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Abstract

This supplement contains the steps of the proofs of the econometric theorems and lemmas

in the paper. Throughout, we make reference to restrictions (assumptions) described in the

paper.

1 Proof of Theorem 2

We prove parts 1 and 2 in the statement of the Theorem in separate steps. Let f* and A* denote
the population values of § = (a,8’)" and A, and let b denote any alternative value of (a,f’)’ such
that b = §*.

Step 1. Suppose that F is known and define the sets

ng{z:zl(f)—ﬁ*)>0/\zz(l~7—/§*)20},

SgE{z:zl(l;—/g*)<0/\zz(l~7—/§*)ﬁO}.
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For any z € S7 we have that

F(21 b, zzl;) > P(zlﬁ*,zzﬂ*) =P(Y =(0,0)|2),
and likewise for any ze€ S,

F(21b,2,0) < F(21f*,228°) = P(Y = (0,0)[2).

Under conditions (i) and (ii) in the statement of the Theorem we’ll show that at least one of
P(Z € Sg) and P(Z € ST;) is positive, implying that b and f* are observationally distinct. Since
the choice of b is arbitrary, this establishes that * is point identified.

To see why at least one of P(Z € Sg) and P (Z € SE’) is positive, first note that at least one of

P(Zy(b-p)>0),  P(zi(b-p)<0) (1)

is positive, since if this were not true this would imply P (Zl (E - ﬁ*) = 0) =1, which is a violation
of condition (i). If only P(Zl (l; - ﬁ*) > O) of the two probabilities in (1) is positive, then

P(ZeSF)=P(Zo(b-p7) 2 01z (b- %) > 0)P(Z, (b - ) > 0),

which must be positive by application of condition (ii) in the statement of Theorem with ¢ = b—f*.
Similar reasoning establishes that P(Z € Sl;) is positive if only P (21 (E - ﬁ*) < O) of the two prob-
abilities in (1)) is positive. If both probabilities in (1)) are positive, then at least one of P(Z € Sg) =
P(Zy(b-p) 20121 (b~ B)>0)-P(21(b-p*)>0)and P(Z €S} ) = p{22 (b-p7) <01z, (b- )< o]-
P (Zl (f) - ﬂ*) < 0) must be strictly positive by (ii). Thus with A* known b is observationally distinct
from f*, since for each z € S, P(Y = (0,0)|z) = F(21 b, 225).

Define now the expectation of n~! times the log-likelihood

£o(p.2)=E|e((#.2)sw)].
where as in the main text, for 6; = (ﬁ,/\), w=(y,x) and z; = (1, —x;):

C(01;w)=1[y=(0,0)] ~logP(zlﬁ,22[§;/\)+ (1ly= (0,0)])~log(1 —F(zlﬂ,zzﬂ;/\)).

If F is only known to belong to some class of distribution functions {F, : A € I'}, the above reasoning
implies that foreach A €T, £ (ﬁ, /\) is uniquely maximized with respect to 5. Then the conclusion
of the first claim of the Theorem follows letting f*(A) denote the maximizer of £, (/5,/\) with
respect to p € Bforany AeT.



Step 2. Here we will show that, under the assumptions of the theorem,
Pr[F (218, 22B: 1) = F (218, Z2B'; )\)] >0 Y(BA)=(F,N)e0. (2)

And identification of (F‘, A*) follows. Take a pair of parameter values (/?, A) and (ﬁN’, A’)in © and
abbreviate Z, = uy, Z,f’ = uj Z,B =uy and Z,p" = u}. Denote u = (uy,u,) and u’ = (uy,u;). Let
C(u,u’), D(1’) and D(u) be as defined in the assumptions of the theorem. Then, (, 1) and (', 1)

are observationally equivalent if and only if
C(u,u’)=XD(u’)-=AD(u) w.p.1. (3)

That is, if and only if
Pr[P(Zl/?,Zz/?; N =F(z:p,Z,p’; /\)] =1

Suppose f = B’. Then, u = u’ w.p.1, which implies C(1,1’) = 0 and D(u) = D(1’) w.p.1. In this case,
holds if and only if A = A". Therefore, (B, A) = (§’, \') are observationally equivalent only if § =
B’. However, in this case (3) would violate the full-rank condition stated in the assumptions of the
theorem. Therefore we conclude that there does not exist a pair of parameter values (E, A)= (/)7’, A)
in © that are observationally equivalent. From here it follows that £ ( B, /\*) = L ([3,/\) for any
(B, A) € © such that (8, A) = (8%, A*). Since £, (ﬂ*, /\*) > Ly (/§, /\) for all (B, 1) € © (by the information
inequality, implied in turn by Jensen’s inequality), equation implies that 0] = (8%, %) is the
unique maximizer of £y and is therefore identified. A standard mean value theorem expansion

for maximum likelihood estimation then gives
n * 1 - -1/2
0, = 6] +ZZ¢)M(wi)+op(n / ),
i=1

where
19€(01;w;)

26,

is the maximum likelihood influence function satisfying

U (wi) = Hy

n_l/zibe(wi)—)N(O,Hal), with Hy=E
i=1

a(o3;w)ac(opw)
20, 20, |



2 Theorem 3

In this section we prove Theorem 3, guiding the reader through all the steps leading to the final
proof. The steps rely on empirical process results. Throughout, we refer to various restrictions

stated in the paper.

2.1 Euclidean classes of functions involved

The first step will consist of verifying that the relevant classes of functions involved have the
Euclidean property as defined in [Nolan and Pollard (1987, Definition 8) and |Pakes and Pollard
(1989, Definition 2.7). Let

H={f : X >R: f(x)=w(x)-K(x—x";h): x' € X, h> 0},
Gk = {f : Yo R: f(y) =1[Rg(y,x) CUi(x,v;0)] where (v',x) e W, 0 € @},
Dr= {f :R? > R: fuy,up) =1[(uy,uy) €Uy(x,v;0)] for some (y,x) e W, 0 € @}.

Since K is a function of bounded variation (see Restriction 12), .7 is a Euclidean class of functions
for constant envelope @-K, where @ = supw and K = sup |K| (see Pakes and Pollard (1989, Example
2.10)). Since the class of sets

Dy = {y € V: Rp(v,x) CU(x,v;0) for some (v,x) e W, O € @}

is assumed to be a VC class of sets (see Restriction 13), ¢  is a Euclidean class of functions for
constant envelope 1 (see Pakes and Pollard (1989, p. 1033)). The same holds for the class of

functions ¥ , since the class of sets
Dk = {L{k(x,y;G) for some (y,x) e W, 0 € @}

is assumed to be a VC class of sets in Restriction I3. Next, we turn our attention to Py (Uy(x,v;0);0).
Let

gl =— . Guy=—2

C(L+en)?

e
T l4et

denote the logistic pdf and cdf, respectively. According to our copula parameterization, the joint

density of (uy,u,) is given by
£, u230) = gluy)g(ua) - [(1+ A (1= 2G(uy) = 2G(up) + 4G (u1)G(u) )]

Notice that
BﬂM%%%M=jfﬂWmmewm%@hmmwmwmwz

Uy Uy



Define
e—u/2

&(U) = —————.
2-(1+e2)
Qo is the pdf for a re-scaled Logistic random variable with variance 4 - (1nstead of & % ). We have

gl | (g<u>~G(u>)
S‘ip(g2<u>)‘2’ R T Dt

Let fo(uy,up) = go(uy) - go(uy). Note that f, is a well-defined pdf. We can re-express

Puth(x,350)50) = [ [ 11(,15) €Uy (3300 (f f(z“;’i‘j;j ) foluny, gy du
= ffl [(u1,uz) € Up(x,9;0)] - h(uy, up; A) - fo(uy, up)duydusy,

where

o Sl upd) o g(uy)-g(uy)

h(uy, s A) = e " L) 50D 1+ A (1-2G(w1) - 2G (1) + 4G(11)G(y) )|
Let £ "
_ .2 . _ J\ug,up;
= {h ‘R > R: h(ug,uy) = W for some A € [—1,1]}.

Recall that -1 < A < 1. Therefore, |h| <24 V h € ;. Also note that for any A, A" € [-1,1],

w

|h(u1,u2;)\)—h(u1;u2}/\’)|5'[1_ZG(”l)_ZG(u2)+4G(u1)G(u2)] $2(u1) - &2(uy

A -]
<17-|A=V|

From here, by Pakes and Pollard (1989, Lemma 2.13) we deduce that ¢; is a Euclidean class of
functions for the constant envelope sup |h(uy, u5;0)[+2-17 =4+17- 2-5up -1 [A-0|=4+2-17 =
38. Now define e

Yok = 181821 &1 €Dokr 82 € Y3}
From our previous arguments and Pakes and Pollard (1989, Lemma 2.14), the class of functions

9, k is Euclidean for the constant envelope 1-38. Now let

G5k = {th(ul,uz) - fouy, up)duydu, for someh ey s.

Uy Uy



Note that Py (Ui(x,1;0); ) € 95 . By Nolan and Pollard (1987, Lemma 20) or Sherman (1994,
Lemma 5), the class of functions %; ; is Euclidean for the constant envelope 38. Finally, let

Fe={(821-22)8: 81 €% 1, %2 €Yk, g3 € I}

By Pakes and Pollard (1989, Lemma 2.14), the class of functions .%#; is Euclidean for the constant
envelope 39-K - = Fy. Notice that

Fr={g: W - R: g(v,x) =my(y,v,u;0) - w(x)- K(x —u;h) for some (v,u)eW, 0 €0, h>0}.
Next, recall from Restriction I3 that the following is a VC class of sets,
D5y = {w eW: c; £ Ty(w;0) <c, for some 6 €O, c; <c, in IR}.
Therefore, the following is a Euclidean class of functions
Gox={f W-oR: f(w)=w(x) 1[-b< Ti(w;0) < 0] for some 6 € ® and b e R},

for the constant envelope @. Finally, recall again from Restriction I3 that the following is a VC
class of sets,
Doy = {(y,x) eW: Ti(w;0) > ¢ forsome B €0, ce IR}.

For wy = (y1,x1) and w; = (v,, x,) denote

v (wo, w1360, h) = w(x1) - w(xp) - my (¥2,91,%1;0) - K(x1 = x2;h) - 1[ Ty (w1, 6) > 0].
And consider the class of functions

Ve ={f WxW > R: f(w,w;) = v, (wp, wy;0,h) for some 6 € ® and h > 0.}

From the VC property of the class of sets ¢ , the Euclidean properties of the classes of functions
reviewed above and |Pakes and Pollard (1989|, Lemma 2.14), the class of functions ¥} is Euclidean

for the constant envelope @” - K.

2.2 Auxiliary maximal inequality results

Recall that we denote w = (y,x) and that the supports of Y and X are denoted as ) and &, re-
spectively. Also recall that the joint support of W = (Y, X) is denoted as WV and that W* is the
projection of X* (our pre-specified inference range) onto V. Using the Euclidean properties for
the classes of functions described in Section [2.1]we will now use the maximal inequality results in

Sherman (1994) to derive asymptotic properties for some key empirical processes in our problem.



Let us begin with the process v (-) defined as

1n

Vi, (9,%:6) = %Z(mkm,y,x;e) cw(X;)- K (X; = x51y) = E [mi(Y,9,%;0) - 0(X) - K (X = x;h,)])
i=1

= 1% (Tu(y,%:0) - E[Ti(v,%:0)]).

Note that here and throughout this supplement when it is helpful for clarity we make use of the
minor abuse of notation Tk(y, x;0) = ﬁ((y,x);@), Tk (v,x;0) = Ty ((v, x);0), and so forth, replacing
w = (y,x) with y,x as arguments before the semicolon. Now, using Sherman (1994, Corollary 4),
the Euclidean property of the class of functions .%; described in Section [2.1]yields

1 - . 1

k

,x;0 :o(—) s |T ,x;0) — E[T, ,;9|:o —)
%2§v|vl”(yx )| =0, 17 %1615 k(v,%;,0) - E[Ti(,x;,0)]| = O, Y

Next note that Restrictions I1 and 12 coupled with an M order approximation yield

sup [E(Te(y, x:0)] - Tuly, x:0)| < Cr - h, (4)

wew*
0O

for some Cr < co. Therefore,

— 1
SSVBJTk(y,x;Q) - Ti(v, x;6)| =0, (ﬂl/Z—hﬁ) + O(hﬁ/f),

0cO _ (5)
sup 'Tk(y,x;6)| = Op(1).

wew*
0O

Take any integer g and any 0 < a < 1. By Sherman (1994, Main Corollary), there exists a universal
constant A (described there) such that,

E|sup n1/2~v{‘n(y,x;9)|q SA-(E-E)‘I_&,
wew
0eO
Therefore,
— — q 1
E|sup Tk(y,x;G)—E[Tk(y,x;G)]' =0 g for any integer g. (6)
uey (n2-7)




Next, note from that

P| sup [Tty :0)~ Ty, )| > b | < | sup [Ty, ) - E[Tutw :0)]| > b, - Cr - b

weWw* wew*
0e® 0e®

From here, (6) and Chebyshev’s inequality (for higher-order moments) yields

1

>b,[=0
(/2 W+ (by— Cr - 1))

p Sup‘ﬁ(%x;Q)—Tk(%x;O)

wew*
0cO

q] for any integer q.  (7)
Note from Restriction I2 that n'/2 - hZ - (b, — C7 - h¥M) — co. Denote

Ti(v,%;0) - Ti(, x;0)

D, =1|sup

wew*
0O

>b,|. (8)

Note that

D, = (D, —E[D,])+ E[D,] = O, (VVar[D,]) + E[D,] = O, (VE[D,]- (1 -E[D,])) + E[D,]

1
(1172 15 - (b, — Cr - W) )"

= 0, (VE[D,])+E[Dy] = O,

]x 1+0

1
(n1/2~hz-<bncT~hﬁ4>)"”]
1

=0 q/2
(1172 H - (b~ Cr - i)

p

1
]X [1 +0(1)] = (n1/2 ~hi - (b, = Cr - h%)q/z]

(9)
for any integer . Now take any A > 0 and consider n'/?*2.D,. Let € > 0 be as described in
Restriction 12 and take any integer ¢ > (1 + 2A)/e (i.e, 1/q+2A/q <¢€). By (9),

/24A nl/2+A
n/st%.D, =0, 7
(n"/2- - (b, = Cr - 1))

Pl ac1sg-207g 1 1/2-1/a-2M/q  1,M\V/2
(n =204 . j2 . — Cp-nl/2-1/4 /q.hn)
:Op(l)’

where the last result follows from the bandwidth convergence conditions in Restriction I2. There-
fore,

Dy = 0,(n/>2) ¥V A> 0. (10)

p



Now let us proceed to analyze the process 1/12‘”(') defined as

vk (0) = %i(w(xi) 1[-2b, < Ty (w;;0) < 0] - E[w(x;) - 1[-2b,, < Ty (w;30) < o]])
i=1

Using Sherman (1994, Corollary 4), the Euclidean property of the class of functions ¥ described

in Section [2.1]yields

1
k —
208 44,01 = O 7 ) a

2.3 Proof of Lemma 2 in the paper

Let ;
— 1 —~ —~
Ri(0)=~ ;wm) T (w;;0) - 1T (w;, 0) > by |-
1=
Note that
K
R(6)=) Ri(0)
k=1
Now let

Note that

K
R(0)=) Ri(0).
k=1
Lemma 2 asserts that, under Restrictions 11-14,

sup |ﬁ(6) —§(6)| = op(n_l/z‘e),
0O

where € > 0 is as described in Restriction 12. We will prove the lemma by showing that

sup |Ek(6) —Ek(6)| =0, (n‘l/z‘e) fork=1,...,K.
0ec®



Let
E6n(0 Zw ) T wis0)| - [L [Tk (wis0) = b1 =1 [Ty (w;30) > 0]

Note that & ,(-) > 0 and
R (0) = Ri(0)] < &k,(6).

We have

|1 Tk(9ir %:50) 2 =by] = 1 [Tx (w;6) 2 0]
=1[Ti (;;60) 2 by, —2b, < T (w;;0) < 0]+ 1T (w;360) 2 by, Ty (w;;0) < —2b,]
+1[Ti (w330) < by, T (w;30) 2 0]
< 1[-2b, < T (w;30) < 0]+ 1| Te (;30) - Ty (w;30)| 2 b, .

From the above arguments, we have
Exn(O <_Zw |Tk(w,-;6)|-1[—2bn§Tk(wi;9)<0]
b= Zw )« | T (wi30) = Tic (w33 0)] - 1[~2b,, < Ty (w3;0) < 0]
e ;wm) | T (wis 0)]- 1[|Ti (w35 0) = Ty (w33 6)] 2 b

Then,

wew*
0cO

Ern(O )<[2b + sup |Tk w;0)— Tk(w;Q)‘]x%iw(xi)-l[—an<Tk(wi;9)<0]
i=1

+1

wew*
0cO

sup |ﬁ(w;6) Ty (w; 9)| >b }x sup ’Tk w,@)‘ -0
wew*

0e®

Using the results in equations (5) and (10),

ék,n(e)

n

1 1 _1/2—
S(2bn+Op(n1/2'hi)+O(hﬁ4))xZ u)(xi)-l[—anSTk(wi;9)<O]+op(n V2R) Y A> 0
i=1

= (2bn + op(nl/; hz)+ o(hy)) x (vzk(B) + E|w(X)-1[-2b, < Ty (Y, X;0) < o])

+ op(n_m_A) YA>0

10



Let 1y denote the smallest 1 such that 2b, < b, where b is as described in Restriction I4. By the

conditions described there, we have

sup E[w(X)-1[-2b, < T (Y, X;0) <0 <24-b, ¥ n>ny.
PISC]

Combining this with the result in (11),

— 1 M
Zl;g 6](,”(6) = (2bn + OP (m) + O(hn )

1 M 1 ~1/2-A
:(2bn+op(m)+0(hn ))anX(OP(m)+O(1))+OP(n 172 )VA>O

= (219” + op(nml—_hz) +O()") | x by x (0p(1) + O(1)) + 0, (n™/>72) ¥ A> 0
n

=0, (b7)+ Op(nl/lz—rfh,i) + O (R by ) + 0, (n /> 2) ¥ A> 0

=0, (n—l/Z—e)’

where € > 0 is as described in Restriction 12. Therefore, under Restrictions 11-14,

sup|Ry (0) — Ry (0)| = 0,(n™/*¢) fork=1,...,K.
0eO

From here,
K

sup |E(6) - E(6)| < Z[Sup |§k (9) — Ek (9)| = Op(nfl/zfe)’
6O =7 Lo®

where € > 0 is as described in Restriction 12. This proves Lemma 2 in the paper. m

2.4 Using Lemma 2 to setup the result in Theorem 3

For wy = (y1,x1) and w; = (5, x), let
v (wo, wy;0,h) = w(xy) - w(x2) - my (v2,91,x150) - K(x1 —x2;h) - 1[ Ty (wy,0) > 0]
From Lemma 2,

v (we, w0, h) = w(x;) - w(xe) - my (Yo, vi, x5 0) - K (x; = x¢3h) - 1 [Ty (w;, 6) > 0]. (12)

11



From Lemma 2,

=

(13)
K 1 n o on
= Z[HQ Wz vk<w€'wi;61hn)]+5n( );
k=1 "i=1 (=1
where sup |£,(0)| = op(n‘l/z‘e). Let
0cO
Vp(wy,wo;0,h) = vi (Wi, wy; 0, h) + vk (wr, wy;0, h) (14)
Consider the U-process Uy, of order-2 described as
.
Uk,n(e) = (2) Za}((wbw‘j;el hn) (15)
i<j
where ) denotes the sum over all () combinations (i, j) out of n. Then,
i<j
K n
— n—1 1 1 1
O =" )57 )|kt 5 [; ;vk(wi,wi;e,hn>”+ £(0)
Note that
1 n
- ’ ) 6; h S @? N K
selel(g n ;vk(wl Wi n) w
Therefore,
1 1 v @*-K
——xsup |— ) vk(w;,w;;0,h,)| < =o(n71/%7€),
”hfl 6618) n; k( ir Wi n) nhfl ( )
where € > 0 is as described in Restriction 12. Thus,
_ n-1y 1 w
R(6) = ( - )x oA ;Uk,n(e) £9,(0), where sup [9,(0) =0, (172¢)  (16)

Next we study the asymptotic properties of the U-processes Uy ,,(-).

12



2.4.1 Asymptotic properties of the U-process Uy ,(-)

Note that vy (w,, wy; 0, h) belongs to the class of functions
Ve ={f WxW > R: f(w,w;) = v, (wy, wy;0,h) for some 6 € ® and h > 0.}.

As we pointed out in Section this class of functions is Euclidean for the constant envelope
@? - K. Therefore 7 (w;, wy; 0, h) belongs in a Euclidean class of functions with envelope 2 ‘@°-K.
Consider the U-process Uy ,(-) defined in . Let

pi(0,h) = E[v (W, Wo30,h)],
k(w3 0,h) = E [v(w, W;6,h)] - p (6, 1),
Fﬁ((wllwﬁefh) = 57k(w1;w2}9'h) - Vk(elh) _Zc(wl;exh) —ﬁ(wzielh)-

The Hoeffding decomposition (projection) of Uy ,(0) is given by (see Serfling (1980, pages 177-
178) or Sherman (1994, equations (6)-(7))),

2w _ n\ " e
Unl0) = (O.1)+ 2 Y Gilwis, )+ () Y Tatwsru 0, (17)
i1 i<

The last term is a degenerate U-process of order 2. By the Euclidean property of the class of
functions 7, Sherman (1994, Corollary 4) yields

-1
n - 1
(2) Zrk(wi,wj;e,h)‘:()p(;) = sup

i<j PG

sup

0c®
h>0

=0u(z)

-1
n z —
(2) rk(wile;elhn)

i<j

As defined in Restriction 15, let

Aok(v,%,0) = E[mi(Y,9,%,0)- 1 [T (Y, X;60) > 0] |X =x],
&(©,%:0) = w(x) - (Te(w; 0)), + W(x)* - Ak (9, %;0) - fx (x).

Under Restrictions I1, I2 and 15, an M*"-order approximation and dominated convergence argu-
ments yieldF_-I

E[O(w, W30, h,)] = i x (8k(9,%:0) + B, (,6)), where sup |Bf (w,0)|=0(h)).  (18)

weWw
0cO

INotice the usefulness of having the term w(x1) - w(xy) in vg(wy, w1;0,h), as it means that both wy and wy are
constrained to belong to W*.

13



From here, a dominated convergence argument yields,

(0, ) = E (T(Wa, Wi 0,1)] = I (E[g4(Y, X50)]+ B ,(6)) - where sup |B{,(0)] = Ol)
Oe

Let
Ri(0) = E[w(X) - (T(Y, X;0)),].
Note that R(6) = Z,Ile Ry (0). By iterated expectations, we have E[gi(Y,X;0)] = 2- Ri(0), and the

result above yields

B0, 1,) = E (B(Wi, Wo30,,)] = I, < (2-R(6) + B ,(0)) - where - sup [, (6)] = O(),
S

Let
Wk (95, %50) = ge(vi, %:50) — E[gr(Y, X;0)].

Plugging the previous results back into the Hoeffding decomposition ((17), we obtain
z 2y k
Ukn(0) = x| E[gi(Y, X30)1+ = ) (9, %i50) + Bion(0) | + 61u(6)
i=1

2 n
:hix[Z-Rk(6)+EZgbﬁ(yi,xi;GHBk,n(Q) +Crn(6), where (19)
i=1

sup|Be.,(6)| = O(hM),  suplcy.(6)] = op(l).
0e® 0cO n

2.5 Proof of Theorem 3

Define

[\/]7:
Mw

Yr(vi,x;;0) = K (i, x;;0 (gk Vi, x;;0)—E [gk(Y,X;G)])-

k:1 k:l

Note that R(6) = ¥.i_, Rx(6). From (19),

K n
1 1
5 E Ukn(0) =R(0) + E ¥r(9irXi30) +04(0), where
"ok=1 i=1

1 — —
sop 00 =0} + 0y (5 =0y (7).

14



where € > 0 is described in Restriction 12. Plugging this back into equation (16)),

K
ﬁ(e):(”_l)x ! Y Upu(0)+9,(0), where sup [9,(6)]= o, (n">)

2-hy = 0cO
= X
n

- R<9>+%;w(yi,xi;e)wn(e)+«9n<9>— " x

n

BN

R<e>+%;w(%,xi;ewn(e)l +3,(0)

R<9>+%;¢Rmx,~;9>+pn<9>

where sup |pn(9)+8n(6)| =0, (n‘l/z‘e), with € > 0 is described in Restriction I2. Next, by Sherman
0O
(1994, Lemma 5 and Corollary 4 ), the Euclidean properties of the classes of functions involved

yield the result

-0 (1’1_1/2)

%ZIPR(yilxi;G)

i=1

sup

P
0cO®

From here, since sup |R(0)| = O(1), we have
6cO

1
sup |- X

n—1/2—€).
0O

~ o,

1 n
R(0) + - ;¢R(?ixxi$9) + Pn(Q)I

Combining all our results, we have

—

n
R(0)=R(0)+ L ZEDR (vi,xi;0) +€,(0), where sup |e,(0)| =0, (n—l/Z—e),
" i=1 0e®

where € > 0 is described in Restriction I2. This is the statement of Theorem 3. m

15



3 Theorems 4 and 5

3.1 Asymptotic properties of our variance-covariance estimators

The paper outlined all the arguments leading to the statements in Theorems 4 and 5. A key result

we invoked there was the following,
-1 _ py-1 -1/2
IF5" = Hg' | = 0, (n=72),

= 1
22 IFn@)=>s0 =0 ) 2

1
sup |05(0)—054(0)] =0 (—)
Geg| R R ' P nl/z'hfz

We present a step-by-step proof of the result in next. As before, we will refer to restrictions
stated in the paper. We denoted
%07, W)] _
PR 0
and " —~
g, Ly PO
n £ 861891

We will show first that, under the conditions of Theorem 3 and Restriction 16, we have

As we did in the paper, define

JE(t,tp;A _ IF(t,t2; A _
1t 123 4) = TR H(E, 03 0)7], §olty, 3 0) = TUEE - Hty, 1)),

OF(t1,t5;A _
¢3(t1;fz;/\)5%~H(t1,t2;/\) 1

As in Restriction 16, for (¢,m) € {1,2} x {1, 2}, define the following real-valued functions,

0Ps(ty, tr; A OF(tq,ty; A
SVt 123 ) = % (1[p = (0,0)] = F(t1, 12 1)) = e(t1, tﬂ)%;
bp(ty, tr: A OF(tq,ty; A
7/15(}}’ tl,tQ;/\) = % . (]_[}) = (0,0)] —F(t],tzl/\)) _¢€(t1’t2;/\)($—/\2)r
dPs(ty, 19 A OF(ty,ty; A
Y(9, b1 t) = % (1l = (0,0)] = F(t1, 123 - qba(tl,tz;m%,
We have
E[82€(91,W)] _ (A11(91) A12(91)]
060,060, A12(01) A(6)

16



where

r 2 2
A6 =E|Y ) ZeZ;,80m(Y, 218, ZoP; A)]
| (=1 m=1
r 2
Aqp(01) = ZZZUZ lelﬁrzzﬁi/\)],
| =1
Ap(61)=E [T(Y,Zlfzzzﬁ; /\)].
And, _ _
Za (0, w;) _(A11(91) A12(91)]
96,00 A12(0,) A (0y)
where

A11 01) = Z[Zzzezzmzbem %:leﬁ Zzzﬁ /\)]

{=1m
n

A,(0)) = %Z

Ay (6)) = ZT Vi, 21iB 22i B3 ).

2
Z%W(%Zuﬁzziﬁi A)];

(=1

Take observation i € {1,...,n}. A first-order approximation yields

2 —_ _ -

—_ =~ ~ — 955’ Wi z1iBip22iBisAi) (B =

O¢,m(Vir21iBr22i B3 A) = O¢,m(Vir 21 P52 5 A7) + Z i gtﬁl 2ifii s "Zjj (ﬁ )
j

j=1

9o0m(vi211Byy22iBi )~ .
+ o1 (A=2),
where 04; = (E,L) belongs in the line segment connecting 51 and 67]. From Theorem 2, we have

that, wp— 1, our ML estimator 0, belongs in the neighborhood N which contains 6] and whose
properties are described in Restriction I6. Therefore 6;; also belongs in A for all i. Therefore,

from Theorem 2 and Restriction 16, wp— 1, we have

2
<D(w;)- Z”Zji :

=1

—

(21)

St 21iBr 22i B A) = S0 m (Vi 211 B 22i B3 1Y)

17



for (€,m) € {1,2} x {1, 2}. And from here we obtain,
n 2 2 2 _
”Ell(é\l)_All <= Z[ZZ”Zﬁ“‘”Zmi”‘[Z”Zji”'D(wi)'||E—F||+D(wi)‘I:\\—/\*|]]
=(—Z1( Xanﬁn-nzmiu-||zji||-D<wi>))~M

=1 ¢=1m=1 j=1

Op(n—l/Z)
(1) by the conditions in Restriction 16
n 2
( Z(Z Izl 1zmill- D(w )) A= 1]
i=1 ‘¢=1m= —_—
Op(n—l/Z)

O,(1) by the conditions in Restriction 16

= 0,(n™'?).

Theorem 2 and Restriction 16 also imply that the same inequality in holds for 17,, and wp— 1,

we have
’775 Vi leﬁ 221[3 /\) 175(3)1 le/—’) 221/3 /\ ‘ [Z”Zﬂ” ”,E F||+|/\ A |] (21')

for £ € {1, 2}. Therefore, wp— 1,

n

14260 - A@)] <| - ) ) ) lleail- lzjill - D(wi) -||/3—/3*||+[; ) _llzeill- Dlw;) |- [T x|
i=1 ¢=1 j=1 — i=1 =1 ~—
O, (n7172) 0,(n"12)
0, (1) by Restriction 16 Op(1) by Restriction 16
-1/2
= 0,(n""?).

Finally, the inequality in also holds for Y by Theorem 2 and Restriction 16, and wp— 1,

Y (91,218, 22i B A) = Y (93,21, B 20i B A |

anﬂn -7 - A|] o)

18



and from here, wp— 1 we have

2 n
- 1 v =~ 1 —~
|A22(91 —Ax(0 _[E ZD ||z]l||]||ﬁ_ [; ZD(WZ) .|/\—/\
i=1 ]:1 — i=1 —
O, (n7172) —  0,(n"17?)
Op(l) by Restriction 16 Op(l) by Restriction 16
— Op(n—l/Z)

Next, the finite-variance conditions described in Restriction 16, and a Central Limit Theorem yield

| 411(67) ~ A11(67)]| = Op(n"72),
|A12(07) - A12(65)|| = Op(n™'2),
|A22(67) = App(67)| = Op(nV2).

From here, the invertibility condition in Restriction 16(i) finally yields
|Ho! - Hg'|| = 0,(n™12) (22)

Let us continue analyzing the asymptotic properties of the remaining elements of our regular-
ized variance matrix f(@) In our construction we denoted 0'1%(9) =E [sz(W;H)Z] and Xy r(0) =
E[Yp(W)pr(W;0)]. As a reminder (from Theorem 3), the influence function iy is given by

K
yl’xll E Z(gk wll _E [gk(wie)])i
k=1

where
& (w;;0) = w(x;) - (Te(w;; 0)), + w(x;)? - Agge(w;; 0) - f (x

In our construction, we proposed to use as estimators,

i

SR
)
S
<
=
kS
2

. 1 v — ~
2(0)=—) Prw;;0)’, and Tyg(6)
i=1

Where K

—_ — . 200, w; -~

¢M(wz) = I—I()1 : (a—éll)f and l;bR(wz! = ; gk wz) E[gk W 6 ])
with

_ 1 v Vk(wy,wj;0,h,) ~ n\ " Tk(wi,wj;0,h,)
gk(yl;xlle)_;;’ hft y and E[gk(w,e)]—(z) ;T’

19



where vy (wq,w,; 0, h) is as described in equation (above). Notice that E[gk(W; 0)] = hl_f, Uy, (0),
where Uy ,, is the U-process described in equation whose asymptotic properties were studied
in Section Under the conditions of Theorem 3, the empirical process arguments used in

Section [2.2]yield

1y i
sup —Z(vk(w,wj;e,hn)—E[vk(w, W;G,hn)]) =0,(n 172y
|

From here we obtain,

_ 1 !
gk(y,x;e):E[—ka(w,w;e,hn)]+5,§(w,9), where sup|&§(w,0)] =0, 1/2—)
h3, wew nt’=-hy
0c®

Under Restrictions I1, 12 and 15, we have (see equation (18)),

1
E[—irk(w,w;e,hn)]: %(9,%:60) + By(w;0), where sup |B,(w;6)] = O(hM).

z
h7 weWw
0e®

Since n'/2 . hM — 0 by Restriction 12, these results combined yield,

— 1
(0, %0) = gk (v,x;,0) + (5 (w,0), where sup |C§(w,8)| =0, (1/2—}12)
4 e

Next, equation (19) states that,

E[g(Y,X;0)] = E[g(Y,X;0)] + 07(0), where sup |07(0)| = Oy (n™172).
€

Finally, the last two results combined for k = 1,...,K yield the following asymptotic property for

our estimated influence function ¢,

— 1
su ,x;0) — x50 =0, ——— . (23)
sup [Pr(y,60) = Pr(y,%:0) p(nm'hﬁ )
CEC]
Next, note by inspection that
sup |1[)R(y,x;9)| < 4K’ f = g (24)
wew

0cO
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where f and K are described in Restrictions I1 and 12 respectively and @ is the upper bound for
the trimming function w(-). We have
1y 2 v
T1(0) = 0(0)= — ) (Yr(yix::0)° = 0R(0))+ = ) Pr(3ixi;0) - (Pr(wi; 0) ~ Yr(yi, xis0))

n:s
i=1 =1

1w — 2
= ;(w(w,-;e) ~ YR, %;;0))
i=
Under the conditions of Theorem 3, the empirical process arguments used in Section can be

used to show that
n

Y )
n

=1

sup =0,(n"1?).

p
CISC)

From equations (23) and (24), we obtain

1
sup ;GDR Vi, X;; 0 lsz(wz' )_lPR(yi:xi}Q)) =Op(m);
su li(a (w;; 0) — Pr( 'x"Q))z =0 ( ! )
eeg ni:1 R\Wi, R\Yir Xi; P Yl'h%z .

Together, these results yield,

R (6 = 25
sup [53(0) - 03(0) = O o\ i (25)

Next, we have
Tmr(0) - Epr(0) =

% Z(EDM(wi)HDR(%Xi}@) - Ymr(0))+ % Z¢M(wi)($R(wi;9) — Pr(9i,%36))
i i=1

1 _ -
= Z P (w (wi)Jpr(9irxi50)+ ~ ) (Pa(ws) = P (w)) ) Pr(wis 0) ~ Pr(3i, xi50))
i=1
Under the conditions of Theorem 3, the empirical process arguments used in Section can be

used to show that

n

% Z(‘PM(wi)’l)R(})i’xii 0)- EMR(G))

i=1

-0 (n—l/Z)'

sup

p
0c®
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Next, from and the conditions of Theorem 3,

n

= itw)

i=1

< sup IIPR (v, x; )—IPR(VIXJQ)'
wey

1 1
= OP(—nl/Z.hfl)xop(l) = Op(—n1/2-hfl)

sup
0O

% ZwM(wi)(lj’\R(wi;e) ~ PR, %30)
P

For the next term, note from (24) that

n

L (st~ e (wi) etz 5:0)

0o |1 5 | <Fas LI ]
We analyze the term - Z 1||1/)M l[)M(wi)” next. Note that

—_ — 1\ 900, w)  —~_, [00(0;,w;) IO, w;)
—(F-!'+ g~ 1 Wi 1 L Wi 1
‘l’M(wi)—‘l’M(wz‘)—( o *tHp ) 70, +Hy ( 06, 26, )

Therefore,
2¢(07, w;)
00,

_ZHIJDM wz lpr wz || <||HO _H01||X Z
i=1
+IH | Z

85(91,11/,) 8g(ealflu/l)
— 0, d0,

From equation (22), Theorem 3 and the conditions in Restriction 16,

2L(67, w;)

Rl Py

H = 0,(n"2)x 0,(1) = O, (n™*?).

90(0,,w;) _ 94(6;,w;)

90, 90,

n

Next we analyze the term %Zizl . Note that

9(01,w) _((211-#1(21B,22iB3 V) + 221 - §2(213B,226B5 V) - (LUyi = (0,0)] = F(z1iB, 2205 1))
90, $3(z21iB,22iF3 A) - (1[3i = (0,0)] = F(21:8,22i3 1))

A first-order approximation yields,

9B, w;) _ 9O, wi) _
20, 20, |

(E2 s ztzpstmtvi 21621 X)) (B

F—F )+ (i zeinetyinniBroza i 1)) (- )
(Zgzl Wz(yileiﬁpzziﬁi;ii)zéi)(ﬁ B

) (yirzliﬁi'ZZi/ji;/\i)(A - /\*)
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where 6;; = (ﬁl,_ ) belongs in the line segment connecting 0, and 0. From Theorem 2, wp—

1, 0; belongs in the neighborhood N which contains 0] and whose properties are described in
Restriction 16. Therefore 0; also belongs in N for all i. Therefore, the conditions in Restriction

16 hold wp— 1 and we have,
1 n 2 2 _ - —
(EZZZI||z6i||~||zmi||~|6g,m<yi,m/3i,zﬂ/si;A»l]'| -F

1 2 2
s[; Y lzeill il DGw) |- -
i=1 (=1 m=1

D —
O,(1) by Restriction 16

( —1/2)

’

0,(n12)

1 n 2 — - . 1 n 2 B
(;_ anﬁn-Ine<yi,z1iﬂi,z2i/s,~;Ai>|]- - s(;_ Y llzeill- Dw = 0p(n™2),
i=1 (=1 i=1 (=1 —
O(n*l/z)
Op(1) by Restriction 16
1 n, 2 = = — = — 1 L = —
(;_ angin-Iw(yi,z“/si,zziﬂml)-| -F s[;Zanﬁu-D(wi) [B-F| = 0pt2),
i=1 (=1 i=1 (=1 —_———
Op(n—l/Z)
Op(1) by Restriction 16
1 n 2 — - . . 1 n 2 s
W Z|T(Vilzlil3i;22iﬁi})\i)|' A= o ZD(wz) = Op( )
i=1 (=1 i=1 ¢=1 —
Op(n—l/Z)
Op(1) by Restriction 16
Combined with the fact that ||H 1” = ), these results yield,
(01, w;) (67, w;) _
Hl JWi) Wil _ /2y
7> le - | <ot
And therefore,
1 n
; ;Ilwmwn ~puw)] <
1=
— a0(07,w;) —~ (01, w;) 9(0;,w;)
1 1 -1 LW 1 Wi -1/2
IF5" - Hg ! =~ _Zl —5o—||*IHo ||><—i_1 20, a0, ||
:Op(n’l/z) :Op(n’l/z)
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And,

sup
0cO

(7 — 1y
%;(wM(wi) ~ ) ot x50 <P, ) Pt = (i = Oy (71

Finally, combining our previous results, we have

n

L (Pm(wi) = Prr(wy))(Pr(w;50) - Pr(2i, x:50))
n

i=1

sup
0cO

— 1 v — 1 1
< %Le:gpv |¢R(%X}9)—¢R(}”x59)| x ;”'PM(UG)—IPM(W;‘)” = Op(m) X Op(m)

1
_Op(whi)'

Plugging these results back into (26), we obtain

Pua®)=Zan0 073 )+ 0| gz | 0 )+l
Zgg ” 2(6) MR(Q)” Op(nl/Z)+Op(n1/2.hi)+op(n1/z)+ P\n-hj

1
- Op(nl/Z.hZ)
Together, equations , and prove the result in (20). m

3.2 Some intermediate steps leading to Theorems 4 and 5

Next we include for clarity some intermediate steps that lead to the asymptotic representation of

—

our statistic Q(0) described in the paper.

3.2.1 A useful decomposition of the variance-covariance matrix X(0) over © \ @{,

As stated in the paper, let M be an invertible matrix satisfying Hal = MM’ (and therefore Hy =
(M’)"'M™1). Let opr(0) be as defined in Restriction I7 and for all 6 € © \@)(I) define

M 0 ~ M1 0
C(0) = ) = CO)"'= [_EMR«))’HO 1 ]
opmr(0) oMmr(0)

“\Zur(0) (M) or(0)
and note that X(6) = C(0)C(6) and 2(9)-1=(C(9)-1)'C(9)—1.

(28)
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As defined in the paper, let

_ (W) M1y (W) (W) _( BaW)
W;0)=C 9) 1 ( ] [ MR oM +PRVS ] [ MR ] [ " ]
PO i) | it |7 | st |5, w0

n

Tn(e) = T
i=1

P (w;;0)

Note that . . .
E[pwW;0)] =0, E[pW;0)p(W;0)| =11, Var(T,(0) =1,

1 yn 3 Y Lymn -
Tn(G)’Tn(G) \sz 1¢M(w) 2_1(9) ‘le 1¢M(w1) '
\/’Z 1¢R(w1!9) \/*Z 1¢R(w1)6)
As stated in the paper, under the results in Theorems 2 and 3, and Restriction 17, we then have,
Q(0) = npu(6) (£(0)™" +8,(0)) u(0) + T,(0) T, (0) + 2 (0) V 0 € ©\ O},
— QO0)=T,(0)T,(0)+R(O)V 0@,

5,9(9)| =0p(1) and sup [9,(0)] = 0,(1) (recall that 0 co \@é with u(0) = 0 for
0€0\0)}

where sup
0c0\0)}

alleec®).

3.2.2 Using the decomposition of the variance-covariance matrix £(0) under Restriction 17’

As in the paper, define

Oiir,(0) = max{og(0), k) = Enir(0) HoZar(0) = 0jy(0) + (max{07(6), x) - 0(0)),

and
_ HoXmr(0)Emr(0)Hy  _ HoXumr(0)
= HOl EMR(G) -1 — HO * UI%/IR 1\'(6) 0’1%4[{ K(g)
Eu(0)= , 2 = L(0) = Zur(0)'Hy 1
Emr(0) max{oR(G) , K} o2 (0) 219
MR,k MR,k

Note from Restriction 17’ that G&R(G) > 013(6) (1-d)VOe® \G)(I). Take any 6 € © \ @(I). If
0(0) > «, we have ojp (0) = 03y(0) > 03(0) - (1-d) > x- (1 -d). And if 03(6) < x, we have
GI%/IR,K(G) =0 p(0)+x—03(0) > 02(0)-(1-d)+Kx—03(0) =k —d-0p(0)>Kk—d-x =x-(1-d). Thus,

Restriction 17’ implies
Orc(0)2x-(1-d)V 0 €O\ O, (30)
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Next note from the result in that

wp@mxﬁw)q—mukﬁmmﬂgwpﬁﬁm—ﬁwﬂ:%uy
0O 0O

And from here, (20) once again yields

sup ’ max{oﬁ(@) K}—EMR(G)’ﬁOfMR(Q))—GZ\ZAR’K(G)| =0,(1).

0O

From here, the bound in yields

sup
0O

5 1| =0,(1),

UMR,K(G)

[max{a,%(e), ) = Zar(0) HoZyr(6) ] )

and therefore, sup ||’)i(9)’1 —EK(B)’IH = 0p(1). Next let C(0) be the matrix described in the
0€0\0]

factorization of X(0) given in (28) and, as we defined in (29), let p(W;6) = ( PuW)

]. We have
Pur(W;0)

1\/%2;:1 P (wj) ] 2;1(6)[ 1\%2}1 m (wi) ]
7 Li=1 Pr(wi30) 7 Li=1 Pr(wi30)

_ [ \/%Z?:l Yy (wi) /

1 ymn .
LY (w -9>] (C(G)_l)'C<9>’>3;1<9>c<e>c<9>_1[ 3L ) ]
Vi izl i

LY pr (wis0)

1 & _ "1 0
=[W;¢<wi,6)] [0 (o2 )][(Zzp w;s0 ]
As stated in the paper, under the results in Theorems 2 and 3, and Restriction I7°, we then have,
— , 4 . 1 & _ "(1 0 )
Q(0) = npu(0) (E(0)" + 95(0)) u(0) + %;zp(wi,e) . (134 ) \rZ'P w;;0) [+ &24(6)
Y 0ec®\0],and
Q) [1 X7 6))’[1 0 ][1 X e>] £2:(0)
== Wi; or(0) — wi; +&én"
\/Ez:l 0 (OZ\Z/IR,K(Q)) \/ﬁizl
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Qx

VO eO®\O, where sup |&n (6)| =o0p(1)and sup [9/(0)| = 0,(1). Alternatively, we can per-

0c0\0)} 0c0\0)}
form a decomposition directly on ¥,.(0)7!. Let
Mt 0
D(0) = _ Zmr(0)'Hg 1
MR« (0) oMR,«(0)

and note that ¥,.(0)~! = D,(8)'D,(0) (note that this decomposition immediately shows that ¥, (6)!
is positive-definite). We have

\/L,; o1 ¥ (wy) ,2 o) IZ =1 M (wy)
\fZ 1¢R(w119) i IZ 1I,DR(U}1,9)

= i wi , ;1 wi

_ ?/gznl_ll:bM(.) D.(6)D.(6) (Z 1 Pm (wy)
7 Li=1 Pr(wi30) \le 1 YR (w;50)

Ly M ) T My (wi)

T v [ Zmr(0) Hotu (wi)+ipr(w;;0) 1y [ =Zmr(0)Hopm (wi)+Pp(wi;0)
Vi Z’i_l ( MR (0) ) Vi 21:1 ( oMR,«(0) )
Lys 0 (! ° y 0

- W;’lp(wi! ) 0 (:MR( ) TZ wll )

this is the same result we showed above. m
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