|X,θ0)
)3

ℓ=2
,
(
g
j
BNE(y|X,θ0)− g1

BNE(y|X,θ0)
)J(X,θ0)

j=2

)′
Ξ(y|X,θ0) ≡

(
m2(y|X,θ0)′ , m3(y|X,θ0)′

)′
(39)

Once again, the predictions of our global model are a semiparametric convolution of the predic-
tions of each candidate behavioral model.

3.5 Identifiability and estimation of θ0θ0θ0 in our expanded model

As in the simpler version of our global model, identifiability of θ0 depends on whether we assume
that players display noncooperative behavior with nonzero probability. If π1(Z) = 1 w.p.1 and
players cooperate almost surely, pY (y|U ) = gCR(y|X,θ), and our previous arguments show that ∆0 is
not identifiable unless we assume that Xs1 and Xs2 have no elements in common or unless we impose
restrictions on (∆10,∆20) such as symmetry. Let us focus first on the case where we maintain that
players display noncooperative behavior with strictly positive probability.

3.5.1 Identifiability of θ0θ0θ0 under the assumption that P r(π1(Z) < 1) > 0P r(π1(Z) < 1) > 0P r(π1(Z) < 1) > 0

The following restriction is the version of Assumption I2 for our expanded model.

Assumption I5 (Strictly positive probability of noncooperative behavior) P r (π1(Z) < 1) > 0, so
players display noncooperative behavior with strictly positive probability.

Denote D(y) ≡ 1{Y = y}. From (38), we can express

D(y) =m1(y|X,θ0) + δ(Z)′Ξ(y|X,θ0) + ε(y), where E[ε(y)|U ] = 0. (40)

In particular, E[Ξ(y|X,θ0) · ε(y)|Z] = 0 a.e Z. Thus,

E[Ξ(y|X,θ0) ·Ξ(y|X,θ0)′ |Z] · δ(Z) = E[Ξ(y|X,θ0) · (D(y)−m1(y|X,θ0))| Z] a.e Z. (41)

Again, we propose to exploit the convolution structure in (40) by constructing first a semiparamet-
ric estimator for δ(Z). As in Section 2.5, identification of δ(Z) requires ruling out that any two of
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our candidate behavioral models are observationally equivalent. From (41), this boils down to the
following full-rank restriction for Ξ(y|X,θ).

Assumption I6 The presence of strategic-interaction effects restriction in Assumption G3 is maintained
for the parameter space Θ, and there exists at least one y ∈ Y such that E[Ξ(y|X,θ) · Ξ(y|X,θ)′ |Z] is
invertible for every θ ∈Θ and a.e Z.

Assumption I6 requires the existence of an outcome y ∈ Y such that, for any value θ0 can take
over Θ, each of our candidate behavioral models produce different predictions for P r(Y = y|X). In
Appendix A (Section A3) we show that this is satisfied by y ∈ {(1,0) , (0,1)} in our setting. Let y ∈
{(1,0), (0,1)} satisfy the full-rank restriction in Assumption I6. We can express, δ(Z) = E[Ξ(y|X,θ0) ·
Ξ(y|X,θ0)′ |Z]−1 ·E[Ξ(y|X,θ0) · (D(y)−m1(y|X,θ0))| Z]. For each θ ∈Θ, let

δ(Z,θ) ≡ E[Ξ(y|X,θ) ·Ξ(y|X,θ)′ |Z]−1 ·E[Ξ(y|X,θ) · (D(y)−m1(y|X,θ))| Z] (42)

Note that δ(Z,θ0) = δ(Z). Let,

P(y|U,θ) =m(y|X,θ) + δ(Z,θ)′Ξ(y|X,θ). (43)

From (38),
pY (y|U ) = P(y|U,θ0) ∀ y ∈ Y , a.e U . (44)

Since
∑
y∈Y pY (y|U ) = 1 and

∑
y∈Y P(y|U,θ) = 1 ∀ θ, we focus on a subset of three outcomes in Y .

Take Y ∗ ≡ {(1,0), (0,1), (1,1)}. θ is observationally equivalent to θ0 if P(y|U,θ0) = P(y|U,θ) w.p.1 for
each y ∈ Y ∗. Therefore, θ0 is identifiable from (44) if, for some y ∈ Y ∗, P r (P(y|U,θ) , P(y|U,θ0)) >
0 ∀ θ ∈ Θ: θ , θ0, and θ0 is locally identifiable from (44) if there exists a neighborhood A ⊆ Θ of
θ0 such that this condition holds ∀ θ ∈ A: θ , θ0. As we did previously, we can apply a conditional
GMM approach based on Dominguez and Lobato (2004). As before, group V ≡ (Y ,U ). For each
(y,θ,u) ∈ Y ∗ ×Θ ×RdU , let

ϕ(y|V ,θ) ≡D(y)−P(y|U,θ) and T (y|u,θ) ≡ E[ϕ(y|V ,θ) ·1{U ≤ u}]. (45)

From (40) and iterated expectations, T (y|u,θ0) = 0 ∀ u ∈ RdU , y ∈ Y ∗. And, by Dominguez and
Lobato (2004, equation 2), E[ϕ(y|V ,θ)|U ] = 0 a.e U ⇔ T (y|u,θ) = 0 for FU−a.e u ∈ RdU (a result
that follows from Billingsley (1995, Theorem 16.10iii)). Let

QY (y|θ) ≡ 1
2

∫
T (y|u,θ)2dFU (u) =

1
2
E[T (y|U,θ)2].

QY (y|θ) ≥ 0 ∀ θ and, from the previous arguments, QY (y|θ) = 0 ⇔ T (y|u,θ) = 0 FU−a.e u ∈ RdU .
We can aggregate over y ∈ Y ∗ through the population statistic,

QY (θ) ≡
∑
y∈Y ∗

QY (y|θ). (46)

We can then characterize θ0 as a minimizer of QY (θ) over θ ∈ Θ. The following restrictions are
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sufficient for local identification of θ0.

Assumption I7 The true parameter value θ0 belongs in the interior of the parameter space Θ. In addi-
tion, the following conditions hold.

(i) For each p = 1,2, the support of Xnsp is not contained in any proper linear subspace of R
dXnsp , where

dXnsp ≡ dim(Xnsp ). For p,q = {1,2}, there exists a component Xnsp,j ∈Wp such that Xnsp,j <Wq.

(ii) For each p = 1,2, the support of Xsp is not contained in any proper linear subspace of R
dXsp , where

dXsp ≡ dim(Xsp).

(iii) There exists an open neighborhood A ⊆Θ of θ0 such that ∂2QY (θ)
∂θ∂θ′ is invertible ∀ θ ∈ A.

Under the conditions of Assumption I7, θ0 is locally identifiable from (44) since θ0 is a locally
unique minimizer of QY (θ).

3.5.2 An estimator for θ0θ0θ0 under the assumption that players display noncooperative

behavior with strictly positive probability

As before, we propose an estimator that minimizes a sample analog of QY (θ) using a semiparamet-
ric estimator for δ(Z,θ). For each (z,θ) define,

δ̂(z,θ) ≡

 n∑
i=1

Ξ(y|Xi ,θ) ·Ξ(y|Xi ,θ)′K
(
Zi − z
hn

)−1

·
n∑
i=1

Ξ(y|Xi ,θ) · (Di(y)−m1(y|Xi ,θ))K
(
Zi − z
hn

)
,

P̂(y|U,θ) ≡m(y|X,θ) + δ̂(Z,θ)′Ξ(y|X,θ), ϕ̂(y|V ,θ) ≡D(y)− P̂(y|U,θ).
(47)

As before, we will pre-specify an inference range Z ⊆ Supp(Z) where our weights satisfy uniform
asymptotic properties. Since the Gale-Nikaido conditions (see Appendix A, equation (A2)) can be
directly verifiable for any (X,θ), the inference range Z can potentially be chosen in a way that
guarantees a unique BNE for every θ ∈Θ everywhere on our inference range, allowing us to bypass
any assumptions involving the BNE selection mechanism λ3.

An estimator for θ0θ0θ0

As before, for any u ∈RdU , let 1Z{U ≤ u} ≡ 1{U ≤ u , Z ∈ Z}. We will define TZ(y|u,θ) ≡ E[ϕ(y|V ,θ)·
1Z{U ≤ u}], the version of T (y|u,θ) where Z is restricted to Z. Next, let

QY ,Z(y|θ) ≡ 1
2

∫
TZ(y|u,θ)2dFU (u) =

1
2
E[TZ(y|U,θ)2], and QY ,Z(θ) ≡

∑
y∈Y ∗

QY ,Z(y|θ). (48)
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QY ,Z(θ) is our population statistic restricted to Z. Our sample objective function is,

Q̂Y ,Z(θ) ≡
∑
y∈Y ∗

Q̂Y ,Z(y|θ), where

Q̂Y ,Z(y|θ) ≡ 1
2
· 1
n

n∑
j=1

T̂Z(y|Uj ,θ)2 =
1
2
· 1
n

n∑
j=1

1
n

n∑
i=1

ϕ̂(y|Vi ,θ) ·1Z{Ui ≤Uj }


2

,

(49)

and ϕ̂(y|Vi ,θ) ≡ Di(y) − P̂(y|Ui ,θ). Our proposed estimator for θ0 is θ̂ = argmin
θ∈Θ

Q̂Y ,Z(θ). Using

standard arguments, the restrictions in Assumptions E1, G4 -G5, I5 -I7, and the appropriate modi-
fication of Assumptions E2 and E3, our estimator θ̂ can be shown to be

√
n−consistent and asymp-

totically normal. The details of its asymptotic distribution can be found in the online Econometric
Supplement (Section S3).

3.5.3 Estimation of behavioral and equilibrium selection probabilities δ(z)δ(z)δ(z)

Under the previous restrictions, we can estimate δ(z) through δ̂(z, θ̂), with asymptotic properties
analogous to those described in Section 2.6.1 for π̂(z, θ̂). Equipped with δ̂(z, θ̂) we can learn about
the propensity of behavior selection as well as equilibrium selection within each behavioral model.

3.6 A consistent specification test

Equipped with θ̂ we can perform a specification test for the validity of any proposed instrument
Z, and the assumptions of our model through a consistent test for the null hypothesis that (38) is
satisfied w.p.1 for all y ∈ Y . This can be done by adapting the procedure outlined in Section 2.6.2.

3.7 Inference for θ0θ0θ0 when we allow for the possibility that players cooperate
almost surely

If we are unwilling to assume that players behave noncooperatively with nonzero probability, our
recommendation is to construct a CS for θ0 based on (44). While there are multiple ways to pro-
ceed, we outline an approach that follows on the steps of Section 2.7. Take any y ∈ Y and let
gy :RdU →R be a real-valued, pre-specified function of U . For a given u ∈RdU , let

mg (y|u,θ) ≡ E
[
ϕ(y|V ,θ) · gy(U ) ·1Z{U ≤ u}

]
and Mg (y|θ) ≡ E[mg (y|U,θ)]. (50)

(44) implies Mg (y|θ0) ∀ y ∈ Y ∗ and a CS for θ0 can be constructed from here. Next, let ΘI
g ≡{

θ ∈Θ : Mg (y|θ) = 0 ∀ y ∈ Y ∗
}

be our target identified set for θ based on (44). Let

M̂g (y|θ) =
1
n

n∑
j=1

m̂g (y|Uj ,θ) =
1
n2

n∑
j=1

n∑
i=1

ϕ̂(y|Vi ,θ) · gy(Ui) ·1Z{Ui ≤Uj } (51)

Following standard arguments, in the online Econometric Supplement (Section S4) we show that,
under Assumptions E1, G4 -G5 and the appropriate modification of Assumptions E2 and E3, the
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statistic M̂g (y|θ) satisfies a linear representation result analogous to Proposition 2, so for each y ∈ Y ,

M̂g (y|θ) =Mg (y|θ) +
1
n

n∑
i=1

ψMg ,n(y|Vi ,θ) + ς
Mg
n (y|θ), ∀ θ ∈Θ,

where E[ψMg ,n(y|Vi ,θ)] = 0 ∀ θ ∈Θ, sup
θ∈Θ

∣∣∣ςMg
n (y|θ)

∣∣∣ = op
(
n−1/2

)
Using this result, we show that a CS for θ0 with pre-specified asymptotic target coverage probabil-
ity can be constructed based on a Wald-type statistic that aggregates M̂g (y|θ) across y ∈ Y ∗.

Inference for the behavioral and equilibrium selection probabilities δ(z)δ(z)δ(z)

We can construct a CS for δ(z) by relying on the asymptotic properties of δ̂(z,θ) and projecting our
CS for θ0 on to δ̂(z,θ), proceeding along the lines described in Section 2.7.1.

4 A general model

Here we extend our setup beyond a 2×2 game and consider a general discrete game with a collection
of candidate behavioral models, each with possible multiple solutions.

4.1 A parameterized normal-form game

We have a collection of players, p = 1, . . . ,P , where each p has a discrete and finite action space
Yp and a (parametric) payoff function up(y;Xp, εp,βp0

), where y ≡ (y1, . . . , yP ) is a particular action

profile, Xp ∈ R
dXp and εp ∈ R denote observable and unobservable (to the econometrician) payoff

shifters and where βp0
is a finite-dimensional parameter. We denote the outcome of the game as

Y ≡ (Y1, . . . ,YP ) ∈ Y , where Y ≡ Y1 × · · · × YP . Group X ≡ ∪Pp=1Xp ∈R
dX and ε ≡ (ε1, . . . , εP ) ∈RP . We

maintain that ε⊥X and ε ∼ Fε(·|ρ0), a parametric joint distribution6 indexed by a finite dimensional
parameter ρ0. The parameters of the model are θ0 ≡ (β10

, . . . ,βP0
, ρ0) ∈Θ.

4.2 A collection of candidate behavioral models

We have a collection of B candidate behavioral models, labeled b = 1, . . . ,B. The outcome of each ob-
servation of the game is the realization of a solution to one of the candidate behavioral models. The
econometrician does not know the behavioral model that produced each observation, and different
observations in the data could have been produced by different behavioral models.

4.2.1 Solutions for each behavioral model

For any given realization of X, each behavioral model b satisfies the following.

•RP can be partitioned intoRb(X,θ0) regions of realizations of ε. These regions are mutually exclu-
sive and their union coversRP . We will denote each region asRb,rb (X,θ0), with rb = 1, . . . ,Rb(X,θ0).

6We can relax the assumption that ε⊥X and parameterize the conditional distribution of ε|X.

29



Each region Rb,rb (X,θ0) can be characterized parametrically given our normal-form parameteriza-
tion.

• If ε ∈ Rb,rb (X,θ0), the behavioral model has Sb,rb (X,θ0) ≥ 1 solutions, which we will index
as srb = 1, . . . ,Sb,rb (X,θ0). Let Y(srb ) denote the (potential) outcome of solution srb . We will let

σ
srb
b,rb

(Y(srb )|X,ε,θ0) denote the distribution of Y(srb ) conditional on (X,ε). Each σ
srb
b,rb

(·|X,ε,θ0) can
be characterized parametrically given our normal-form parameterization.

4.3 Behavior-selection and solution-selection mechanisms

We construct a global model by including a behavior selection mechanism ξ and a solution se-
lection mechanism. We have ξ ∈ {1, . . . ,B}, where ξ = b indicates that behavioral model b has
been selected. If b is selected as the behavioral model, and ε ∈ Rb,rb (X,θ0), a solution selec-
tion mechanism λb,rb selects one among the existing solutions inside region Rb,rb (X,θ0). Thus,
λb,rb ∈ {1, . . . ,Sb,rb (X,θ0)}, and λb,rb = srb indicates that solution srb has been selected. The precise
way through which behavior and solutions are selected (e.g, whether “nature” is involved) is left
unspecified as long as the exclusion restrictions described below are satisfied.

4.3.1 Exclusion restrictions

We assume that ε⊥ξ and that ∃ Z (observable) such that7, ∀ b, srb : P r(ξ = b|X,Z) = P r(ξ = b|Z) ≡
πb(Z) and, P r(λb,rb = srb |ξ = b,ε,X,Z) = P r(λb,rb = srb |ξ = b,Z) ≡ωb,rb (srb |Z).

4.4 An expression for P r(Y = y|U )P r(Y = y|U )P r(Y = y|U )

Grouping U ≡ X ∪Z and letting pY (y|U ) ≡ P r(Y = y|U ), we show in Appendix A (Section A4) that,
under the conditions described, our general model yields,

pY (Y = y|U ) =m1(y|X,θ0) + δ(Z)′Ξ(y|X,θ0), (52)

where m1(y|X,θ0) and Ξ(y|X,θ0) are parametric functions and δ(Z) are nonparametric weights, all
of which are described in Appendix A. This expression generalizes the semiparametric behavioral
convolution properties of our previous models.

4.4.1 Estimation and inference for θ0θ0θ0

Identification and inference can be based on the semiparametric convolution in (52). Identification
of the weights δ(Z) requires ruling out that any pair of our candidate behavioral models are ob-
servationally equivalent to each other. More precisely, it requires the existence of an action profile
y ∈ Y such that each one of our behavioral models produces a different prediction for P r(Y = y|X)
for any possible value that θ0 can take in Θ. As before, this boils down to a full-rank condition,
where ∃ y ∈ Y such that E[Ξ(y|X,θ) ·Ξ(y|X,θ)′ |Z] is invertible for every θ ∈ Θ and a.e Z. From

7We can relax the restriction ε⊥ξ to ε⊥ξ |(X,Z) if we parameterize the conditional distribution of ε|(X,Z).
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here we can characterize a functional δ(Z,θ) such that that δ(Z) = δ(Z,θ0), and a conditional mo-
ment restriction would then follow from (52). Identifiability of θ0 can follow from the maintained
assumption that the underlying selection mechanisms assign nonzero weight to at least one behav-
ioral model that is capable of identifying θ0 (in our previous examples, this amounted to assigning
nonzero probability to noncooperative behavior). A conditional GMM estimator for θ0 can then
be constructed using the approach we described before. From here, estimation of the selection
weights δ(Z), and consistent-specification tests of our model can then be pursued along the lines
described in our previous sections. If we are unwilling to impose restrictions on δ(Z) that can
lead to point-identification of θ0, a CS for θ0 can be based on the restriction in (52) in the manner
outlined in Sections 2.7 and 3.7.

5 A Monte Carlo study

Here we study the performance of the estimator proposed in Section 2.6 in a Monte Carlo exper-
iment. Take three observable, scalar payoff covariates, (W1,W2,Z), distributed as W1,W2,Z

i.i.d∼
N (0,1). We parameterize payoffs as described in Tables 1S and 2S, using t1 = βC10 + βW10W1 + βZ10Z

and t2 = βC20 + βW20W2 + βZ20Z, and constant strategic-interaction effects (∆10,∆20). The unobserved
payoff shifters (ε1, ε2) are bivariate standard Normal with correlation coefficient ρ0, independent
of (W1,W2,Z). We set βC10 = βC20 = 0.5, βW10 = βW20 = −1, βZ10 = βZ20 = 0.5, and ρ0 = 0.5. The strategic-
interaction parameters are ∆10 = 0.5 and ∆20 = 1. As in Section 2.6, players have two types of
possible behavior: cooperative and PSNE. Players cooperate iff Z + η ≤ c, where η ∼ N (0,1) is a
“signal” that is independent of all other payoff shifters, and c is a threshold. Our behavioral se-
lection mechanism satisfies the exclusion restrictions in Assumption G2, with P r(Cooperation|Z) ≡
π(Z) = E[1{η ≤ c − Z}|Z] = Φ(c − Z), which is decreasing in Z. We set c =

√
2 ·Φ−1(1/3), so the ag-

gregate (i.e, unconditional) probability of cooperation is P r(Cooperation) ≡ π = E[1{Z + η ≤ c}] =
Φ(
√

2 ·Φ−1(1/3)/
√

2) = 1/3.

5.1 Estimation results for θ̂̂θ̂θ

We applied the estimation procedure in Section 2.6 for 2,000 samples of sizes n = 500, n = 1,000
and n = 2,000. The non-strategic parameters γ ≡ (βC1 ,β

W
1 ,βZ1 ,β

C
2 ,β

W
2 ,βZ2 ,ρ) were estimated using

the MLE procedure in Section 2.5.1, and the strategic-interaction parameters ∆ ≡ (∆1,∆2) were es-
timated using the conditional GMM procedure described in Section 2.6, using a Gaussian kernel
for Z and a bandwidth of the form hn = ch · σ̂ (Z) · n−1/5. Let f̂Z (z) denote the kernel-estimator for
fZ (z) and let f̂Z,α and τ̂Z,α denote the αth sample quantiles of (f̂Z (Zi))

n
i=1 and (Zi)

n
i=1, respectively.

Our conditional-GMM inference range was Z =
{
z ∈R : τ̂Z,0.005 ≤ z ≤ τ̂Z,0.995 , f̂Z (z) ≥ f̂Z,0.005

}
. Ta-

ble 1 summarizes our estimation results for ch = 1, which is close to the so-called “rule of thumb”
choice. Our estimators perform well, and they estimate both the non-strategic and the strategic
parameters with reasonable precision for all sample sizes analyzed. The Empirical Supplement
includes estimation results for ch = 0.80 and ch = 1.40. Even though we do not present a general
theory of bandwidth selection, our estimation results were robust across our bandwidth choices.
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Table 1: Monte Carlo results for θ.

n = 500n = 500n = 500
Element-wise quantiles of θ̂̂θ̂θ across our simulations

Parameter True 0.15th0.15th0.15th 0.25th0.25th0.25th 0.75th0.75th0.75th 0.85th0.85th0.85th median
value quantile quantile median quantile quantile bias

βc1 0.5 0.237 0.346 0.525 0.674 0.741 0.165
βw1 -1 -1.326 -1.196 -1.026 -0.876 -0.813 0.155
βz1 0.5 0.343 0.401 0.515 0.634 0.708 0.116
βc2 0.5 0.226 0.351 0.530 0.669 0.724 0.160
βw2 -1 -1.346 -1.212 -1.024 -0.876 -0.812 0.161
βz2 0.5 0.343 0.408 0.518 0.635 0.701 0.113
ρ 0.5 0.114 0.221 0.561 0.837 0.947 0.310
∆1 0.5 0.218 0.337 0.621 0.922 1.073 0.283
∆2 1 0.437 0.682 1.048 1.345 1.499 0.334

n = 1,000n = 1,000n = 1,000
Element-wise quantiles of θ̂̂θ̂θ across our simulations

Parameter True 0.15th0.15th0.15th 0.25th0.25th0.25th 0.75th0.75th0.75th 0.85th0.85th0.85th median
value quantile quantile median quantile quantile bias

βc1 0.5 0.311 0.393 0.510 0.617 0.672 0.112
βw1 -1 -1.200 -1.129 -1.007 -0.905 -0.855 0.111
βz1 0.5 0.384 0.429 0.509 0.589 0.640 0.080
βc2 0.5 0.298 0.380 0.500 0.604 0.659 0.110
βw2 -1 -1.211 -1.135 -1.017 -0.908 -0.857 0.111
βz2 0.5 0.377 0.422 0.501 0.581 0.627 0.079
ρ 0.5 0.165 0.279 0.507 0.700 0.795 0.207
∆1 0.5 0.213 0.333 0.556 0.801 0.934 0.231
∆2 1 0.611 0.795 1.049 1.271 1.388 0.245

n = 2,000n = 2,000n = 2,000
Element-wise quantiles of θ̂̂θ̂θ across our simulations

Parameter True 0.15th0.15th0.15th 0.25th0.25th0.25th 0.75th0.75th0.75th 0.85th0.85th0.85th median
value quantile quantile median quantile quantile bias

βc1 0.5 0.368 0.421 0.503 0.578 0.622 0.079
βw1 -1 -1.120 -1.083 -1.002 -0.933 -0.899 0.074
βz1 0.5 0.415 0.448 0.506 0.559 0.593 0.055
βc2 0.5 0.377 0.424 0.507 0.578 0.617 0.078
βw2 -1 -1.135 -1.087 -1.009 -0.936 -0.899 0.075
βz2 0.5 0.419 0.447 0.502 0.556 0.589 0.054
ρ 0.5 0.280 0.364 0.509 0.643 0.711 0.141
∆1 0.5 0.257 0.347 0.557 0.745 0.850 0.198
∆2 1 0.771 0.888 1.059 1.208 1.291 0.172

• 2,000 simulations, ch = 1.0, Gaussian kernel
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5.1.1 Testing the null hypothesis of asymmetric strategic-interaction effects

Next we evaluate the inferential performance of our approach by testing for asymmetries in inter-
action effects. First, we test Ha

0 : ∆20 ≥ ∆10 against Ha
1 : ∆20 < ∆10, and then we test Hb

0 : ∆20 ≤ ∆10

against Hb
1 : ∆20 > ∆10. In both cases we construct a test-statistic using Proposition 1. We estimate

the asymptotic variance matrix of
√
n · (∆̂ −∆0) as Ω̂∆ ≡ 1

n

∑n
i=1 ψ̂∆,n(Vi ; θ̂) · ψ̂∆,n(Vi ; θ̂)′ , where the

influence function ψ̂∆,n(Vi ; θ̂) is constructed in the manner described in Appendix A (Section A5.1).
From here, we estimate σ̂2

∆̂2−∆̂1
, the asymptotic variance of

√
n ·((∆̂2−∆̂1)−(∆20−∆10)) and construct

the test-statistic t̂
∆̂2−∆̂1

≡
√
n·(∆̂2−∆̂1)
σ̂
∆̂2−∆̂1

, which is asymptotically N (0,1) if ∆20 −∆10 = 0. We proceed

to test Ha
0 and Hb

0 comparing t̂
∆̂2−∆̂1

against the correspondingN (0,1) critical values using a target

significance level of 5%. Since ∆20 > ∆10, we should reject Hb
0 with frequency approaching one as n

grows, while we should reject Ha
0 with a frequency that is close to the target significance level and

decreasing8 with n. These predictions are supported by the findings summarized in Table 2, which
correspond to ch = 1. The Empirical Supplement includes the results for ch = 0.80 and ch = 1.40,
and they are all in line with our findings for ch = 1, suggesting once again that our results are robust
across our bandwidth choices.

Table 2: Monte Carlo results for strategic-effect hypotheses tests.

Monte Carlo rejection frequencies of null hypothesis
Ha

0 : ∆20 ≥ ∆10Ha
0 : ∆20 ≥ ∆10Ha
0 : ∆20 ≥ ∆10 vs. Ha

1 : ∆20 < ∆10Ha
1 : ∆20 < ∆10Ha
1 : ∆20 < ∆10 Hb

0 : ∆10 ≥ ∆20Hb
0 : ∆10 ≥ ∆20Hb
0 : ∆10 ≥ ∆20 vs. Hb

1 : ∆10 < ∆20Hb
1 : ∆10 < ∆20Hb
1 : ∆10 < ∆20

n = 500n = 500n = 500 0.074 0.347
n = 1,000n = 1,000n = 1,000 0.063 0.580
n = 2,000n = 2,000n = 2,000 0.045 0.760
• True parameters values: ∆10 = 0.5 and ∆20 = 1
• 1,000 simulations, ch = 1.0, Gaussian kernel
• Target significance level 5%

5.2 Estimation results forπ(Z)π(Z)π(Z), the probability of cooperation

Next we study the performance of our approach to estimate the probability of cooperation. As we
did previously, let π(Z) denote the probability of cooperation conditional on Z, and let π denote
the aggregate (i.e, unconditional) probability of cooperation, so9 π = EZ [π(Z)]. For each one of
our simulated samples, we estimated π(z) for a collection of prespecified values of z, and we also
constructed an estimator for π. Our estimator for π(z) is π̂(z, θ̂), as described in (22). We estimate
π as π̂ = 1

n

∑n
i=1 π̂(Zi , θ̂). It can be shown that, even though each π̂(Zi , θ̂) converges at a nonpara-

metric rate, our aggregate estimator π̂ converges at a parametric rate, a property that appears to be
supported by the results in Table 3, where π is estimated with reasonable precision for all sample
sizes analyzed.

8Since ∆20 > ∆10, the asymptotic probability of rejecting Ha0 : ∆20 ≥ ∆10 against Ha1 : ∆20 < ∆10 is zero.
9The aggregate probability of cooperation is π = 1

3 in our simulations.
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Table 3: Monte Carlo results for π̂

Quantiles of π̂̂π̂π across our simulations
True n = 500n = 500n = 500
value 0.15th0.15th0.15th 0.25th0.25th0.25th 0.75th0.75th0.75th 0.85th0.85th0.85th median
ofπππ quantile quantile median quantile quantile |π̂ −π||π̂ −π||π̂ −π|
π = 1

3 0.112 0.176 0.330 0.540 0.654 0.178

True n = 1,000n = 1,000n = 1,000
value 0.15th0.15th0.15th 0.25th0.25th0.25th 0.75th0.75th0.75th 0.85th0.85th0.85th median
ofπππ quantile quantile median quantile quantile |π̂ −π||π̂ −π||π̂ −π|
π = 1

3 0.124 0.178 0.325 0.503 0.633 0.161

True n = 2,000n = 2,000n = 2,000
value 0.05th0.05th0.05th 0.15th0.15th0.15th 0.75th0.75th0.75th 0.85th0.85th0.85th median
ofπππ quantile quantile median quantile quantile |π̂ −π||π̂ −π||π̂ −π|
π = 1

3 0.114 0.176 0.330 0.506 0.619 0.165
• 2,000 simulations, ch = 1.0, Gaussian kernel

Table 4 includes our results for π̂(z, θ̂) for z ∈ {−1,−0.675,−0.5,−0.25,0,0.25,0.5,0.675,1}, where we
restrict attention to estimates inside (0,1). While our estimators π̂(z, θ̂) converge at a nonparamet-
ric rate, our results clearly illuminate the fact that the probability of cooperation is decreasing in Z.
Furthermore, the true value of π(z) was included within the 10th and the 75th simulation quantiles
of π̂(z, θ̂) for all values of z and all sample sizes, and π(z) was included within the simulation in-
terquartile range of π̂(z, θ̂) for z ∈ {−1,−0.675,−0.5,0.0.25}. Overall, our results were able to reveal
important properties of the underlying behavioral selection mechanism, such as the fact that the
probability of cooperation is decreasing in Z, and the fact that the aggregate frequency of cooper-
ation is around one-third. The Empirical Supplement includes results for ch = 0.80 and ch = 1.40,
and they show that these findings were qualitatively robust across our bandwidth choices.

34



Table 4: Monte Carlo results for π̂(z, θ̂) for various values of z.

n = 500n = 500n = 500
True Quantiles of π̂(z, θ̂)π̂(z, θ̂)π̂(z, θ̂) across our simulations
value 0.15th0.15th0.15th 0.25th0.25th0.25th 0.75th0.75th0.75th 0.85th0.85th0.85th median

ofπ(z)π(z)π(z) quantile quantile median quantile quantile bias
z = −1z = −1z = −1 0.652 0.167 0.295 0.526 0.740 0.842 0.225
z = −0.675z = −0.675z = −0.675 0.526 0.166 0.239 0.436 0.646 0.756 0.215
z = −0.50z = −0.50z = −0.50 0.457 0.150 0.233 0.422 0.625 0.739 0.199
z = −0.25z = −0.25z = −0.25 0.360 0.135 0.208 0.379 0.589 0.719 0.180
z = 0z = 0z = 0 0.271 0.094 0.164 0.339 0.528 0.653 0.176
z = 0.25z = 0.25z = 0.25 0.195 0.098 0.148 0.298 0.520 0.652 0.148
z = 0.50z = 0.50z = 0.50 0.134 0.085 0.142 0.286 0.502 0.658 0.152
z = 0.675z = 0.675z = 0.675 0.100 0.081 0.137 0.291 0.510 0.656 0.192
z = 1z = 1z = 1 0.054 0.081 0.123 0.290 0.504 0.633 0.236

n = 1,000n = 1,000n = 1,000
True Quantiles of π̂(z, θ̂)π̂(z, θ̂)π̂(z, θ̂) across our simulations
value 0.15th0.15th0.15th 0.25th0.25th0.25th 0.75th0.75th0.75th 0.85th0.85th0.85th median

ofπ(z)π(z)π(z) quantile quantile median quantile quantile bias
z = −1z = −1z = −1 0.652 0.243 0.342 0.547 0.744 0.825 0.199
z = −0.675z = −0.675z = −0.675 0.526 0.190 0.273 0.462 0.663 0.770 0.201
z = −0.50z = −0.50z = −0.50 0.457 0.161 0.243 0.408 0.609 0.730 0.188
z = −0.25z = −0.25z = −0.25 0.360 0.125 0.192 0.359 0.539 0.668 0.173
z = 0z = 0z = 0 0.271 0.104 0.162 0.308 0.509 0.633 0.157
z = 0.25z = 0.25z = 0.25 0.195 0.083 0.133 0.278 0.474 0.621 0.141
z = 0.50z = 0.50z = 0.50 0.134 0.081 0.128 0.264 0.462 0.598 0.131
z = 0.675z = 0.675z = 0.675 0.100 0.068 0.123 0.254 0.447 0.583 0.155
z = 1z = 1z = 1 0.054 0.067 0.108 0.248 0.445 0.569 0.195

n = 2,000n = 2,000n = 2,000
True Quantiles of π̂(z, θ̂)π̂(z, θ̂)π̂(z, θ̂) across our simulations
value 0.15th0.15th0.15th 0.25th0.25th0.25th 0.75th0.75th0.75th 0.85th0.85th0.85th median

ofπ(z)π(z)π(z) quantile quantile median quantile quantile bias
z = −1z = −1z = −1 0.652 0.215 0.338 0.565 0.744 0.833 0.193
z = −0.675z = −0.675z = −0.675 0.526 0.193 0.291 0.467 0.664 0.765 0.191
z = −0.50z = −0.50z = −0.50 0.457 0.169 0.250 0.420 0.620 0.731 0.188
z = −0.25z = −0.25z = −0.25 0.360 0.128 0.195 0.357 0.547 0.667 0.176
z = 0z = 0z = 0 0.271 0.098 0.155 0.313 0.498 0.608 0.161
z = 0.25z = 0.25z = 0.25 0.195 0.076 0.131 0.272 0.457 0.567 0.143
z = 0.50z = 0.50z = 0.50 0.134 0.064 0.109 0.237 0.421 0.519 0.123
z = 0.675z = 0.675z = 0.675 0.100 0.058 0.104 0.225 0.394 0.507 0.125
z = 1z = 1z = 1 0.054 0.056 0.086 0.210 0.405 0.515 0.156
2,000 simulations, ch = 1.0, Gaussian kernel
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6 An empirical illustration

A nonparametric test for cooperation in discrete games was proposed in Aradillas-López and
Kosenkova (2023). As an empirical illustration, they analyze geographic-market entry decisions
by Lowe’s and Home Depot in the continental United States, and their results suggest evidence
consistent with cooperation in small markets, but not in large markets. We revisit this question
here by applying the methodology in Section 2, which assumes cooperation and PSNE as the two
candidate behavioral models. We label player p = 1 as Lowe’s and p = 2 as Home Depot, and we de-
fine a market i as a core-based statistical area (CBSA) in the contiguous United States. Our sample
consists of n = 954 markets. We say that Ypi = 1 if player p had presence in market i in 2022. Our
payoff covariates include: X1

pi ≡Distance between market i and the nearest distribution center of player
p. X2

i ≡Small-market indicator, equal to one if market i’s population and number of businesses are
both below their medians, and if i is categorized as a micropolitan statistical area. X3

i ≡Income
per household in market i. X4

i ≡Population density in market i, and X5
i ≡Market size, measured as

log(P opulationi). Our data comes from Aradillas-López and Kosenkova (2023), and its details are
described in Section 6 of that paper. In our parameterization of payoffs, we assume that the slope
coefficients of the non-strategic payoff shifters are the same for both players, and we include a
player-specific fixed effect (i.e, a player-specific constant term) in players’ payoffs. Motivated by
the findings in Aradillas-López and Kosenkova (2023), who find evidence that noncooperative be-
havior is related to market size, we use as our instrument Zi = X5

i =Market size. Unobserved payoff
shocks (ε1i , ε2i) are assumed to be jointly Normal, with mean zero, unit variance, and correlation
coefficient ρ0. Our choice of regressors and our parameterization are compatible with the exclusion
restrictions and the identification conditions assumed in Section 2.

6.1 Estimation results for θ̂̂θ̂θ

Estimation results are included in Table 5. The non-strategic parameters are estimated using MLE,
as described in Section 2.5.1, and the strategic parameters are estimated using the conditional
GMM procedure described in Section 2.6, which maintains the assumption that these firms display
noncooperative behavior with nonzero probability. Except for income-per-household, all the non-
strategic payoff shifters were statistically significant at a 1% significance level, with the signs we
would anticipate for distance-to-distribution-center (-), market size (+), and small-market (-). The
estimated correlation coefficient ρ0 was large (≈ 0.82) and statistically significant, suggesting the
potential presence of market-specific “fixed effects” observed by players. As in our Monte Carlo ex-
periments, we use a bandwidth of the form hn = ch ·σ̂ (Z)·n−1/5 and a Gaussian kernel. The inference
range Z was constructed exactly as in our Monte Carlo experiments. The results shown in Table 5
correspond to ch = 1 (close to the “rule of thumb” bandwidth choice), which yields hn ≈ 0.25 · σ̂ (Z).
The strategic interaction effect estimates were statistically significant, and they suggest a stronger
interaction effect for Lowe’s than Home Depot (i.e, ∆20 < ∆10), a conjecture that we formally test
below. Our Empirical Supplement presents estimation results for alternative bandwidth choices,
using ch = 0.80 and ch = 1.40. As we show there, even though the strategic interaction estimates
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naturally change10, the main qualitative finding that both effects are statistically significant, and
that ∆20 < ∆10, was robust across our bandwidth choices.

Table 5: Estimation results (standard errors in parenthesis)

Non-strategic parameters
Player 1 (Lowe’s) fixed effect Player 2 (Home Depot) fixed effect

3.226∗ 2.767∗

(0.552) (0.804)
Distance to nearest distribution center Small-market indicator

-0.323∗ -0.695∗

(0.054) (0.198)
Income per household Payroll per business establishment

-0.100 -0.231∗

(0.088) (0.043)
Population density Market size

-0.443∗ 0.467∗

(0.174) (0.146)
ρ0

0.824∗

(0.263)

Strategic-interaction parameters
Player 1 (Lowe’s): ∆10 Player 2 (Home Depot): ∆20

0.946∗ 0.257∗

(0.143) (0.022)
(∗) denotes statistically significant at a 1% significance level.
Non-strategic parameters were estimated using MLE.
(∆1,∆2) were estimated using ch = 1 for our bandwidth and a Gaussian kernel.

6.1.1 Testing for asymmetric interaction effects

Our results suggest that the strategic effect for Lowe’s is larger than that of Home Depot, i.e, ∆20 <

∆10. Following the steps described in our Monte Carlo experiments, we construct the test-statistic

t̂
∆̂2−∆̂1

≡
√
n·(∆̂2−∆̂1)
σ̂
∆̂2−∆̂1

, which is asymptotically N (0,1) by Proposition 1, if ∆20 −∆10 = 0. The value

of our test-statistic using ch = 1 for our bandwidth is t̂
∆̂2−∆̂1

= −5.329, leading us to reject the null
hypothesis H0 : ∆20 ≥ ∆10 in favor of H1 : ∆20 < ∆10 with a p-value of 4.9 × 10−8. We repeat this
exercise in the Empirical Supplement for alternative bandwidth choices and, in all cases, we reject
the null hypothesis H0 : ∆20 ≥ ∆10 in favor of H1 : ∆20 < ∆10 with p-values much smaller than 1%.

10The non-strategic parameters are estimated by MLE and they are unaffected by our bandwidth choice.
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Our results suggest, at a statistically significant level, that the strategic effect is greater for Lowe’s
than for Home Depot.

6.2 Probability of cooperation and market size

The nonparametric test in Aradillas-López and Kosenkova (2023) suggested evidence consistent
with cooperative behavior in smaller markets. That approach is based on testable implications
of cooperation, but it was not designed to estimate the probability of cooperation. The method
proposed here allows us to estimate π(Z), the probability of cooperation conditional on Z (market
size in our case). We estimate π(z) with π̂(z, θ̂), as described in (22). Focusing on markets where
π̂(Zi , θ̂) is in the (0,1) interval, figure 3 plots π̂(Zi , θ̂) against Zi . Our results suggest that the
probability of cooperation is decreasing in market size, lending support to the assertion that entry
decisions by these firms are more likely to be consistent with noncooperative behavior in larger
markets, and more likely to be consistent with cooperative behavior in smaller ones. The average
estimated probability of cooperation across the markets in our sample was 0.452, and the median
was 0.418. These results as well as those shown in Figure 3 correspond to ch = 1 for our bandwidth
choice. In Appendix A (Figure E1), we replicate this plot for ch = 0.80 and ch = 1.40 and we show
that the finding that π(z) is decreasing in z (market size) is robust across our bandwidth choices.

Figure 3: Estimated probability of cooperation, π̂(z, θ̂) and market size
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• Values of market size shown range from the 5th to the 95th quantiles.
• Results shown correspond to ch = 1 for our bandwidth, and a Gaussian kernel.
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7 Concluding remarks

Econometric analysis of games in non-experimental settings typically relies on the assumption that
every observation in the data was produced by the same behavioral model. This paper aims to relax
this restriction by assuming instead a collection of candidate behavioral models, each one with po-
tentially multiple solutions, that could have produced each observation in the data, with different
observations possibly having been produced by different behavioral models with this collection. In
static discrete games with parametric normal-form representations, we show that if there is an ob-
servable instrument Z that controls for the dependence between the underlying behavioral and so-
lution selection mechanisms and the game’s payoff covariates, the predictions of our global model
can be written as a convolution of the predictions of the candidate solutions, with the convolution
weights being nonparametric functionals of Z. If there exist outcomes for which our candidate
solutions are not observationally equivalent, these weights can be identified and estimated in a
first step as functionals of the parameters of interest, and the resulting convolution can be used
for estimation and inference. Point identification of the normal-form parameters can result if the
behavioral selection mechanism assigns positive probability to behavioral models that have suffi-
cient identification power. However, in the absence of such restrictions, a CS for the parameters
can be constructed from our semiparametric convolution. Our setup allows us to recover not only
the parameters of the normal-form, but also the convolution weights, which contain information
about the propensity of the selection mechanisms to select each behavioral model and each solution
within each behavioral model. While our framework relies on the availability of an instrument Z,
the restrictions that any candidate Z has to satisfy are testable, and they can be formally evaluated
through consistent specification tests. Conditional GMM procedures for estimation and inference
were proposed, and Monte Carlo experiments showed that the resulting normal-form estimators,
and the behavioral weights recovered had good properties. As an empirical illustration, we ap-
plied our conditional-GMM estimation procedure to model geographic entry decisions by Lowe’s
and Home Depot. Assuming cooperation and pure-strategy Nash equilibrium as the two candidate
behavioral models, we found evidence of a statistically significant (and asymmetric) presence of
strategic-interaction effects, and we also found evidence of the presence of both behavioral models
across markets. Our estimates for the propensity of behavioral selection were consistent with the
conjecture that the probability of cooperation decreases with market size.

39



Appendix A

Every section in this appendix has the format AX.X and every equation has the format (AX.X.X).
Any section or equation that we reference here which does not have this format refers to the main
paper. Similarly, all assumptions referenced here refer to the main paper.

A1 Deriving the expression for ∂2QS (θ)
∂∆∂∆′
∂2QS (θ)
∂∆∂∆′
∂2QS (θ)
∂∆∂∆′ in Section 2.5.2

We have,

∂2QS (θ)
∂∆∂∆′

= E
[
∂2τ(U,θ)
∂∆∂∆′

· τ(U,θ)
]

+E
[
∂τ(U,θ)
∂∆

· ∂τ(U,θ)
∂∆

′]
= −

∫
E

[
∂2µS (U,θ)
∂∆∂∆′

·1{U ≤ u}
]
·E [ϕS (V ,θ) ·1{U ≤ u}]dFU (u)

+
∫
E

[
∂µS (U,θ)

∂∆
·1{U ≤ u}

]
·E

[
∂µS (U,θ)

∂∆

′
·1{U ≤ u}

]
dFU (u).

Evaluated at θ0, this simplifies to ∂2QS (θ0)
∂∆∂∆′ =

∫
E
[
∂µS (U,θ0)

∂∆ ·1{U ≤ u}
]
·E

[
∂µS (U,θ0)

∂∆

′
·1{U ≤ u}

]
dFU (u).

Invertibility of ∂
2QS (θ0)
∂∆∂∆′ will require that

∫
E
[
∂µS (U,θ)

∂∆ ·1{U ≤ u}
]
·E

[
∂µS (U,θ)

∂∆

′
·1{U ≤ u}

]
dFU (u) have

full rank in an open neighborhood N of θ0. We have ∂µS (U,θ)
∂∆ =

(
∂µS (U,θ)
∂∆1

′
, ∂µS (U,θ)

∂∆2

′)′
, where

∂µS (U,θ)
∂∆p

=
∂mNCS (X,θ)

∂∆p
+ π(Z,θ) · ∂ΞS (X,θ)

∂∆p
+ ∂π(Z,θ)

∂∆p
· ΞS (X,θ). Let us analyze the terms on the right

hand side of this expression. For p = 1,2, denote ∇pF1,2(ϵ1,ϵ2|ρ) ≡ ∂F1,2(ϵ1,ϵ2 |ρ)
∂ϵp

and let HNC
p (X,θ) ≡

∇pF1,2(Xns1
′β1−Xs1

′
∆1 , Xns2

′β2−Xs2
′
∆2|ρ), andHC(X,θ) ≡

∑2
q=1∇qF1,2(Xns1

′β1−Xs1
′
∆1−Xs2

′
∆2 , Xns2

′β2−
Xs1
′
∆1 −Xs2

′
∆2|ρ). From (10),

∂mNCS (X,θ)
∂∆p

= −HNC
p (X,θ) ·Xsp,

∂mCS (X,θ)
∂∆p

= −HC(X,θ) ·Xsp,

∂ΞS (X,θ)
∂∆p

=
(
HNC
p (X,θ)−HC(X,θ)

)
·Xsp

(A1)

Next, from (11) and (13),

∂π(Z,θ)
∂∆p

=
E
[
−∂m

NC
S (X,θ)
∂∆p

·ΞS (X,θ) +
(
mNCS (X,θ0)−mNCS (X,θ) +π(Z) ·ΞS (X,θ0)

)
· ∂ΞS (X,θ)

∂∆p

∣∣∣∣Z]
E
[
ΞS (X,θ)2

∣∣∣Z]
− 2 ·

E
[(
mNCS (X,θ0)−mNCS (X,θ) +π(Z) ·ΞS (X,θ0)

)
·ΞS (X,θ)

∣∣∣∣Z]
·E

[
ΞS (X,θ)∂ΞS (X,θ)

∂∆p

∣∣∣∣Z]
(
E
[
ΞS (X,θ)2

∣∣∣Z])2
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Denote Jp(U,θ) ≡ π(Z,θ) ·HC(X,θ) + (1−π(Z,θ)) ·HNC
p (X,θ). Evaluated at θ0, we have,

∂π(Z,θ0)
∂∆p

= −
E
[(
π(Z) · ∂m

C
S (X,θ0)
∂∆p

+ (1−π(Z)) · ∂m
NC
S (X,θ0)
∂∆p

)
·ΞS (X,θ0)

∣∣∣∣Z]
E
[
ΞS (X,θ0)2

∣∣∣Z]
=
E
[(
π(Z) ·HC(X,θ0) + (1−π(Z)) ·HNC

p (X,θ0)
)
·ΞS (X,θ0) ·Xsp

∣∣∣Z]
E
[
ΞS (X,θ0)2

∣∣∣Z]
=
E
[
Jp(U,θ0) ·ΞS (X,θ0) ·XSp

∣∣∣ Z]
E
[
ΞS (X,θ0)2

∣∣∣ Z]
From here, ∂µS (U,θ0)

∂∆p
simplifies to ∂µS (U,θ0)

∂∆p
= −Jp(U,θ0) ·XSp +

E[Jp(U,θ0)·ΞS (X,θ0)·XSp
∣∣∣ Z]

E[ΞS (X,θ0)2
∣∣∣ Z] ·ΞS (X,θ0) and,

∂µS (U,θ0)
∂∆

=


−J1(U,θ0) ·XS1 +

E[J1(U,θ0)·ΞS (X,θ0)·XS1
∣∣∣ Z]

E[ΞS (X,θ0)2
∣∣∣ Z] ·ΞS (X,θ0)

−J2(U,θ0) ·XS2 +
E[J2(U,θ0)·ΞS (X,θ0)·XS2

∣∣∣ Z]
E[ΞS (X,θ0)2

∣∣∣ Z] ·ΞS (X,θ0)


From here, let

µ̇S,∆(U,θ) ≡


−J1(U,θ) ·XS1 +

E[J1(U,θ)·ΞS (X,θ)·XS1
∣∣∣ Z]

E[ΞS (X,θ)2
∣∣∣ Z] ·ΞS (X,θ)

−J2(U,θ) ·XS2 +
E[J2(U,θ)·ΞS (X,θ)·XS2

∣∣∣ Z]
E[ΞS (X,θ)2

∣∣∣ Z] ·ΞS (X,θ)


Then, ∂

2QS (θ0)
∂∆∂∆′ =

∫
E
[
µ̇S,∆(U,θ0) ·1{U ≤ u}

]
·E

[
µ̇S,∆(U,θ0)′ ·1{U ≤ u}

]
dFU (u). This is the expression

in equation (20). ■

A2 Gale Nikaido conditions for the BNE model in Section 3.3

The Jacobian ∇πH(π;X,θ) of the BNE system is given by,

∇πH(π;X,θ) ≡

1− ∂H1(Xns1
′β1−Xs1

′
∆1·π2 ; Xns2

′β2−Xs2
′
∆2·π1 |ρ)

∂π1
−∂H1(Xns1

′β1−Xs1
′
∆1·π2 ; Xns2

′β2−Xs2
′
∆2·π1 |ρ)

∂π2

−∂H2(Xns2
′β2−Xs2

′
∆2·π1 ; Xns1

′β1−Xs1
′
∆1·π2 |ρ)

∂π1
1− ∂H2(Xns2

′β2−Xs2
′
∆2·π1 ; Xns1

′β1−Xs1
′
∆1·π2 |ρ)

∂π2


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The Gale Nikaido conditions will be satisfied if,

1−
∂H1(Xns1

′β1 −Xs1
′
∆1 ·π2 ; Xns2

′β2 −Xs2
′
∆2 ·π1|ρ)

∂π1
, 0

1−
∂H2(Xns2

′β2 −Xs2
′
∆2 ·π1 ; Xns1

′β1 −Xs1
′
∆1 ·π2|ρ)

∂π2
, 0(

1−
∂H1(Xns1

′β1 −Xs1
′
∆1 ·π2 ; Xns2

′β2 −Xs2
′
∆2 ·π1|ρ)

∂π1

)
·
(
1−

∂H2(Xns2
′β2 −Xs2

′
∆2 ·π1 ; Xns1

′β1 −Xs1
′
∆1 ·π2|ρ)

∂π2

)
−
∂H1(Xns1

′β1 −Xs1
′
∆1 ·π2 ; Xns2

′β2 −Xs2
′
∆2 ·π1|ρ)

∂π2
·
∂H2(Xns2

′β2 −Xs2
′
∆2 ·π1 ; Xns1

′β1 −Xs1
′
∆1 ·π2|ρ)

∂π1
, 0

∀ (π1,π2) ∈ [0,1]2.
(A2)

If (A2) holds, BNE will be unique for (X,θ), so J(X,θ) = 1. (A2) can be verified directly ∀ (X,θ).

A3 Showing that the restrictions in Assumption I6 are satisfied

by y ∈ {(1,0) , (0,1)}y ∈ {(1,0) , (0,1)}y ∈ {(1,0) , (0,1)} under the conditions of Proposition 1

First, we show that the full-rank condition in Assumption I6 can only be satisfied for y ∈ {(1,0) , (0,1)}.
To see why, note that g1

M1,NE
(y|X,θ) = g2

M1,NE
(y|X,θ) = 0 for y ∈ {(0,0) , (1,1)}. Thus, from (39), for

y ∈ {(0,0) , (1,1)},

Ξ(y|X,θ) =(
gCR(y|X,θ)− g1

BNE(y|X,θ) , gNER (y|X,θ)− g1
BNE(y|X,θ) , 0 , 0 ,

(
g
j
BNE(y|X,θ)− g1

BNE(y|X,θ)
)J(X,θ)

j=2

)′
And the full-rank condition in Assumption I6 cannot be satisfied. Now, for y ∈ {(1,0) , (0,1)},

m2((1,0)|X,θ) =
(
gCR((1,0)|X,θ)− g1

BNE((1,0)|X,θ) , gNER ((1,0)|X,θ) +GM1
(X,θ)− g1

BNE((1,0)|X,θ)
)′

m3((1,0)|X,θ) =
(
−GM1

(X,θ) , g3
M1,NE

((1,0)|X,θ)−GM1
(X,θ) ,

(
g
j
BNE((1,0)|X,θ)− g1

BNE((1,0)|X,θ)
)J(X,θ)

j=2

)′
m2((0,1)|X,θ) =

(
gCR((0,1)|X,θ)− g1

BNE((0,1)|X,θ) , gNER ((0,1)|X,θ)− g1
BNE((0,1)|X,θ)

)′
m3((0,1)|X,θ) =

(
GM1

(X,θ) , g3
M1,NE

((0,1)|X,θ) ,
(
g
j
BNE((0,1)|X,θ)− g1

BNE((0,1)|X,θ)
)J(X,θ)

j=2

)′
Since Ξ(y|X,θ) =

(
m2(y|X,θ)′ , m3(y|X,θ)′

)′
, the restriction in Assumption I6 would be satisfied

for y ∈ {(1,0) , (0,1)} if, for each θ ∈Θ and a.e Z, the support of(
gCR(y|X,θ) , GM1

(X,θ) , gNER (y|X,θ) , g3
M1,NE

(y|X,θ) ,
(
g
j
BNE(y|X,θ)

)J(X,θ)

j=1

)′
conditional on Z, is not contained in any proper linear subspace of RJ(X,θ)+4. This can follow from
the conditions in Assumption I6 and the support/exclusion restrictions leading to Proposition 1.
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A4 Deriving an expression for P r(Y = y|U )P r(Y = y|U )P r(Y = y|U ) for the general model

in Section 4

Again, group U ≡ X ∪Z. For any y ∈ Y , our model predicts,

1{Y = y} =
B∑
b=1

1{ξ = b}
Rb(X,θ0)∑
rb=1

1{ε ∈ Rb,rb (X,θ0)}
Sb,rb (X,θ0)∑
srb=1

1{λb,rb = srb } ·1{Y(srb ) = y} (A3)

Note that P r(Y = y |ξ = b, λb,rb = srb , U , ε) = P r(Y(srb ) = y|X,ε) = σ
srb
b,rb

(y|X,ε,θ0). Thus, (A3) yields,

P r(Y = y|ξ,λ,U,ε) =
B∑
b=1

1{ξ = b}
Rb(X,θ0)∑
rb=1

1{ε ∈ Rb,rb (X,θ0)}
Sb,rb (X,θ0)∑
srb=1

1{λ = srb } · σ
srb
b,rb

(y|X,ε,θ0).

From here, the exclusion restriction P r(λ = srb |ξ = b,ε,X,Z) = ωb,rb (srb |Z) yields,

P r(Y = y|ξ,U,ε) =
B∑
b=1

1{ξ = b}
Rb(X,θ0)∑
rb=1

1{ε ∈ Rb,rb (X,θ0)}
Sb,rb (X,θ0)∑
srb=1

ωb,rb (srb |Z) · σ
srb
b,rb

(y|X,ε,θ0).

Define g
srb
b,rb

(y|X,θ0) ≡ E
[
1{ε ∈ Rb,rb (X,θ0)} · σ

srb
b,rb

(y|X,ε,θ0) |U
]

=
∫
1{ε ∈ Rb,rb (X,θ0)}·σ

srb
b,rb

(y|X,ε,θ0)·

fε(ε|ρ0)dε. The expression for g
srb
b,rb

(y|X,θ0) is characterized parametrically from our normal-form
parameterization. The independence restriction11 ε⊥ξ yields,

P r(Y = y|ξ,U ) =
B∑
b=1

1{ξ = b}
Rb(X,θ0)∑
rb=1

Sb,rb (X,θ0)∑
srb=1

ωb,rb (srb |Z) · g
srb
b,rb

(y|X,θ0).

11We can relax the independence restriction ε⊥ξ to ε⊥ξ |U if we parameterize the conditional distribution
of ε|U . If we denote it as Fε|U (·|U,ρ0), we would have

g
srb
b,rb

(y|U,θ0) ≡ E
[
1{ε ∈ Rb,rb (X,θ0)} · σ

srb
b,rb

(y|X,ε,θ0) |U
]

=
∫
1{ε ∈ Rb,rb (X,θ0)} · σ

srb
b,rb

(y|X,ε,θ0) · fε|U (ε|U,ρ0)dε.

And (A4) becomes,

P r(Y = y|U ) =
B∑
b=1

πb(Z)
Rb(X,θ0)∑
rb=1

Sb,rb (X,θ0)∑
srb=1

ωb,rb (srb |Z) · g
srb
b,rb

(y|U,θ0).
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Finally, the exclusion restriction P r(ξ = b|X,Z) = πb(Z) yields,

P r(Y = y|U ) =
B∑
b=1

πb(Z)
Rb(X,θ0)∑
rb=1

Sb,rb (X,θ0)∑
srb=1

ωb,rb (srb |Z) · g
srb
b,rb

(y|X,θ0). (A4)

Writing π1(Z) = 1−
∑B
b=2πb(Z) and ωb,rb (1|Z) = 1−

∑Sb,rb (X,θ0)
srb=2 ωb,rb (srb |Z), (A4) becomes,

P r(Y = y|U ) =
R1(X,θ0)∑
r1=1

g1
1,r1

(y|X,θ0) +
B∑
b=2

πb(Z) ·


Rb(X,θ0)∑
rb=1

g1
b,rb

(y|X,θ0)−
R1(X,θ0)∑
r1=1

g1
1,r1

(y|X,θ0)


+
B∑
b=1

Rb(X,θ0)∑
rb=1

Sb,rb (X,θ0)∑
srb=2

ϑb,rb (srb |Z) ·
(
g
srb
b,rb

(y|X,θ0)− g1
b,rb

(y|X,θ0)
) (A5)

where ϑb,rb (srb |Z) ≡ πb(Z) ·ωb,rb (srb |Z). The previous expression can be simplified as follows. Let

m1(y|X,θ0) ≡
R1(X,θ0)∑
r1=1

g1
1,r1

(y|X,θ0)

m2(y|X,θ0) ≡
(Rb(X,θ0)∑

rb=1

g1
b,rb

(y|X,θ0)−
R1(X,θ0)∑
r1=1

g1
1,r1

(y|X,θ0)
)B
b=2

m3(y|X,θ0) ≡
( ( (

g
srb
b,rb

(y|X,θ0)− g1
b,rb

(y|X,θ0)
)Sb,rb (X,θ0)

srb=2

)Rb(X,θ0)

rb=1

)B
b=1

Ξ(y|X,θ0) ≡
(
m2(y|X,θ0)′ , m3(y|X,θ0)′

)′

and δ1(Z) ≡
(
πb(Z)

)B
b=2

, δ2(Z) ≡
( ( (

ϑb,rb (srb |Z)
)Sb,rb (X,θ0)

srb=2

)Rb(X,θ0)

rb=1

)B
b=1

and δ(Z) ≡
(
δ1(Z)′ , δ2(Z)′

)′
.

Then, (A5) can be expressed as, P r(Y = y|U ) ≡ pY (y|U ) = m1(y|X,θ0) + δ(Z)′Ξ(y|X,θ0). This is the
behavioral convolution expression described in Section 4.4. Estimation and inference can then be
approached along the lines outlined in Sections 3.5 and 3.7. ■

A5 Details of Proposition 1

We will describe here the structure of the influence function ψ∆,n(Vi ;θ0) in the statement of Propo-
sition 1. Our result follows from standard arguments in semiparametric models, and the step-
by-step details can be found in Section S1 of the online Econometric Supplement, which is avail-
able at https://aaradill.github.io/econometric_supplement_uncertain_behavior.pdf. Let
mCS (X,θ), mNCS (X,θ) and ΞS (X,θ) be as defined in equation (5) of the paper. From (3), E[S |U ] =
mNCS (X,θ0)+π(Z)·ΞS (X,θ0). Recall that the population objective function of our conditional GMM
estimator is QS,Z(θ) ≡ 1

2 · E[τZ(U,θ)2], with τZ(u,θ) ≡ E [ϕS (V ,θ) ·1Z{U ≤ u}], and ϕS (Vi ,θ) ≡
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Si −mNCS (Xi ,θ) − π(Zi ,θ) · ΞS (Xi ,θ). From these definitions, it follows therefore that, ∂QS,Z (θ)
∂θ =

E
[
∂τZ (U,θ)

∂θ · τZ(U,θ)
]
, and12 ∂2QS,Z (θ)

∂θ∂θ′ = E
[
∂2τZ (U,θ)
∂θ∂θ′ · τZ(U,θ)

]
+E

[
∂τZ (U,θ)

∂θ · ∂τZ (U,θ)
∂θ

′]
, where ∂τZ (u,θ)

∂θ =

E
[
∂ϕS (V ,θ)

∂θ ·1Z{U ≤ u}
]
, and ∂2τZ (u,θ)

∂θ∂θ′ = E
[
∂2ϕS (V ,θ)
∂θ∂θ′ ·1Z{U ≤ u}

]
. For a given (z,θ), denote Rπb (z,θ) ≡

E[ΞS (X,θ)2|Z = z] · fZ (z), and let

ψπa,n(Vi ;z,θ) ≡
(
Si −mNCS (Xi ,θ)

)
·ΞS (Xi ,θ) ·K

(
Zi − z
hn

)
−E

[(
S −mNCS (X,θ)

)
·ΞS (X,θ) ·K

(
Z − z
hn

)]
,

ψπb,n(Ui ;z,θ) ≡ ΞS (Xi ,θ)2 ·K
(
Zi − z
hn

)
−E

[
ΞS (X,θ)2 ·K

(
Z − z
hn

)]
,

ψπn (Vi ;z,θ) ≡ 1
Rπb (z,θ)

·ψπa,n(Vi ;z,θ)− π(z,θ)
Rπb (z,θ)

·ψπb,n(Ui ;z,θ)

(A6)
In Section S1.1 of the online Econometric Supplement we show that π̂(z,θ) satisfies a linear repre-
sentation result under the restrictions of Proposition 1,

π̂(z,θ) = π(z,θ) +
1

n · hdzn

n∑
i=1

ψπn (Vi ;z,θ) +ϑπn (z,θ), where sup
θ∈Θ
z∈Z

∣∣∣ϑπn (z,θ)
∣∣∣ = op

(
n−1/2

)
(A7)

The linear representation in (A7) follows from standard semiparametric arguments given our as-
sumptions. In what follows, let (V1,V2,V3,V4) ∼ FV ⊗FV ⊗FV ⊗FV (four randomly drawn observa-
tions from our i.i.d sample (Vi)

n
i=1). Let

Γ∆,n(V1;θ0) ≡ ϕS (V1,θ0) ·E
[
E

[
∂ϕS (V3,θ0)

∂∆
·1Z{U3 ≤U2}

∣∣∣∣U2

]
·1Z{U1 ≤U2}

∣∣∣∣∣U1

]
−E

∂ϕS (V4,θ0)
∂∆

·E
ΞS (X2,θ0) · 1

hdZn
ψπn (V1;Z2,θ0) ·1Z{U2 ≤U3}

∣∣∣∣∣V1,U3

 ·1Z{U4 ≤U3}
∣∣∣∣∣V1

 . (A8)

Note that E
[
Γ∆,n(V1;θ0)

]
= 0. Next, let ψγ (Vi ;γ0) denote the MLE influence function of γ̂ , as de-

scribed in Section 2.5.1. Let

ψ∆,n(Vi ;θ0) ≡ −
∂2QS,Z(θ0)
∂∆∂∆′

−1

×
(
Γ∆,n(Vi ;θ0) +

∂2QS,Z(θ0)
∂∆∂γ ′

·ψγ (Vi ;γ0)
)

(A9)

Note that E
[
ψ∆,n(V ;θ0)

]
= 0. In Section S1 of the online Econometric Supplement we show that,

∆̂−∆0 =
1
n

n∑
i=1

ψ∆,n(Vi ;θ0) + op
(
n−1/2

)
, (A10)

This result follows from the asymptotic properties of our semiparametric weights described in
(A7) and standard steps in semiparametric extremum-estimation models. It is the result stated in

12Note that, evaluated at θ0, we have ∂2QS,Z (θ)
∂θ∂θ′

= E
[
∂τZ (U,θ0)

∂θ
· ∂τZ (U,θ0)

∂θ

′]
. This follows since τZ (U,θ0) = 0

a.s, and therefore E
[
∂2τZ (U,θ0)
∂θ∂θ′

· τZ (U,θ0)
]

= 0.
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Proposition 1. ■

A5.1 Estimating Ω∆Ω∆Ω∆, the asymptotic variance of
√
n · (∆̂−∆0)
√
n · (∆̂−∆0)
√
n · (∆̂−∆0)

Using Proposition 1, our proposal is to estimate Ω∆, the asymptotic variance of
√
n · (∆̂−∆0), as

Ω̂∆ ≡ 1
n

∑n
i=1 ψ̂∆,n(Vi ; θ̂) · ψ̂∆,n(Vi ; θ̂)′ , where ψ̂∆,n(Vi ; θ̂) is an estimator of the influence function

ψ∆,n(Vi ; θ̂), described in (A9). Let R̂πa (z,θ) ≡ 1
n·hdZn

∑n
i=1

(
Si −mNCS (Xi ,θ)

)
· ΞS (Xi ,θ) · K

(
Zi−z
hn

)
and

R̂πb (z,θ) ≡ 1
n·hdZn

∑n
i=1ΞS (Xi ,θ)2 ·K

(
Zi−z
hn

)
and note that π̂(z,θ) = R̂πa (z,θ)

R̂πb (z,θ)
. We estimate the influence

function ψπn (Vi ;z,θ) in (A6) as,

ψ̂πn (Vi ;z,θ) ≡ 1

R̂πb (z,θ)
· ψ̂πa,n(Vi ;z,θ)− π̂(z,θ)

R̂πb (z,θ)
· ψ̂πb,n(Ui ;z,θ), where

ψ̂πa,n(Vi ;z,θ) ≡
(
Si −mNCS (Xi ,θ)

)
·ΞS (Xi ,θ) ·K

(
Zi − z
hn

)
− hdZn · R̂πa (z,θ),

ψ̂πb,n(Ui ;z,θ) ≡ ΞS (Xi ,θ)2 ·K
(
Zi − z
hn

)
− hdZn · R̂πb (z,θ)

Next, we estimate13 ∂2Q̂S,Z (θ)
∂θ∂θ′ = 1

n

∑n
j=1

(
∂2τ̂Z (Uj ,θ)
∂θ∂θ′ · τ̂Z(Uj ,θ) +

∂τ̂Z (Uj ,θ)
∂θ · ∂τ̂Z (Uj ,θ)

∂θ

′)
, where, ∂τ̂Z (u,θ)

∂θ =

1
n

∑n
i=1

∂ϕ̂S (Vi ,θ)
∂θ ·1Z{Ui ≤ u},

∂2τ̂Z (u,θ)
∂θ∂θ′ = 1

n

∑n
i=1

∂2ϕ̂S (Vi ,θ)
∂θ∂θ′ ·1Z{Ui ≤ u} and,

ϕ̂S (Vi ,θ) ≡ Si −mNCS (Xi ,θ)− π̂(Zi ,θ) ·ΞS (Xi ,θ),

∂ϕ̂S (Vi ,θ)
∂θ

= −
∂mNCS (Xi ,θ)

∂θ
+
∂π̂(Zi ,θ)
∂θ

·ΞS (Xi ,θ) +
∂ΞS (Xi ,θ)

∂θ
· π̂(Zi ,θ)

 ,
∂2ϕ̂S (Vi ,θ)
∂θ∂θ′

= −
∂2mNCS (Xi ,θ)

∂θ∂θ′
+
∂π̂(Zi ,θ)
∂θ

· ∂ΞS (Xi ,θ)
∂θ

′
+
∂2π̂(Zi ,θ)
∂θ∂θ′

·ΞS (Xi ,θ)

+
∂ΞS (Xi ,θ)

∂θ
· ∂π̂(Zi ,θ)

∂θ

′
+
∂2ΞS (Xi ,θ)
∂θ∂θ′

· π̂(Zi ,θ)

.
13Note that ∂2QS,Z (θ0)

∂θ∂θ′
= E

[
∂τZ (U,θ0)

∂θ
· ∂τZ (U,θ0)

∂θ

′]
(since τZ (U,θ0) = 0 a.s), and we can estimate ∂2QS,Z (θ0)

∂θ∂θ′
as

∂2Q̂S,Z (θ̂)
∂θ∂θ′

=
1
n

n∑
j=1

∂τ̂Z (Uj , θ̂)

∂θ
·
∂τ̂Z (Uj , θ̂)

∂θ

′

.
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The Jacobian ∂π̂(Zi ,θ)
∂θ and Hessian ∂2π̂(Zi ,θ)

∂θ∂θ′ of our estimated weights π̂(Zi ,θ) are estimated as,

∂π̂(z,θ)
∂θℓ

=
1

R̂πb (z,θ)
·
∂R̂πa (z,θ)

∂θℓ
− π̂(z,θ) ·

∂R̂πb (z,θ)

∂θℓ

 ,
∂2π̂(z,θ)
∂θj∂θℓ

=− 1

R̂πb (z,θ)2
·
∂R̂πb (z,θ)

∂θj
·
∂R̂πa (z,θ)

∂θℓ
− π̂(z,θ) ·

∂R̂πb (z,θ)

∂θℓ


+

1

R̂πb (z,θ)
·
∂2R̂πa (z,θ)
∂θj∂θℓ

− ∂π̂(z,θ)
∂θj

·
R̂πb (z,θ)

∂θℓ
− π̂(z,θ) ·

∂2R̂πb (z,θ)

∂θj∂θℓ

 ,
where,

∂R̂πa (z,θ)
∂θℓ

=
1

n · hdZn

n∑
i=1

∂ΞS (Xi ,θ)
∂θℓ

·
(
Si −mNCS (Xi ,θ)

)
−
∂mNCS (Xi ,θ)

∂θℓ
·ΞS (Xi ,θ)

 ·K (
Zi − z
hn

)
∂R̂πb (z,θ)

∂θℓ
=

2

n · hdZn

n∑
i=1

∂ΞS (Xi ,θ)
∂θℓ

·ΞS (Xi ,θ) ·K
(
Zi − z
hn

)
,

∂2R̂πa (z,θ)
∂θj∂θℓ

=
1

n · hdZn

n∑
i=1

∂2ΞS (Xi ,θ)
∂θj∂θℓ

·
(
Si −mNCS (Xi ,θ)

)
− ∂ΞS (Xi ,θ)

∂θℓ
·
∂mNCS (Xi ,θ)

∂θj

−
∂2mNCS (Xi ,θ)
∂θj∂θℓ

·ΞS (Xi ,θ)−
∂mNCS (Xi ,θ)

∂θℓ
· ∂ΞS (Xi ,θ)

∂θj

 ·K (
Zi − z
hn

)
,

∂2R̂πb (z,θ)

∂θj∂θℓ
=

2

n · hdZn

n∑
i=1

∂2ΞS (Xi ,θ)
∂θj∂θℓ

·ΞS (Xi ,θ) +
∂ΞS (Xi ,θ)

∂θℓ
· ∂ΞS (Xi ,θ)

∂θj

 ·K (
Zi − z
hn

)
.

For m ∈N let (m)k ≡m · (m− 1) · · · (m− k). From the definition in (A8), we estimate

Γ̂∆,n(Vi ;θ) = ϕ̂S (Vi ,θ) · 1
(n− 1)1

∑
j,i

∑
k,i,j

∂ϕ̂S (Vk ,θ)
∂∆

·1Z{Uk ≤Uj } ·1Z{Ui ≤Uj }

− 1
(n− 1)2

∑
j,i

∑
k,i,j

∑
ℓ,i,j,k

∂ϕ̂S (Vℓ ,θ)
∂∆

·ΞS (Xj ,θ) · 1

hdZn
ψ̂πn (Vi ;Zj ,θ) ·1Z{Uj ≤Uk} ·1Z{Uℓ ≤Uk}

Let ψ̂γ (Vi ; γ̂) be the estimated MLE influence function for γ̂ . Using (A9), we estimate14,

ψ̂∆,n(Vi ; θ̂) ≡ −
∂2Q̂S,Z(θ̂)
∂∆∂∆′

−1

×
̂Γ∆,n(Vi ; θ̂) +

∂2Q̂S,Z(θ̂)
∂∆∂γ ′

· ψ̂γ (Vi ; γ̂)

 (A11)

From here, we estimate Ω∆, the asymptotic variance of
√
n · (∆̂−∆0), as Ω̂∆ ≡ 1

n

∑n
i=1 ψ̂∆,n(Vi ; θ̂) ·

ψ̂∆,n(Vi ; θ̂)′ . In Section S1 of the online Econometric Supplement we show that, under the restric-

tions of Proposition 1,
∥∥∥ 1
n

∑n
i=1 ψ̂∆,n(Vi ; θ̂) · ψ̂∆,n(Vi ; θ̂)′ − 1

n

∑n
i=1ψ∆,n(Vi ;θ0) ·ψ∆,n(Vi ;θ0)′

∥∥∥ p
−→ 0, so∥∥∥Ω̂∆ −Ω∆

∥∥∥ p
−→ 0. Once again, these results are obtained using standard arguments. ■

14See footnote 13.
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A6 Details of Proposition 2

The CS for ∆0 proposed in Section 2.7 is based on the population statistic described as follows.
Let g :RdU →R be a real-valued, pre-specified function. As before, let ϕS (V ,θ) ≡ S −mNCS (X,θ)−
π(Z,θ) · ΞS (X,θ). For a given u ∈ RdU , we defined τg (u,θ) ≡ E [ϕS (V ,θ) · g(U ) ·1Z{U ≤ u}], and
Mg (θ) ≡ E[τg (U,θ)]. By iterated expectations, Mg (θ0) = 0. Since γ0 is identified and estimable,
our proposal is to use the population statistic Mg (γ0,∆) to construct a CS for ∆. Let ΘI

g = {∆ ∈
Θ : Mg (γ0,∆) = 0} be our target identified set for ∆ based on the moment restriction Mg (θ0) = 0.
Our sample statistic is M̂g (γ̂ ,∆) = 1

n

∑n
j=1 τ̂g (Uj , γ̂ ,∆) = 1

n2

∑n
j=1

∑n
i=1 ϕ̂S (Vi , γ̂ ,∆) ·g(Ui) ·1Z{Ui ≤Uj }.

The linear representation result in Proposition 2 is obtained using standard arguments. We will
describe the structure of the influence function ψMg ,n(Vi ;γ0,∆) here. The interested reader can find
the step-by-step details in Section S2 of the online Econometric Supplement. In what follows, let
(V1,V2,V3) ∼ FV ⊗FV ⊗FV (three randomly drawn observations from our i.i.d sample (Vi)

n
i=1). First,

let

H
Mg
γ (θ) ≡ E

[
∂ϕS (V1,θ)

∂γ
· g(U1) ·1Z{U1 ≤U2}

]
(A12)

Next, define qaMg
(V1,V2;θ) ≡ ϕS (V1,θ) · g(U1) ·1Z{U1 ≤U2} and note that Mg (θ) = E

[
qaMg

(V1,V2;θ)
]
.

Next, denote q̃aMg
(V1,V2;θ) = 1

2 ·
(
qaMg

(V1,V2;θ) + qaMg
(V2,V1;θ)

)
and note that, by construction,

E
[
q̃aMg

(V1,V2;θ)
]

=Mg (θ). Let

qaMg
(V1;θ) ≡ 2 ·

(
E
[
q̃aMg

(V1,V2;θ)
∣∣∣V1

]
−Mg (θ)

)
(A13)

Note that, by construction, E[qaMg
(V1;θ)] = 0 ∀ θ. By inspection, we can also see that, qaMg

(V1;γ0,∆) =

ϕS (V1,γ0,∆) · g(U1) · E
[
1Z{U1 ≤U2}

∣∣∣U1

]
∀ ∆ ∈ ΘI

g . Next, let ψπn (Vi ;z,θ) be as defined in (A6) and
define,

qbMg ,n
(V1;θ) = E

 1

hdZn
·ψπn (V1;Z2,θ) ·ΞS (X2,θ) · g(U2) ·1Z{U2 ≤U3}

∣∣∣∣∣∣V1

 . (A14)

Finally, let

ψMg ,n(Vi ;γ0,∆) ≡H
Mg
γ (γ0,∆)′ψγ (Vi ;γ0) + qaMg

(Vi ;γ0,∆)− qbMg ,n
(Vi ;γ0,∆). (A15)

where ψγ (Vi ;γ0) is the influence function of our MLE estimator γ̂ . Note that E[ψγ (Vi ;γ0)] = 0,
and that E[qaMg

(Vi ;γ0,∆)] = 0 and E[qbMg ,n
(Vi ;γ0,∆)] = 0 ∀ ∆ ∈ Θ. Therefore, E[ψMg ,n(Vi ;γ0,∆)] = 0

∀ ∆ ∈Θ. In Section S2 of the online Econometric Supplement, we show that under the restrictions
of Proposition 2, our CS statistic satisfies,

M̂g (γ̂ ,∆) =Mg (γ0,∆) +
1
n

n∑
i=1

ψMg ,n(Vi ;γ0,∆) + ς
Mg
n (∆), ∀ ∆ ∈Θ,

where sup
∆∈Θ

∣∣∣ςMg
n (∆)

∣∣∣ = op
(
n−1/2

)
.
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And over our target identified set ΘI
g , this result simplifies to,

M̂g (γ̂ ,∆) =
1
n

n∑
i=1

ψMg ,n(Vi ;γ0,∆) + ς
Mg
n (∆), ∀ ∆ ∈ΘI

g , where sup
∆∈Θ

∣∣∣ςMg
n (∆)

∣∣∣ = op
(
n−1/2

)
.

This is the statement in Proposition 2. ■
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