## ECO 519. Handout on Huber (1967), Lemma 3 <br> (Asymptotic Normality)

## 1 Setup

In econometrics, we are familiar with extremum estimators which satisfy a condition of the type:

$$
\begin{equation*}
\sum_{i=1}^{n} \psi\left(x_{i}, \widehat{\theta}\right)=0 \tag{1}
\end{equation*}
$$

Typically, (1) represents a vector of first-order conditions. If $\psi(\cdot)$ is smooth and differentiable, we can establish $\sqrt{n}$-consistency and asymptotic normality of $\widehat{\theta}$ by performing a Taylor approximation of (1) around $\theta_{0}$ (the true parameter vector which is assumed to satisfy $E\left[\psi\left(x_{i}, \theta_{0}\right)\right]=0$. Huber's paper deals with a more general problem: One in which the estimator in question satisfies (1) only asymptotically in probability, and $\psi(\cdot)$ is not required to be smooth (not even continuous (!)).

We will try to stick to the paper's original notation, we will let $\lambda(\theta)=E\left[\psi\left(x_{i}, \theta\right)\right]$, where both $\theta \in \mathbb{R}^{m}$ and $\psi \in \mathbb{R}^{m}$. Suppose we have an estimator (statistic) $T_{n}$ that satisfies $T_{n}=\theta_{0}+o_{p}(1)$ and $^{1}$

$$
\begin{equation*}
\sqrt{n} \lambda\left(T_{n}\right)+\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right)=o_{p}(1) . \tag{2}
\end{equation*}
$$

This would be great news, because if $\lambda(\cdot)$ is $\mathcal{C}^{1}$, we can investigate the asymptotic properties of $T_{n}$ by performing a Taylor approximation on $\lambda(\cdot)$ instead of $\psi(\cdot)$. This would allow us to deal with non-smooth functions $\psi(\cdot)$, and only require us to assume that its expected value satisfies the smoothness conditions needed for Taylor approximations. Let $\Lambda(\theta)=\nabla_{\theta} \lambda(\theta)$. Then, under conditions that guarantee $\Lambda\left(T_{n}\right) \xrightarrow{p} \Lambda\left(\theta_{0}\right)$ (for example, boundedness of $\lambda(\cdot)$ in addition to continuity given that $T_{n}$ converges in probability to $\theta_{0}$ ), and CLT conditions that guarantee

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right) \xrightarrow{d} \mathcal{N}(0, V),
$$

[^0]we could establish $\sqrt{N}$-asymptotic normality of $T_{n}$ via a Taylor approximation of $\lambda(\cdot)$ in (1):
$$
\underbrace{\sqrt{n} \lambda\left(\theta_{0}\right)}_{\text {zero }}+\Lambda(\widetilde{\theta}) \sqrt{n}\left(T_{n}-\theta_{0}\right)+\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right)=o_{p}(1)
$$
where as usual $\widetilde{\theta}$ is between $T_{n}$ and $\theta_{0}$. If $\Lambda\left(\theta_{0}\right) \equiv \Lambda$ is invertible, we get then
\[

$$
\begin{equation*}
\sqrt{n}\left(T_{n}-\theta_{0}\right)=-\Lambda(\widetilde{\theta})^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right)+o_{p}(1) \xrightarrow{d} \mathcal{N}\left(0, \Lambda^{-1} V \Lambda^{-1^{\prime}}\right) \tag{3}
\end{equation*}
$$

\]

Therefore, we should look for conditions that guarantee (2). Consider the following claim:

Claim 1 Suppose $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right)=O_{p}(1)$ (which would be satisfied if the conditions for a CLT are met). Then:

$$
\text { If } \frac{\sum_{i=1}^{n}\left[\psi\left(x_{i}, \theta_{0}\right)+\lambda(\tau)\right]}{\sqrt{n}+n\|\lambda(\tau)\|}=o_{p}(1), \quad \text { then } \quad \sqrt{n} \lambda(\tau)+\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right)=o_{p}(1)
$$

Proof: First, we prove that if the condition of the claim is satisfied, then $\sqrt{n}\|\lambda(\tau)\|=O_{p}(1)$.
Take any $1>\epsilon>0$, then

$$
\underbrace{\operatorname{Pr}\left[\left\|\frac{\sum_{i=1}^{n}\left[\psi\left(x_{i}, \theta_{0}\right)+\lambda(\tau)\right]}{\sqrt{n}+n\|\lambda(\tau)\|}\right\|>\epsilon\right]}=\operatorname{Pr}\left[\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right)+\sqrt{n} \lambda(\tau)\right\|>\epsilon+\epsilon \sqrt{n}\|\lambda(\tau)\|\right]
$$

$$
\longrightarrow 0 \forall \epsilon>0 \text { by assumption. }
$$

By the properties of norms $\|\cdot\|$, we know that: ${ }^{2}$

$$
\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right)+\sqrt{n} \lambda(\tau)\right\| \geq \sqrt{n}\|\lambda(\tau)\|-\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right)\right\| \quad \text { with probability one }
$$

Therefore

$$
\begin{aligned}
& \operatorname{Pr}\left[\sqrt{n}\|\lambda(\tau)\|-\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right)\right\|<\epsilon+\epsilon \sqrt{n}\|\lambda(\tau)\|\right] \longrightarrow 1 \\
& \therefore \operatorname{Pr}[\sqrt{n}\|\lambda(\tau)\|<\frac{\epsilon}{1-\epsilon}+\frac{1}{1-\epsilon} \underbrace{\left\|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right)\right\|}_{=O_{p}(1)}] \longrightarrow 1
\end{aligned}
$$

[^1]Therefore $\sqrt{n}\|\lambda(\tau)\|=O_{p}(1)$. Given this, it is straightforward to complete the proof of the claim since

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right)+\sqrt{n} \lambda(\tau)=\underbrace{\frac{\sum_{i=1}^{n}\left[\psi\left(x_{i}, \theta_{0}\right)+\lambda(\tau)\right]}{\sqrt{n}+n\|\lambda(\tau)\|}}_{=o_{p}(1)} \times \underbrace{\frac{\sqrt{n}+n\|\lambda(\tau)\|}{\sqrt{n}}}_{=O_{p}(1)}=o_{p}(1)
$$

Now let's go back to our original problem and illustrate exactly how we will exploit the result of Claim 1:

$$
\begin{equation*}
\left\|\frac{\sum_{i=1}^{n}\left[\psi\left(x_{i}, \theta_{0}\right)+\lambda\left(T_{n}\right)\right]}{\sqrt{n}+n\left\|\lambda\left(T_{n}\right)\right\|}\right\| \leq\left\|\frac{\sum_{i=1}^{n}\left[\psi\left(x_{i}, \theta_{0}\right)-\psi\left(x_{i}, T_{n}\right)+\lambda\left(T_{n}\right)\right]}{\sqrt{n}+n\left\|\lambda\left(T_{n}\right)\right\|}\right\|+\left\|\frac{\sum_{i=1}^{n} \psi\left(x_{i}, T_{n}\right)}{\sqrt{n}}\right\| . \tag{4}
\end{equation*}
$$

If $\sqrt{n}^{-1} \sum_{i=1}^{n} \psi\left(x_{i}, T_{n}\right)=o_{p}(1)$, then all we have to do in order to verify that the condition of Claim 1 is satisfied is to check that the first term on the right-hand side of (4) is $o_{p}(1)$. Since $T_{n}=\theta_{0}+o_{p}(1)$, this amounts to prove that $\exists d_{0}$ such that

$$
\begin{equation*}
\sup _{\left\|\tau-\theta_{0}\right\|<d_{0}}\left\|\frac{\sum_{i=1}^{n}\left[\psi\left(x_{i}, \theta_{0}\right)-\psi\left(x_{i}, \tau\right)+\lambda(\tau)\right]}{\sqrt{n}+n\|\lambda(\tau)\|}\right\|=o_{p}(1) \tag{5}
\end{equation*}
$$

This would suffice because $\operatorname{Pr}\left[\left\|T_{n}-\theta_{0}\right\|<d_{0} \rightarrow 1\right.$ for any $d_{0}$. This is what Lemma 3 in Huber (1967) is all about: providing sufficient conditions for (5) to hold. To summarize, if:
(a) $T_{n}=\theta_{0}+o_{p}(1)$;
(b) $\sum_{i=1}^{n} \psi\left(x_{i}, T_{n}\right)=o_{p}(\sqrt{n}) ;$
(c) (5) is satisfied, then $\sqrt{n}\left(T_{n}-\theta_{0}\right)$ is asymptotically normal, via Claim 1 , Equation (2) and the conditions needed for Equation (3) to hold.

## 2 Asymptotic normality (Lemma 3 in Huber)

Consider a parameter space $\Theta \subset \mathbb{R}^{m}$ which is not necessarily compact (it has to be "locally compact"). We have an underlying probability space ( $\mathcal{X}, \mathcal{F}, P$ ), an iid sample $x_{1}, \ldots, x_{n}$ from the distribution $P$, and a function $\psi: \mathcal{X} \times \Theta \rightarrow \mathbb{R}^{m}$. Consider a sequence of statistics $T_{n}=T_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{m}$ that satisfies

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, T_{n}\right) \xrightarrow{p} 0
$$

we're interested in describing conditions under which any such sequence $T_{n}$ is asymptotically normal. A clear example of such a setting would be an $M$-estimation problem in which
some estimator $\widehat{\theta}$ satisfies $\sum_{i=1}^{n} \psi\left(x_{i}, \widehat{\theta}\right)=0$ (interpret this equation as some "first order conditions"), but obviously our setup is more general than this ${ }^{3}$. We will make the following assumptions:
(N-1) For any $\theta \in \Theta$, the function $\psi(x, \theta)$ has nice measurability properties. In particular, $\psi(x, \theta)$ is "separable" ${ }^{4}$.
$(\mathrm{N}-2)$ Let $\lambda(\theta)=E \psi(x, \theta)$. Then there exists $\theta_{0} \in \Theta$ such that $\lambda\left(\theta_{0}\right)=0$.
(N-3) Let $\|\cdot\|$ denote a norm in $\mathbb{R}^{m}$. Then there exist $d_{0}, a, b$ and $c$ such that
(i) $\|\lambda(\theta)\| \geq a \cdot\left\|\theta-\theta_{0}\right\|$ for all $\left\|\theta-\theta_{0}\right\| \leq d_{0}$,
(ii) $E\left[\sup _{\|\tau-\theta\| \leq d}\|\psi(x, \tau)-\psi(x, \theta)\|\right] \leq b \cdot d$ for all $\left\|\theta-\theta_{0}\right\| \leq d_{0}-d$ and any $d \geq 0$,
(iii) $E\left[\left(\sup _{\|\tau-\theta\| \leq d}\|\psi(x, \tau)-\psi(x, \theta)\|\right)^{2}\right] \leq c \cdot d$ for all $\left\|\theta-\theta_{0}\right\| \leq d_{0}-d$ and any $d \geq 0$ (N-4) $E\left[\left\|\psi\left(x, \theta_{0}\right)\right\|^{2}\right]<\infty$.

Define the following object:

$$
Z_{n}(\tau, \theta)=\frac{\left\|\sum_{i=1}^{n}\left[\left(\psi\left(x_{i}, \tau\right)-\psi\left(x_{i}, \theta\right)\right)-(\lambda(\tau)-\lambda(\theta))\right]\right\|}{\sqrt{n}+n\|\lambda(\tau)\|}
$$

We have the following result (Lemma 3 in Huber (1967)).
Lemma 1 If ( $N-1$ ), ( $N-2$ ) and ( $N-3$ ) are satisfied, then

$$
\sup _{\left\|\tau-\theta_{0}\right\| \leq d_{0}} Z_{n}\left(\tau, \theta_{0}\right) \xrightarrow{p} 0
$$

Proof: Given Assumption (N-3), things behave nicely in the set $\mathbb{R}^{m} \supset\left\|\theta-\theta_{0}\right\| \leq d_{0}$. The basic trick of the proof is to partition this cube into smaller cubes, such that within each one of those cubes, $Z_{n}\left(\tau, \theta_{0}\right)$ remains bounded in probability. The number of such cubes will

[^2]depend on the sample size $n$. Things will go our way if the number of cubes grows slowly enough with respect to $n$. Some version of a "partition trick" is often present when we want to prove uniform consistency or asymptotic normality under weak assumptions, even when we are dealing with infinite-dimensional spaces (we'll talk about this in our discussion about empirical processes).

From now on, $\|\cdot\|$ will refer to $\|\cdot\|_{\infty}$, this is without loss of generality, but it saves us the nuisance of carrying on some redundant constants. Take $q \leq 1 / 2$. Take the following collection of $k_{0}$ cubes, all of which are centered at $\theta_{0}$ :

$$
C_{k}=\left\{\left\|\theta-\theta_{0}\right\| \leq d_{0}(1-q)^{k}\right\}, \quad k=1, \ldots, k_{0}
$$

so the smallest cube is $C_{k_{0}}$ and the largest one is $\left\|\theta-\theta_{0}\right\| \leq d_{0}$. Next, we will cover $C_{k-1} \backslash C_{k}$ with more cubes, for $k=1, \ldots, k_{0}$. The minimum distance between a point in the border of $C_{k-1}$ and a point in the border of $C_{k}$ is $d_{0}(1-q)^{k-1}-d_{0}(1-q)^{k}=d_{0} q(1-$ $q)^{k-1}$. We will cover $C_{k-1} \backslash C_{k}$ with more cubes by partitioning each of the sides of $C_{k-1}$ into segments of length $d_{0} q(1-q)^{k-1}$. Therefore, the number of new cubes that cover $C_{k-1} \backslash C_{k}$ is $\leq\left(d_{0}(1-q)^{k-1} / d_{0}\left[q(1-q)^{k-1}\right]\right)^{m}=q^{-m}$ for every $k$. After repeating this process for every $k=1, \ldots, k_{0}$, we end up with the central cube $C_{k_{0}}$ and a collection of new cubes $C_{(1)}, C_{(2)}, \ldots, C_{(R)}$, where $R \leq \sum_{k=1}^{k_{0}} q^{-m}=k_{0} q^{-m}$. The collection of cubes $C_{k_{0}}, C_{(1)}, \ldots, C_{(R)}$ cover the set $C_{0}=\left\{\tau:\left\|\tau-\theta_{0}\right\| \leq d_{0}\right\}$ entirely.

The object of interest in this lemma is $\sup _{\tau \in C_{0}} Z_{n}\left(\tau, \theta_{0}\right)$. Since our collection of cubes covers $C_{0}$, we easily have

$$
\sup _{\tau \in C_{0}} Z_{n}\left(\tau, \theta_{0}\right) \leq \sup _{\tau \in C_{k_{0}}} Z_{n}\left(\tau, \theta_{0}\right)+\sum_{j=1}^{R} \sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \theta_{0}\right)
$$

For $j=1, \ldots, R$, take the cube $C_{(j)}$. Then $C_{(j)} \subset C_{k-1} \backslash C_{k}$ for some $k=1, \ldots k_{0}$ and denote its center point as $\xi_{j}$. By (N-3)(i), $\|\lambda(\tau)\| \geq a \cdot\left\|\tau-\theta_{0}\right\| \geq a d_{0} \cdot(1-q)^{k}$ for some $k \leq k_{0}$. Adding and subtracting $\psi\left(x_{i}, \xi_{j}\right)-\lambda\left(\psi_{j}\right)$ and using the triangle inequality we have

$$
\begin{aligned}
\sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \theta_{0}\right) & \leq \sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \xi_{j}\right)+\frac{\left\|\sum_{i=1}^{n}\left[\psi\left(x_{i}, \xi_{j}\right)-\psi\left(x_{i}, \theta_{0}\right)-\lambda\left(\xi_{j}\right)\right]\right\|}{\sqrt{n}+n \cdot a d_{0} \cdot(1-q)^{k}} \\
& \leq \sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \xi_{j}\right)+\frac{\left\|\sum_{i=1}^{n}\left[\psi\left(x_{i}, \xi_{j}\right)-\psi\left(x_{i}, \theta_{0}\right)-\lambda\left(\xi_{j}\right)\right]\right\|}{n \cdot a d_{0} \cdot(1-q)^{k}}
\end{aligned}
$$

Now let us examine $\sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \xi_{j}\right)$. The triangle inequality and Jensen's inequality yield the following

$$
\begin{aligned}
& \sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \xi_{j}\right) \leq \frac{\sum_{i=1}^{n} \sup _{\tau \in C_{(j)}}\left\|\left[\psi\left(x_{i}, \tau\right)-\psi\left(x_{i}, \xi_{j}\right)-\left(\lambda(\tau)-\lambda\left(\xi_{j}\right)\right)\right]\right\|}{n \cdot a d_{0} \cdot(1-q)^{k}} \\
& \leq \frac{\sum_{i=1}^{n}\left[\sup _{\tau \in C_{(j)}}\left\|\psi\left(x_{i}, \tau\right)-\psi\left(x_{i}, \xi_{j}\right)\right\|+\sup _{\tau \in C_{(j)}}\left\|\lambda(\tau)-\lambda\left(\xi_{j}\right)\right\|\right]}{n \cdot a d_{0} \cdot(1-q)^{k}} \\
& \text { By Jensen's inequality: } \leq \frac{\sum_{i=1}^{n}\left[\sup _{\tau \in C_{(j)}}\left\|\psi\left(x_{i}, \tau\right)-\psi\left(x_{i}, \xi_{j}\right)\right\|+E\left[\sup _{\tau \in C_{(j)}}\left\|\psi(x, \tau)-\psi\left(x, \xi_{j}\right)\right\|\right]\right]}{n \cdot a d_{0} \cdot(1-q)^{k}}
\end{aligned}
$$

Take any $\epsilon>0$. Then

$$
\begin{aligned}
& \operatorname{Pr}\left(\sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \xi_{j}\right) \geq \epsilon\right) \\
& =\operatorname{Pr}\left(\sum_{i=1}^{n}\left[\sup _{\tau \in C_{(j)}}\left\|\psi\left(x_{i}, \tau\right)-\psi\left(x_{i}, \xi_{j}\right)\right\|+E\left[\sup _{\tau \in C_{(j)}}\left\|\psi(x, \tau)-\psi\left(x, \xi_{j}\right)\right\|\right]\right] \geq n \cdot a d_{0} \cdot(1-q)^{k}\right) \\
& =\operatorname{Pr}\left(\sum_{i=1}^{n}\left[\sup _{\tau \in C_{(j)}}\left\|\psi\left(x_{i}, \tau\right)-\psi\left(x_{i}, \xi_{j}\right)\right\|-E\left[\sup _{\tau \in C_{(j)}}\left\|\psi(x, \tau)-\psi\left(x, \xi_{j}\right)\right\|\right]\right]\right. \\
& \left.\quad \geq n \cdot a d_{0} \cdot(1-q)^{k} \epsilon-2 n E\left[\sup _{\tau \in C_{(j)}}\left\|\psi(x, \tau)-\psi\left(x, \xi_{j}\right)\right\|\right]\right)
\end{aligned}
$$

The last line illustrates why we include $n\|\lambda(\tau)\|$ in the denominator of $Z_{n}(\tau, \theta)$ ! By construction of the partition of cubes, for any $\xi_{j}$ we have:

$$
\begin{aligned}
\left\|\xi_{j}-\theta_{0}\right\| & \leq d_{0}(1-q)^{k}+\frac{1}{2} d_{0} q(1-q)^{k-1}=d_{0}(1-q)[1-q / 2] \quad \text { for some } k \leq k_{0} \\
\left\|\xi_{j}-\theta_{0}\right\|+\left\|_{\tau \in C_{(j)}} \xi_{j}-\tau\right\| & \leq \frac{d_{0} q(1-q)^{k-1}}{2}+d_{0}(1-q)[1-q / 2]=d_{0}(1-q)^{k-1} \leq d_{0}
\end{aligned}
$$

Therefore, (N-3)(ii)-(iii) yield:

$$
\begin{aligned}
&\left.E\left[\sup _{\tau \in C_{(j)}}\left\|\psi(x, \tau)-\psi\left(x, \xi_{j}\right)\right\|\right]\right] \leq \frac{b d_{0} q(1-q)^{k-1}}{2} \\
&\left.E\left[\sup _{\tau \in C_{(j)}}\left\|\psi(x, \tau)-\psi\left(x, \xi_{j}\right)\right\|^{2}\right]\right] \leq \frac{c d_{0} q(1-q)^{k-1}}{2}
\end{aligned}
$$

And consequently,

$$
n \cdot a d_{0} \cdot(1-q)^{k} \epsilon-2 n E\left[\sup _{\tau \in C_{(j)}}\left\|\psi(x, \tau)-\psi\left(x, \xi_{j}\right)\right\|\right] \geq n d_{0}(1-q)^{k}[a \epsilon-b q(1-q)]
$$

Therefore for any $\epsilon>0$,
$\operatorname{Pr}\left(\sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \xi_{j}\right) \geq \epsilon\right) \leq$
$\operatorname{Pr}\left(\left|\sum_{i=1}^{n}\left[\sup _{\tau \in C_{(j)}}\left\|\psi\left(x_{i}, \tau\right)-\psi\left(x_{i}, \xi_{j}\right)\right\|-E\left[\sup _{\tau \in C_{(j)}}\left\|\psi(x, \tau)-\psi\left(x, \xi_{j}\right)\right\|\right]\right]\right| \geq \frac{n(1-q)^{k-1}}{4}\left[a \epsilon(1-q)-2 b d_{0} q\right]\right)$
Using Chebyshev's inequality and the fact that $k \leq k_{0}$ and $q \in(0,1)$ we have

$$
\operatorname{Pr}\left(\sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \xi_{j}\right) \geq \epsilon\right) \leq \frac{q c}{n d_{0}^{2}(1-q)^{k_{0}-1}} \frac{1}{[\epsilon a(1-q)-b q]^{2}}
$$

Using the assumptions of the Lemma, along with Chebyshev's inequality, it is easier to establish that for any $\epsilon>0$ :

$$
\operatorname{Pr}\left[\frac{\left\|\sum_{i=1}^{n}\left[\psi\left(x_{i}, \xi_{j}\right)-\psi\left(x_{i}, \theta_{0}\right)-\lambda\left(\xi_{j}\right)\right]\right\|}{n \cdot a d_{0} \cdot(1-q)^{k}}>\epsilon\right] \leq \frac{c}{n \epsilon^{2} d_{0}(1-q)^{k_{0}}}
$$

and therefore

$$
\operatorname{Pr}\left[\sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \theta_{0}\right)>\epsilon\right] \leq \frac{c}{n \epsilon^{2} d_{0}(1-q)^{k_{0}}}+\frac{q c}{n d_{0}^{2}(1-q)^{k_{0}-1}} \frac{1}{[\epsilon a(1-q)-b q]^{2}}
$$

The key to make this go to zero is the behavior of $n(1-q)^{k_{0}}$. We need to make this term go to infinity.
We now move to the center cube $C_{k_{0}}$. Repeating the same Jensen-inequality arguments and simply using the fact that $n\|\lambda(\tau)\| \geq 0$ (this is how we will bound the denominator of $Z_{n}\left(\tau, \theta_{0}\right)$ for $C_{k_{0}}$, unlike the way we did it above), we get:

$$
\sup _{\tau \in C_{k_{0}}} Z_{n}\left(\tau, \theta_{0}\right) \leq \frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left[\sup _{\tau \in C_{k_{0}}}\left\|\psi\left(x_{i}, \theta_{0}\right)-\psi\left(x_{i}, \tau\right)\right\|+E\left[\sup _{\tau \in C_{k_{0}}}\left\|\psi\left(x_{i}, \theta_{0}\right)-\psi\left(x_{i}, \tau\right)\right\|\right]\right]
$$

Take any $\epsilon>0$. Adding and subtracting $n \cdot E\left[\sup _{\tau \in C_{k_{0}}}\left\|\psi\left(x_{i}, \theta_{0}\right)-\psi\left(x_{i}, \tau\right)\right\|\right]$, using Chebyshev's inequality and applying ( $\mathrm{N}-3$ )(ii)-(iii), we get:

$$
\operatorname{Pr}\left[\sup _{\tau \in C_{k_{0}}} Z_{n}\left(\tau, \theta_{0}\right)>\epsilon\right] \leq \frac{n \cdot c(1-q)^{k_{0}} d_{0}}{\left(\sqrt{n} \epsilon-2 n b d_{0}(1-q)^{k_{0}}\right)^{2}}
$$

Now, since

$$
\sup _{\tau \in C_{0}} Z_{n}\left(\tau, \theta_{0}\right) \leq \sup _{\tau \in C_{k_{0}}} Z_{n}\left(\tau, \theta_{0}\right)+\sum_{j=1}^{R} \sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \theta_{0}\right)
$$

then for any $\epsilon>0$, and using the bounds we have found:

$$
\begin{aligned}
\operatorname{Pr} & {\left[\sup _{\tau \in C_{0}} Z_{n}\left(\tau, \theta_{0}\right)>\epsilon\right] \leq \operatorname{Pr}\left[\sup _{\tau \in C_{k_{0}}} Z_{n}\left(\tau, \theta_{0}\right)>\epsilon\right]+\sum_{j=1}^{R} \operatorname{Pr}\left[\sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \theta_{0}\right)>\epsilon\right] } \\
& \leq \frac{n \cdot c(1-q)^{k_{0}} d_{0}}{\left(\sqrt{n} \epsilon-2 n b d_{0}(1-q)^{k_{0}}\right)^{2}}+R \cdot\left[\frac{c}{n \epsilon^{2} d_{0}(1-q)^{k_{0}}}+\frac{q c}{n d_{0}^{2}(1-q)^{k_{0}-1}} \frac{1}{[\epsilon a(1-q)-b q]^{2}}\right] \\
& \leq \operatorname{Pr}\left[\sup _{\tau \in C_{k_{0}}} Z_{n}\left(\tau, \theta_{0}\right)>\epsilon\right]+\sum_{j=1}^{R} \operatorname{Pr}\left[\sup _{\tau \in C_{(j)}} Z_{n}\left(\tau, \theta_{0}\right)>\epsilon\right] \\
& \leq \frac{n \cdot c(1-q)^{k_{0}} d_{0}}{\left(\sqrt{n} \epsilon-2 n b d_{0}(1-q)^{k_{0}}\right)^{2}}+q^{-m} k_{0} \cdot\left[\frac{c}{n \epsilon^{2} d_{0}(1-q)^{k_{0}}}+\frac{q c}{n d_{0}^{2}(1-q)^{k_{0}-1}} \frac{1}{[\epsilon a(1-q)-b q]^{2}}\right]
\end{aligned}
$$

The object on the right hand side depends crucially on how $k_{0}$ grows with $n$. It will go to zero if $q$ and $k_{0}$ are chosen so that:

$$
(1-q)^{k_{0}} \leq n^{-\gamma}<(1-q)^{k_{0}-1} \quad \text { for some } \frac{1}{2}<\gamma<1
$$

in this case

$$
k_{0}(n)-1<\frac{\gamma \cdot \log n}{|\log (1-q)|} \leq k_{0}(n)
$$

which means that in the end, $R=O(\log n)$. The number of cubes in the partition grows slower than $\log n$.


[^0]:    ${ }^{1}$ Alternatively, we could have $\sqrt{n} \lambda\left(T_{n}\right)-\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi\left(x_{i}, \theta_{0}\right)=o_{p}(1)$. The sign of $\psi(\cdot)$ is irrelevant here because it plays the role of a Jacobian vector, with expectation zero evaluated at $\theta_{0}$.

[^1]:    ${ }^{2}$ This is where I screwed up during lecture. I used the "wrong side" of the triangle inequality and got stuck with an upper bound...

[^2]:    ${ }^{3}$ For example, think about a problem in which some first order conditions are satisfied asymptotically, but not necessarily for any fixed sample size. Least Absolute Deviations will be a perfect example as we will see.
    ${ }^{4}$ Separability ensures that objects like $\inf _{\theta}|\psi(x, \theta)|$ are measurable.

