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1 Introduction

The approach described in Ahn, Ichimura, Powell, and Ruud (2015) (henceforth AIPR) constitutes an elegant

contribution to the “control function” literature, which focuses on semiparametric models where endogeneity or

nonlinearities of unknown form can be captured by a control function (or “control variable”). Like the rest of this

literature, the applicability of the method in AIPR presupposes the ability to identify (perhaps nonparametrically) the

control function in order to have the ability to “match” (asymptotically) pairs of observations in a way that identifies

the parameters of interest (see Equations (2.15)-(2.19) in AIPR). While the control function approach has been

shown to have aide applicability (Ahn and Powell (1993), Honoré and Powell (1994), Blundell and Powell (2004),

Honoré and Powell (2005), Imbens and Newey (2009), Hong and Shum (2009), Aradillas-Lopez, Honoré, and

Powell (2007)), in this note I argue that it is easy to construct examples of microeconometric models where matching

is not possible, either because of interval data, missing data or incomplete models (e.g, structural models with

“multiple equilibria”). In doing this, I also want to argue that, while matching is not possible and the methodology

in AIPR cannot be applied, the examples I present produce (conditional) moment inequalities which can be used

to do inference on the parameters of interest by using recently developed methods involving conditional moment

inequalities. This shows that control function models are powerful vehicles for inference even in partially identified

settings.

2 A generic setup

For brevity, consider a model described as follows,

Yi = X ′iβ0 + φi + νi. (1)

In what follows νi is an unobserved latent variable that satisfies some basic exogeneity restriction1 (e.g, mean-

independence with respect to Xi) and φi is the control function which captures all the endogeneity of the model.

The setting of AIPR (and that of the existing literature on control functions) assumes the existence of a known (or

estimable) function g, which depends on a vector of observable covariatesWi and (possibly) an unknown parameter

1The exact condition will be clarified below.
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γ (whose true value is denoted by γ0) such that, for any pair of observations i, j,

g(Wi; γ0) = g(Wj ; γ0) =⇒ φi = φj (2)

Therefore, in a manner analogous to panel data fixed-effects, matching g(Wi; γ0) and g(Wj ; γ0) for any pair of

observations allows us to difference out2 φi and φj ,

g(Wi; γ0) = g(Wj ; γ0) =⇒ Yi − Yj = (Xi −Xj)
′
β0 + νi − νj

Inference on the model’s parameters can proceed from here using, e.g, mean-independence conditions of the form

E [νi|Xi,Wi] = 0. Note that (2) is crucial for this approach to work.

2.1 A case where the matching conditon (2) does not hold but there are bounds for the

control function

In this note I focus on a case in which (2) does not hold and the type of matching used in AIPR (and all the related

literature) is impossible. To be precise, I focus in a case where (2) is replaced with the following condition3,

g(Wi; γ0) ≥ g(Wj ; γ0) =⇒ φi ≥ φj (2’)

where, for any given γ, both g(Wi; γ) and g(Wi; γ) are wither known or estimable. We mentioned above that, in

these types of models, the latent variable νi satisfies some exogeneity restriction; for the sake of exposition let us

assume that

E [νi|Xi,Wi] = 0 (3)

Together, the conditions in (1), (2) and (3) fit the framework of AIPR perfectly. My goal here is to argue that their

results and ideas, combined with recent advances in moment-inequality models, can also help guide inference if we

replace (2) with (2’).

2.2 Examples

Specific examples of models described by (1) and (2’) are not hard to construct. They can arise, e.g, in the context

of interval data or incomplete (i.e, partially identified) economic models.

A sample selection model with interval data

Estimation with interval data has been studied, for example, in Manski and Tamer (2002), but it has not received

attention in the context of control functions. Consider a basic sample selection model of the type studied by

2This is the essence of Equation (2.17) in AIPR.
3For everything that follows, (2’) can be replaced with the following weaker condition,

g(Wi; γ0) ≥ g(Wj ; γ0) =⇒ E [φi|Xi,Wi] ≥ E [φj |Xj ,Wj ] .
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Heckman (1979), described as

Y ∗i = X ′iβ0 + ηi, di = 1 {Z ′iγ0 + εi ≥ 0} , Yi =

Y
∗
i if di = 1

0 otherwise.
(4)

Therefore E [Yi|Xi, di = 1] = X ′iβ0 + E [ηi|εi ≥ −Z ′iγ0]. Suppose (ηi, εi)⊥(Xi, Zi), then for uncensored obser-

vations Yi we can express

Yi = X ′iβ0 + µ(Z ′iγ0) + νi

Suppose that the joint distribution of εi and ηi is assumed to be such that µ(·) is nonincreasing. A special case

is bivariate Normality with positive correlation. This model is compatible with our generic description with φi =

µ(Z ′iγ0). If Zi is observable along with di, then methods like the ones proposed in AIPR are readily applicable (see

Section 5 in AIPR). Suppose however that some elements in Zi are not observable, but we observe WL
i and WU

i

such that

WL
i

′
γ0 ≤ Z ′iγ0 ≤WU

i

′
γ0 w.p.1.

In general, this assumption presupposes knowledge about the signs of at least some of the coefficients γ0. Given

the assumption that µ(·) is nonincreasing,

WU
i

′
γ0 ≤WL

j

′
γ0 =⇒ Z ′iγ0 ≤ Z ′jγ0 =⇒ φi ≥ φj .

Therefore this model fits the condition in (2’) if we define g(Wi; γ0) = −WU
i
′
γ0 and g(Wi; γ0) = −WL

i
′
γ0.

A partially linear model with missing data

Microeconometric models involving agents’ expectations arise in the context of many economic models. Consider

one described as follows,

Yi = X ′iβ0 + F (Ei[ξi|Wi]) + νi, (5)

where F (·) is an unknown but nondecreasing function. Ei[ξi|Wi] denotes individual i’s expectation of some out-

come ξi conditional on Wi. If a random sample of (ξi,Wi) were observed and rational expectations were assumed,

such that Ei[ξi|Wi] = E[ξi|Wi] ∀ i, then expectations Ei[ξi|Wi] would be nonparametrically identified and (5)

would be a model with generated regressors entirely compatible with the framework of AIPR. Consider instead

a situation in which Ei[ξi|Wi] is not identified, either because we do not wish to impose rational expectations or

because ξi is unobserved (assume that Wi is observable in this example). Suppose however that we assume

E[Li|Wi] ≤ Ei[ξi|Wi] ≤ E[Ui|Wi] w.p.1,

where a random sample of (Li, Ui,Wi) is observable. This presupposes that, even though individual expectations

are unknown and not identified, they are bounded w.p.1 by E[Li|Wi] and E[Ui|Wi], perhaps owed to the fact that

it is common knowledge among all individuals that Li ≤ ξi ≤ Ui w.p.1, and their expectations (however incorrect)
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are consistent with this property. This model is compatible with our general description with φi = F (Ei[ξi|Wi]),

g(Wi) = E[Li|Wi] and g(Wi) = E[Ui|Wi].

A competitive entry model with possibly incorrect beliefs

Consider a strategic competition model between two competitors, labeled p, q (e.g, Walmart and Kmart). Suppose

we are interested in some “outcome” or optimal decision by each one of these competitors (e.g, store size). For

market i we label this outcome as Y ∗pi. Outcomes can be observed if and only if p decided to enter (i.e, compete)

market i. Suppose the model is described as follows,

Y ∗pi = X ′iβ
p
0 + ηpi, dpi = 1 {W ′i δ

p
0 + ∆(Wi, λ

p
0) · Epi[dqi|Wi] + εpi ≥ 0} , Ypi =

Y
∗
pi if dpi = 1

0 otherwise.
(6)

Wi here denotes the market’s observable (to the econometrician) characteristics that determine entry decisions.

In what follows we assume no exclusion restrictions between Xi and Wi. The expectation Epi[dqi|Wi] denotes

p’s beliefs –unobserved in the data– for the probability that its competitor, q will decide to enter market i. The

realization of Wi is assumed to inform p’s beliefs, but the subscript Epi in (6) implies that beliefs may still be

random even conditional on Wi. However, assume in this example that beliefs are independent of4 εpi. The natural

setting for such an assumption is one where εpi is private information for p and independent of εqi. The term

∆(Wi, λ
p
0) represents a parametric function (indexed by parameter vector λp0) that captures the strategic interaction

effect.

Suppose we assume that (ηpi, εpi)⊥(Wi, Epi[dqi|Wi]), then we have a special case of a sample selection model,

where E [Ypi|Wi, dpi = 1] = X ′iβ
p
0 + E [ηpi|εpi ≥ −W ′i δ

p
0 −∆(Wi, λ

p
0)Epi[dqi|Wi]]. , Then for uncensored ob-

servations Yi we can express

Ypi = X ′iβ
p
0 +m(W ′i δ

p
0 + ∆(Wi, λ

p
0) · Epi[dqi|Wi])︸ ︷︷ ︸

=φpi

+νpi. (7)

As we did in the example described in (4), suppose that the joint distribution of εpi and ηpi is assumed to be such

that m(·) is nonincreasing (again, a special case would be bivariate Normality with positive correlation). Now

suppose for simplicity that entry decisions are considered strategic substitutes5, so ∆(Wi, λ
p
0) ≤ 0 w.p.1. Also

suppose we parameterize the distribution of εp as F (·), and for simplicity assume this distribution is symmetric

around zero (e.g, F is the Standard Normal distribution); the joint distribution of (ηp, εp) can remain nonparametric

while maintaining the assumption that m(·) is nonincreasing.

In this example we assume beliefs are unobserved in the data. If we followed the vast majority of existing

literature and assume rational expectations and Bayesian-Nash equilibrium (BNE) behavior (e.g, Seim (2006),

Tamer (2003), Aradillas-Lopez (2010)), we could recover p’s unobserved beliefs by solving the BNE conditions.

Furthermore, if we assume that the BNE is either unique or that the equilibrium selection mechanism always

chooses the same equilibrium we would have Epi[dqi|Wi] = E[dqi|Wi], and therefore beliefs could be estimated

4This is done for simplicity/brevity and can be relaxed.
5This can be easily relaxed to a setting where entry decisions are strategic substitutes in some markets and complements in others.
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nonparametrically from the data. In this case, if we define

g(Wi; γ0) = W ′i δ
q
0 + ∆(Wi, λ

q
0)) · E[dqi|Wi],

then g(Wi; γ0) = g(Wj ; γ0) implies φi = φj and pairwise matching methods like AIPR can be applied (as in

Aradillas-Lopez (2012)). However, equilibrium behavior is a very strong assumption, as it presupposes that eco-

nomic agents have perfect models about other agents. Following Aradillas-Lopez and Tamer (2008), suppose we

replace BNE with the much weaker assumption that beliefs may be incorrect but they satisfy some basic notion of

rationality. Note first that, regardless of how beliefs are constructed, we must have

0 ≤ Epi[dqi|Wi] ≤ 1.

By the strategic-substitutes assumption described above, this means that, regardless of how beliefs are constructed

we must have

W ′i δ
p
0 + ∆(Wi, λ

p
0) ≤W ′i δ

p
0 + ∆(Wi, λ

p
0) · Epi[dqi|Wi] ≤W ′i δ

p
0 .

Suppose all we assume about p’s beliefs is that they are consistent with this fact. Then we must have6

F (W ′i δ
q
0 + ∆(Wi, λ

q
0)) ≤ Epi[dqi|Wi] ≤ F (W ′i δ

q
0).

And therefore,

W ′i δ
p
0 + ∆(Wi, λ

p
0) ·F (W ′i δ

q
0) ≤W ′i δ

p
0 + ∆(Wi, λ

p
0) ·Epi[dqi|Wi] ≤W ′i δ

p
0 + ∆(Wi, λ

p
0) ·F (W ′i δ

q
0 + ∆(Wi, λ

q
0)).

(8)

Beliefs that satisfy these bounds are consistent with what Aradillas-Lopez and Tamer (2008) refer to as “Level-2

rationality”. Recall from (7) that

φi = m(W ′i δ
p
0 + ∆(Wi, λ

p
0) · Epi[dqi|Wi]),

where m(·) is an unknown, nonincreasing transformation. If we relax the BNE restriction but assume Level-2

rationality, the resulting model is compatible with the general framework described in (2’) with

g
p
(Wi; γ0) = − (W ′i δ

p
0 + ∆(Wi, λ

p
0) · F (W ′i δ

q
0 + ∆(Wi, λ

q
0))) ,

gp(Wi; γ0) = − (W ′i δ
p
0 + ∆(Wi, λ

p
0) · F (W ′i δ

q
0))) .

If the competitors in this model are at least “Level-2 rational” and the transformation m in (7) is nonincreasing,

then the inequality in (2’) is satisfied:

g
p
(Wi; γ0) ≥ gp(Wj ; γ0) =⇒ φpi ≥ φpj .

6Recall that we assume F to be symmetric around zero.
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Level-k rationality, as defined in Aradillas-Lopez and Tamer (2008) is an iterative construction based on iterated

deletion of dominated strategies. For example, if we go one step further and are willing to assume that competitors

know that their opponents are Level-2 rational, and that their beliefs reflect this knowledge, we would now have

F (W ′i δ
q
0 + ∆(Wi, λ

q
0) · F (W ′i δ

p
0)) ≤ Epi[dqi|Wi] ≤ F (W ′i δ

q
0 + ∆(Wi, λ

q
0) · F (W ′i δ

p
0 + ∆(Wi, λ

p
0))) .

These bounds correspond to Level-3 rationality in Aradillas-Lopez and Tamer (2008). From here the bounds g
p

and

gp would now be

g
p
(Wi; γ0) = − (W ′i δ

p
0 + ∆(Wi, λ

p
0) · F (W ′i δ

q
0 + ∆(Wi, λ

q
0) · F (W ′i δ

p
0))) ,

gp(Wi; γ0) = − (W ′i δ
p
0 + ∆(Wi, λ

p
0) · F (W ′i δ

q
0 + ∆(Wi, λ

q
0) · F (W ′i δ

p
0 + ∆(Wi, λ

p
0)))) .

This construction has the advantage of always including BNE as a special case (i.e, BNE beliefs are always inside

the Level-k bounds for any k) but it allows for inference that is robust to cases where competitors have incorrect

beliefs. It also fits perfectly within the framework of examples described generically in (2’).

3 Inference: an outline

Without the ability to match, the approach in AIPR (or those in the pairwise-differencing literature on control

functions, such as Honoré and Powell (1994), Honoré and Powell (2005) or Aradillas-Lopez, Honoré, and Powell

(2007)) cannot be applied. However, the model described in (2’) produces moment inequalities on which inference

can be based. Before we proceed let us denote θ ≡ (β, γ) as the full collection of parameters in our model, with

γ0 as the true value. While a number of moment-inequality inferential procedures are compatible with our setting,

I will outline an approach that is explicitly based on the conditional nature of the moment inequalities. Take any iid

pair (Y1, X1,W1) and (Y2, X2,W2) produced by a DGP as described in (2’) and (3). Fix any (x, x′) and define

S(x, x′; θ) = E
[
[(Y1 − Y2)− (X1 −X2)′β] · 1

{
g(W1; γ) ≤ g(W2; θ)

} ∣∣X1 = x, X2 = x′
]

= E
[
[(x− x′)′(β0 − β) + (φ1 − φ2) + (ν1 − ν2)] · 1

{
g(W1; γ) ≤ g(W2; θ)

} ∣∣X1 = x, X2 = x′
]
.

Then,

S(x, x′; θ)

= (x− x′)′(β0 − β) · E
[
1
{
g(W1; γ) ≤ g(W2; θ)

} ∣∣X1 = x, X2 = x′
]

+ E
[
E
[
(φ1 − φ2)

∣∣g(W1; γ) ≤ g(W2; θ), X1 = x, X2 = x′
]︸ ︷︷ ︸

≤0

·1
{
g(W1; γ) ≤ g(W2; θ)

} ∣∣∣X1 = x, X2 = x′
]

+ E
[
E
[
(ν1 − ν2)

∣∣W1,W2, X1 = x,X2 = x′
]︸ ︷︷ ︸

=0

·1
{
g(W1; γ) ≤ g(W2; θ)

} ∣∣∣X1 = x, X2 = x′
]
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If the conditions in (2’) and (3) are satisfied, we must have

S(x, x′; θ0) ≤ 0 for a.e (x, x′) ∈ Supp(X)2.

In particular if we define

T (θ) = E [max {S(X1, X2; θ), 0}] , (9)

then we must have T (θ0) = 0. Inference based on this restriction can be developed by extending the approach used

in Aradillas-López and Gandhi (2016) and Aradillas-López, Gandhi, and Quint (2016), which look at models that

yield functional inequalities of the type “S(X;β0) ≤ 0 w.p.1”, which is equivalent to the mean-zero restriction

“E [max {S(X;β0), 0}] = 0”. Their methodology proposes constructing confidence sets (CS) for β0 based on the

functional T (β) = E [max {S(X;β), 0}], for which they use estimators of the type

T̂ (β) =
1

n

n∑
i=1

Ŝ(Xi;β) · 1
{
Ŝ(Xi;β) ≥ −bn

}
,

where bn −→ 0 is a sequence converging to zero at an appropriate rate. Under certain smoothness and regularity

conditions, Aradillas-López and Gandhi (2016) and Aradillas-López, Gandhi, and Quint (2016) show that a test-

statistic with pivotal properties can be constructed by properly normalizing T̂ (β), and that this procedure is both

computationally simple to implement and it has good asymptotic properties, such as the ability to automatically

adapt to the so-called contact sets (the regions where the conditional moment inequalities are binding). Analogously,

in the case of (9) we can estimate

T̂ (θ) =
1

n · (n− 1)

∑
j 6=i

n∑
i=1

Ŝ(Xi, Xj ; θ) · 1
{
Ŝ(Xi, Xj ; θ) ≥ −bn

}
.

A CS for θ can be constructed by analyzing the asymptotic properties of T̂ (θ) in a manner analogous to Aradillas-

López and Gandhi (2016). This approach has the potential to be readily adapted to the case where the auxiliary

parameter γ can be estimated from outside the model and plugged-in, in which case a CS for β can be based on

T̂ (β) =
1

n · (n− 1)

∑
j 6=i

n∑
i=1

Ŝ(Xi, Xj ;β, γ̂) · 1
{
Ŝ(Xi, Xj ;β, γ̂) ≥ −bn

}
.

Under certain conditions, the conditional moment inequalities that result from (2’) may be enough to point-identify

θ (or β, in cases where the auxiliary parameter γ is identified outside the model). Estimation with conditional

moment inequalities has been described, notably, in Khan and Tamer (2009). In this case a statistic T̂ (θ) of the type

described above can be employed to set-up the problem as an extremum estimator model.

4 Concluding remarks

The approach in AIPR –and in the pairwise-differencing literature as a whole– presupposes the ability to match

(asymptotically) the control functions across pairs of observations. In this note I have argued that it is easy to
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construct examples where matching is not possible, either because of interval or missing data, or because of so-

called incomplete models such as those arising from multiple equilibria (or some other solution concept such as

rationalizability). In the examples studied here, even though matching is no longer feasible, the model still produces

testable implications, in the form of conditional moment inequalities. Using recent advances in moment inequality

models, inference can still be possible. This shows that the concept of control functions –an idea advocated and

developed in James L. Powell’s body of work– is a powerful one, capable of extending to settings with partial

identification.
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