
ECO 519. Handout on Huber (1967), Lemma 3

(Asymptotic Normality)

1 Setup

In econometrics, we are familiar with extremum estimators which satisfy a condition of the

type:
n∑

i=1

ψ(xi, θ̂) = 0. (1)

Typically, (1) represents a vector of first-order conditions. If ψ(·) is smooth and differentiable,

we can establish
√

n-consistency and asymptotic normality of θ̂ by performing a Taylor

approximation of (1) around θ0 (the true parameter vector which is assumed to satisfy

E[ψ(xi, θ0)] = 0. Huber’s paper deals with a more general problem: One in which the

estimator in question satisfies (1) only asymptotically in probability, and ψ(·) is not required

to be smooth (not even continuous (!)).

We will try to stick to the paper’s original notation, we will let λ(θ) = E[ψ(xi, θ)], where

both θ ∈ Rm and ψ ∈ Rm. Suppose we have an estimator (statistic) Tn that satisfies

Tn = θ0 + op(1) and1

√
nλ(Tn) +

1√
n

n∑
i=1

ψ(xi, θ0) = op(1). (2)

This would be great news, because if λ(·) is C1, we can investigate the asymptotic properties

of Tn by performing a Taylor approximation on λ(·) instead of ψ(·). This would allow us to

deal with non-smooth functions ψ(·), and only require us to assume that its expected value

satisfies the smoothness conditions needed for Taylor approximations. Let Λ(θ) = ∇θλ(θ).

Then, under conditions that guarantee Λ(Tn)
p−→ Λ(θ0) (for example, boundedness of λ(·)

in addition to continuity given that Tn converges in probability to θ0), and CLT conditions

that guarantee
1√
n

n∑
i=1

ψ(xi, θ0)
d−→ N (0, V ),

1Alternatively, we could have
√

nλ(Tn) − 1√
n

∑n
i=1 ψ(xi, θ0) = op(1). The sign of ψ(·) is irrelevant here

because it plays the role of a Jacobian vector, with expectation zero evaluated at θ0.
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we could establish
√

N -asymptotic normality of Tn via a Taylor approximation of λ(·) in (1):

√
nλ(θ0)︸ ︷︷ ︸
zero

+Λ(θ̃)
√

n(Tn − θ0) +
1√
n

n∑
i=1

ψ(xi, θ0) = op(1)

where as usual θ̃ is between Tn and θ0. If Λ(θ0) ≡ Λ is invertible, we get then

√
n(Tn − θ0) = −Λ(θ̃)−1 1√

n

n∑
i=1

ψ(xi, θ0) + op(1)
d−→ N (0, Λ−1V Λ−1′) (3)

Therefore, we should look for conditions that guarantee (2). Consider the following claim:

Claim 1 Suppose 1√
n

∑n
i=1 ψ(xi, θ0) = Op(1) (which would be satisfied if the conditions for

a CLT are met). Then:

If

∑n
i=1

[
ψ(xi, θ0) + λ(τ)

]
√

n + n‖λ(τ)‖ = op(1), then
√

nλ(τ) +
1√
n

n∑
i=1

ψ(xi, θ0) = op(1).

Proof: First, we prove that if the condition of the claim is satisfied, then
√

n‖λ(τ)‖ = Op(1).

Take any 1 > ε > 0, then

Pr

[∥∥∥∥∥

∑n
i=1

[
ψ(xi, θ0) + λ(τ)

]
√

n + n‖λ(τ)‖

∥∥∥∥∥ > ε

]

︸ ︷︷ ︸
−→0 ∀ ε>0 by assumption.

= Pr

[∥∥∥∥
1√
n

n∑
i=1

ψ(xi, θ0) +
√

nλ(τ)

∥∥∥∥ > ε + ε
√

n‖λ(τ)‖
]

By the properties of norms ‖ · ‖, we know that:2

∥∥∥∥
1√
n

n∑
i=1

ψ(xi, θ0) +
√

nλ(τ)

∥∥∥∥ ≥
√

n‖λ(τ)‖ −
∥∥∥∥

1√
n

n∑
i=1

ψ(xi, θ0)

∥∥∥∥ with probability one

Therefore

Pr

[
√

n‖λ(τ)‖ −
∥∥∥∥

1√
n

n∑
i=1

ψ(xi, θ0)

∥∥∥∥ < ε + ε
√

n‖λ(τ)‖
]
−→ 1

∴ Pr

[
√

n‖λ(τ)‖ <
ε

1− ε
+

1

1− ε

∥∥∥∥
1√
n

n∑
i=1

ψ(xi, θ0)

∥∥∥∥
︸ ︷︷ ︸

=Op(1)

]
−→ 1

2This is where I screwed up during lecture. I used the “wrong side” of the triangle inequality and got

stuck with an upper bound...
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Therefore
√

n‖λ(τ)‖ = Op(1). Given this, it is straightforward to complete the proof of the

claim since

1√
n

n∑
i=1

ψ(xi, θ0) +
√

nλ(τ) =

∑n
i=1

[
ψ(xi, θ0) + λ(τ)

]
√

n + n‖λ(τ)‖︸ ︷︷ ︸
=op(1)

×
√

n + n‖λ(τ)‖√
n︸ ︷︷ ︸

=Op(1)

= op(1) ¤

Now let’s go back to our original problem and illustrate exactly how we will exploit the result

of Claim 1:∥∥∥∥∥

∑n
i=1

[
ψ(xi, θ0) + λ(Tn)

]
√

n + n‖λ(Tn)‖

∥∥∥∥∥ ≤
∥∥∥∥∥

∑n
i=1

[
ψ(xi, θ0)− ψ(xi, Tn) + λ(Tn)

]
√

n + n‖λ(Tn)‖

∥∥∥∥∥ +

∥∥∥∥∥
∑n

i=1 ψ(xi, Tn)√
n

∥∥∥∥∥.

(4)

If
√

n
−1∑n

i=1 ψ(xi, Tn) = op(1), then all we have to do in order to verify that the condition

of Claim 1 is satisfied is to check that the first term on the right-hand side of (4) is op(1).

Since Tn = θ0 + op(1), this amounts to prove that ∃ d0 such that

sup
‖τ−θ0‖<d0

∥∥∥∥∥

∑n
i=1

[
ψ(xi, θ0)− ψ(xi, τ) + λ(τ)

]
√

n + n‖λ(τ)‖

∥∥∥∥∥ = op(1) (5)

This would suffice because Pr
[‖Tn − θ0‖ < d0 → 1 for any d0. This is what Lemma 3 in

Huber (1967) is all about: providing sufficient conditions for (5) to hold. To summarize, if:

(a) Tn = θ0 + op(1)Tn = θ0 + op(1)Tn = θ0 + op(1); (b)
∑n

i=1 ψ(xi, Tn) = op(
√

n)
∑n

i=1 ψ(xi, Tn) = op(
√

n)
∑n

i=1 ψ(xi, Tn) = op(
√

n); (c) (5) is satisfied, then
√

n(Tn − θ0)
√

n(Tn − θ0)
√

n(Tn − θ0)

is asymptotically normal, via Claim 1, Equation (2) and the conditions needed

for Equation (3) to hold.

2 Asymptotic normality (Lemma 3 in Huber)

Consider a parameter space Θ ⊂ Rm which is not necessarily compact (it has to be “locally

compact”). We have an underlying probability space (X ,F , P ), an iid sample x1, . . . , xn

from the distribution P , and a function ψ : X ×Θ → Rm. Consider a sequence of statistics

Tn = Tn(x1, x2, . . . , xn) ∈ Rm that satisfies

1√
n

n∑
i=1

ψ(xi, Tn)
p−→ 0

we’re interested in describing conditions under which any such sequence Tn is asymptotically

normal. A clear example of such a setting would be an M -estimation problem in which
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some estimator θ̂ satisfies
∑n

i=1 ψ(xi, θ̂) = 0 (interpret this equation as some “first order

conditions”), but obviously our setup is more general than this3. We will make the following

assumptions:

(N-1) For any θ ∈ Θ, the function ψ(x, θ) has nice measurability properties. In particular,

ψ(x, θ) is “separable”4.

(N-2) Let λ(θ) = Eψ(x, θ). Then there exists θ0 ∈ Θ such that λ(θ0) = 0.

(N-3) Let ‖ · ‖ denote a norm in Rm. Then there exist d0, a, b and c such that

(i)
∥∥λ(θ)

∥∥ ≥ a ·
∥∥θ − θ0

∥∥ for all
∥∥θ − θ0

∥∥ ≤ d0,

(ii) E

[
sup

‖τ−θ‖≤d

∥∥∥ψ(x, τ)− ψ(x, θ)
∥∥∥
]
≤ b · d for all

∥∥θ − θ0

∥∥ ≤ d0 − d and any d ≥ 0,

(iii) E

[(
sup

‖τ−θ‖≤d

∥∥∥ψ(x, τ)−ψ(x, θ)
∥∥∥
)2]

≤ c · d for all
∥∥θ− θ0

∥∥ ≤ d0− d and any d ≥ 0

(N-4) E
[∥∥ψ(x, θ0)

∥∥2
]

< ∞.

Define the following object:

Zn(τ, θ) =

∥∥∥∑n
i=1

[
(ψ(xi, τ)− ψ(xi, θ))− (λ(τ)− λ(θ))

]∥∥∥
√

n + n
∥∥λ(τ)

∥∥

We have the following result (Lemma 3 in Huber (1967)).

Lemma 1 If (N-1), (N-2) and (N-3) are satisfied, then

sup
‖τ−θ0‖≤d0

Zn(τ, θ0)
p−→ 0

Proof: Given Assumption (N-3), things behave nicely in the set Rm ⊃ ‖θ − θ0‖ ≤ d0. The

basic trick of the proof is to partition this cube into smaller cubes, such that within each

one of those cubes, Zn(τ, θ0) remains bounded in probability. The number of such cubes will

3For example, think about a problem in which some first order conditions are satisfied asymptotically,

but not necessarily for any fixed sample size. Least Absolute Deviations will be a perfect example as we will

see.
4Separability ensures that objects like inf

θ
|ψ(x, θ)| are measurable.
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depend on the sample size n. Things will go our way if the number of cubes grows slowly

enough with respect to n. Some version of a “partition trick” is often present when we want

to prove uniform consistency or asymptotic normality under weak assumptions, even when

we are dealing with infinite-dimensional spaces (we’ll talk about this in our discussion about

empirical processes).

From now on, ‖ · ‖ will refer to ‖ · ‖∞, this is without loss of generality, but it saves us

the nuisance of carrying on some redundant constants. Take q ≤ 1/2. Take the following

collection of k0 cubes, all of which are centered at θ0:

Ck =
{‖θ − θ0‖ ≤ d0(1− q)k

}
, k = 1, . . . , k0

so the smallest cube is Ck0 and the largest one is ‖θ − θ0‖ ≤ d0. Next, we will cover

Ck−1\Ck with more cubes, for k = 1, . . . , k0. The minimum distance between a point in

the border of Ck−1 and a point in the border of Ck is d0(1 − q)k−1 − d0(1 − q)k = d0q(1 −
q)k−1. We will cover Ck−1\Ck with more cubes by partitioning each of the sides of Ck−1

into segments of length d0q(1 − q)k−1. Therefore, the number of new cubes that cover

Ck−1\Ck is ≤ (
d0(1 − q)k−1/d0[q(1 − q)k−1]

)m
= q−m for every k. After repeating this

process for every k = 1, . . . , k0, we end up with the central cube Ck0 and a collection of

new cubes C(1), C(2), . . . , C(R), where R ≤ ∑k0

k=1 q−m = k0q
−m. The collection of cubes

Ck0 , C(1), . . . , C(R) cover the set C0 =
{
τ :

∥∥τ − θ0

∥∥ ≤ d0

}
entirely.

The object of interest in this lemma is sup
τ∈C0

Zn(τ, θ0). Since our collection of cubes covers

C0, we easily have

sup
τ∈C0

Zn(τ, θ0) ≤ sup
τ∈Ck0

Zn(τ, θ0) +
R∑

j=1

sup
τ∈C(j)

Zn(τ, θ0)

For j = 1, . . . , R, take the cube C(j). Then C(j) ⊂ Ck−1\Ck for some k = 1, . . . k0 and denote

its center point as ξj. By (N-3)(i), ‖λ(τ)‖ ≥ a · ‖τ − θ0‖ ≥ ad0 · (1 − q)k for some k ≤ k0.

Adding and subtracting ψ(xi, ξj)− λ(ψj) and using the triangle inequality we have

sup
τ∈C(j)

Zn(τ, θ0) ≤ sup
τ∈C(j)

Zn(τ, ξj) +

∥∥∥∥
∑n

i=1

[
ψ(xi, ξj)− ψ(xi, θ0)− λ(ξj)

]∥∥∥∥
√

n + n · ad0 · (1− q)k

≤ sup
τ∈C(j)

Zn(τ, ξj) +

∥∥∥∥
∑n

i=1

[
ψ(xi, ξj)− ψ(xi, θ0)− λ(ξj)

]∥∥∥∥
n · ad0 · (1− q)k
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Now let us examine sup
τ∈C(j)

Zn(τ, ξj). The triangle inequality and Jensen’s inequality yield the

following

sup
τ∈C(j)

Zn(τ, ξj) ≤

∑n
i=1 sup

τ∈C(j)

∥∥∥∥
[
ψ(xi, τ)− ψ(xi, ξj)− (λ(τ)− λ(ξj))

]∥∥∥∥
n · ad0 · (1− q)k

≤

∑n
i=1

[
sup

τ∈C(j)

∥∥∥ψ(xi, τ)− ψ(xi, ξj)
∥∥∥ + sup

τ∈C(j)

∥∥∥λ(τ)− λ(ξj)
∥∥∥
]

n · ad0 · (1− q)k

By Jensen’s inequality: ≤

∑n
i=1

[
sup

τ∈C(j)

∥∥∥ψ(xi, τ)− ψ(xi, ξj)
∥∥∥ + E

[
sup

τ∈C(j)

∥∥∥ψ(x, τ)− ψ(x, ξj)
∥∥∥
]]

n · ad0 · (1− q)k

Take any ε > 0. Then

Pr
(

sup
τ∈C(j)

Zn(τ, ξj) ≥ ε
)

= Pr

( n∑
i=1

[
sup

τ∈C(j)

∥∥∥ψ(xi, τ)− ψ(xi, ξj)
∥∥∥ + E

[
sup

τ∈C(j)

∥∥∥ψ(x, τ)− ψ(x, ξj)
∥∥∥
]]
≥ n · ad0 · (1− q)k

)

= Pr

( n∑
i=1

[
sup

τ∈C(j)

∥∥∥ψ(xi, τ)− ψ(xi, ξj)
∥∥∥− E

[
sup

τ∈C(j)

∥∥∥ψ(x, τ)− ψ(x, ξj)
∥∥∥
]]

≥ n · ad0 · (1− q)kε− 2nE
[

sup
τ∈C(j)

∥∥∥ψ(x, τ)− ψ(x, ξj)
∥∥∥
])

The last line illustrates why we include n‖λ(τ)‖ in the denominator of Zn(τ, θ)! By construc-

tion of the partition of cubes, for any ξj we have:

‖ξj − θ0‖ ≤ d0(1− q)k +
1

2
d0q(1− q)k−1 = d0(1− q)

[
1− q/2

]
for some k ≤ k0

‖ξj − θ0‖+ ‖
τ∈C(j)

ξj − τ‖ ≤ d0q(1− q)k−1

2
+ d0(1− q)

[
1− q/2

]
= d0(1− q)k−1 ≤ d0

Therefore, (N-3)(ii)-(iii) yield:

E
[

sup
τ∈C(j)

∥∥∥ψ(x, τ)− ψ(x, ξj)
∥∥∥
]]
≤ bd0q(1− q)k−1

2

E
[

sup
τ∈C(j)

∥∥∥ψ(x, τ)− ψ(x, ξj)
∥∥∥

2]]
≤ cd0q(1− q)k−1

2

And consequently,

n · ad0 · (1− q)kε− 2nE
[

sup
τ∈C(j)

∥∥∥ψ(x, τ)− ψ(x, ξj)
∥∥∥
]
≥ nd0(1− q)k

[
aε− bq(1− q)

]
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Therefore for any ε > 0,

Pr
(

sup
τ∈C(j)

Zn(τ, ξj) ≥ ε
)
≤

Pr
(∣∣∣∣

n∑

i=1

[
sup

τ∈C(j)

∥∥∥ψ(xi, τ)− ψ(xi, ξj)
∥∥∥− E

[
sup

τ∈C(j)

∥∥∥ψ(x, τ)− ψ(x, ξj)
∥∥∥
]]∣∣∣∣ ≥

n(1− q)k−1

4
[
aε(1− q)− 2bd0q

])

Using Chebyshev’s inequality and the fact that k ≤ k0 and q ∈ (0, 1) we have

Pr
(

sup
τ∈C(j)

Zn(τ, ξj) ≥ ε
)
≤ qc

nd2
0(1− q)k0−1

1[
εa(1− q)− bq

]2

Using the assumptions of the Lemma, along with Chebyshev’s inequality, it is easier to

establish that for any ε > 0:

Pr

[∥∥∥∑n
i=1

[
ψ(xi, ξj)− ψ(xi, θ0)− λ(ξj)

]∥∥∥
n · ad0 · (1− q)k

> ε

]
≤ c

nε2d0(1− q)k0

and therefore

Pr
[

sup
τ∈C(j)

Zn(τ, θ0) > ε
]
≤ c

nε2d0(1− q)k0
+

qc

nd2
0(1− q)k0−1

1[
εa(1− q)− bq

]2

The key to make this go to zero is the behavior of n(1− q)k0 . We need to make this term go

to infinity.

We now move to the center cube Ck0 . Repeating the same Jensen-inequality arguments

and simply using the fact that n‖λ(τ)‖ ≥ 0 (this is how we will bound the denominator of

Zn(τ, θ0) for Ck0 , unlike the way we did it above), we get:

sup
τ∈Ck0

Zn(τ, θ0) ≤ 1√
n

n∑
i=1

[
sup

τ∈Ck0

∥∥ψ(xi, θ0)− ψ(xi, τ)
∥∥ + E

[
sup

τ∈Ck0

∥∥ψ(xi, θ0)− ψ(xi, τ)
∥∥
]]

Take any ε > 0. Adding and subtracting n·E
[

sup
τ∈Ck0

∥∥ψ(xi, θ0)−ψ(xi, τ)
∥∥
]
, using Chebyshev’s

inequality and applying (N-3)(ii)-(iii), we get:

Pr
[

sup
τ∈Ck0

Zn(τ, θ0) > ε
]
≤ n · c(1− q)k0d0

(
√

nε− 2nbd0(1− q)k0)2

Now, since

sup
τ∈C0

Zn(τ, θ0) ≤ sup
τ∈Ck0

Zn(τ, θ0) +
R∑

j=1

sup
τ∈C(j)

Zn(τ, θ0)
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then for any ε > 0, and using the bounds we have found:

Pr
[
sup
τ∈C0

Zn(τ, θ0) > ε
]
≤ Pr

[
sup

τ∈Ck0

Zn(τ, θ0) > ε
]

+
R∑

j=1

Pr
[

sup
τ∈C(j)

Zn(τ, θ0) > ε
]

≤ n · c(1− q)k0d0

(
√

nε− 2nbd0(1− q)k0)2
+ R ·

[
c

nε2d0(1− q)k0
+

qc

nd2
0(1− q)k0−1

1[
εa(1− q)− bq

]2

]

≤ Pr
[

sup
τ∈Ck0

Zn(τ, θ0) > ε
]

+
R∑

j=1

Pr
[

sup
τ∈C(j)

Zn(τ, θ0) > ε
]

≤ n · c(1− q)k0d0

(
√

nε− 2nbd0(1− q)k0)2
+ q−mk0 ·

[
c

nε2d0(1− q)k0
+

qc

nd2
0(1− q)k0−1

1[
εa(1− q)− bq

]2

]

The object on the right hand side depends crucially on how k0 grows with n. It will go to

zero if q and k0 are chosen so that:

(1− q)k0 ≤ n−γ < (1− q)k0−1 for some
1

2
< γ < 1

in this case

k0(n)− 1 <
γ · log n

| log(1− q)| ≤ k0(n)

which means that in the end, R = O(log n). The number of cubes in the partition grows

slower than log n. ¤.
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