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Abstract

This supplement includes all the results from the Monte Carlo experiments as well as ad-
ditional results from the empirical application of a multiple entry game between Lowe’s and
Home Depot.

1 Monte Carlo experiments

This section is motivated by two goals. First, analyzing the properties of our econometric approach

and second, studying the consequences of incorrectly estimating a true ordered-response game as

a binary-choice game. We find that our methodology performs well in our designs, while a binary-

choice misspecification carries severe bias, both for the strategic-interaction parameters and for

the non-strategic payoff payoff parameters.

1.1 Experiment designs

We focus on designs that resemble the features of our empirical application, where we model mul-

tiple entry decisions between competitors Lowe’s and Home Depot. To this end, we use the same
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number of observable payoff shifters and the same parametrization as our empirical application.

In our empirical application, our shifters are: population (Xpop), total payroll per capita (Xpay),

land area (Xarea), and distance (Xdistj ) to the nearest distribution center of player j for j = {1,2}. X
includes 5 covariates, 3 common to each player (Xpop, Xpay , Xarea), as well as the player-specific

distances to their own distribution centers (Xdistj ). All these covariates are, by nature, nonnega-

tive. We generated them here as jointly-distributed log-Normal random variables with mean and

variance-covariance matrix matching the sample mean and the sample variance-covariance ma-

trix observed in the data of our empirical application. We employ the parametric specification

described in the paper. We have,

πj
(
Y ,Xj ,Uj

)
= Yj ×

(
δ+Xpop · βpop +Xpay · βpay +Xarea · βarea +Xdistj · βdist −∆jY−j − ηYj +Uj

)
,

with intercept and slope coefficients: δ = 2, βpop = 2, βpay = 0.25, βarea = 0.25 and βdist = −0.5. The

strategic interaction parameters were fixed at ∆1 = 1 and ∆2 = 2. All these parameter values were

chosen because they were interior points in the estimated CS of our empirical application.

The strategy space was capped at M1 = M2 = 100, which was sufficiently large to be non-

binding in all of our simulations. The unobserved payoff shifters U1 and U2 were logistically

distributed with a joint CDF given by the FGM copula described in the paper. In our designs,

we considered two values for the copula coefficient, λ = {0.5,−0.5}, with resulting correlation

coefficients between U1 and U2 of 0.153 and −0.153, respectively. Denote

Wj = Xpop · βpop +Xpay · βpay +Xarea · βarea +Xdistj · βdist

as the non-strategic, observable payoff “index” for player j. The indices W1 and W2 are highly

positively correlated, with ρ(W1,W2) = 0.840. Let

W = E [Xpop] · βpop +E [Xpay] · βpay +E [Xarea] · βarea +
1
2

(
E
[
Xdist1

]
+E

[
Xdist2

])
· βdist (1)

W is the average of the non-strategic component of payoff shifters (without the intercept) between

both players. Its true value is W = 5.463 in our designs. We will construct CIs for W as a way to

evaluate our method.

The value of the concavity coefficient η has a significant effect on the properties of the equi-

librium outcomes: small values of η imply “flatter” payoff functions, favoring the existence of

multiple equilibria, and a richer range of equilibrium outcomes. The opposite is true for large

values of η, which strengthen the concave nature of payoffs with respect to players’ own actions.

We used multiple values of η in our designs. We considered η = {0.25,0.75,1.5,4.5}. Thus, our

experiments included eight MC designs in total.

In each simulation we solved the game, looking for all PSNE, with an equilibrium selection
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rule that chose an equilibrium at random, assigning uniform probability to each of the existing

PSNE. The equilibrium selection device was independent from all other covariates in the game.

Table 5 summarizes the population properties of our MC designs. As we see there, smaller values

of η (the payoff concavity coefficient) lead to the prevalence of multiple equilibria, and to a richer

range of possible outcomes, while the opposite is true for larger values of η. Note that, in spite

of having a game of strategic substitutes, the correlation in outcomes Y1 and Y2 can range from

negative to positive depending on the degree of concavity of payoffs.

1.1.1 Comparison with a binary-choice game

One of our goals is to investigate the consequences of misspecifying a true ordinal game with three

or more actions as a binary-choice one. A binary game ignores the intensive-margin of strategic

interaction; that is, the fact that players care not only about whether other firms “enter” (the

extensive-margin choice), but the intensity with which they compete. With strategic substitutes,

a true binary-choice game with the same parameter values we use for our payoff functions would

produce probabilities of entry that are much larger than the ones produced by an ordinal game1.

Our experiments find that, in order to have a true binary choice game that replicates (approxi-

mately) the same probabilities of entry as our ordinal game, the binary choice game would have

to be produced by payoffs that are systematically lower than those of the ordinal game.

Table 6 illustrates this fact. As we show there, in order to have a true binary choice game that

produces entry probabilities within the range of those of our ordinal-game designs, the binary

choice game would have to be produced by payoff functions where W is significantly smaller

than W = 5.463 (the value in our designs). In fact, the binary game would have to be produced

by payoffs where W ≈ −1.8. Intuitively, we can anticipate that misspecifying a true ordered-

response game as a binary-choice one will produce estimates for W that are biased downwards.

This intuition will be confirmed by our results.

1.1.2 Observable features of a true ordered-response game

Currently, there do not seem to exist formal econometric tests that can help select between binary-

choice and ordinal games with complete-information. Even though a formal test is outside the

scope of our paper, it is still interesting to ask whether, in our designs, there exist features of the

data that can hint at the true game being ordinal rather than binary.

Let di ≡ 1[Yi , 0]. Table 7 presents P r(di = 1|Yj ,Wi =median(Wi)) for different values of Yj . As

we can see there, these probabilities are monotonically decreasing in Yj in all cases studied, and

this is true for both players. This pattern was preserved for other values of Wi , such as the 25th

1In a binary game, the incentive to enter depends only on whether the opponent entered. In an ordered game like
ours, the incentive to enter is different if the opponent opened one store versus more stores.
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and 75th quantiles. While this monotonic feature arises in our designs and we do not formalize

it as a general result, it can be nevertheless a potentially useful, auxiliary diagnostic tool. In the

empirical application we find evidence in our data that is consistent with this property.

1.2 Results

We apply our methodology to each of our designs and we compare them to the results derived

from misspecifying the game as being binary and estimating it by MLE (with the correct specifi-

cation for the joint distribution of U1 and U2) as in Bresnahan and Reiss (1991).

1.2.1 Results from a binary-game misspecification

As the discussion above anticipated, a binary-choice misspecification leads to a systematic down-
ward bias in players’ estimated payoffs. As Table 8 shows, this misspecification also produced

poor coverage probabilities for the strategic interaction parameters (∆1,∆2). Table 9 shows the ex-

tent to which estimated payoffs are downward-biased. It includes 95% CIs for the MLE estimates

of the index W . As we anticipated, these intervals are systematically shifted to the left of the true

value of W . The degree of bias is more pronounced for the designs where the underlying game

has more widespread multiple equilibria (i.e, when the concavity coefficient η is smaller).

1.2.2 Results from our method when the model is correctly specified as an ordered-response

game

The kernels and bandwidths employed are exactly as described in the empirical section of the pa-

per. The class of test-sets we use in our procedure are also exactly as described there. For brevity,

we refer the reader to that section for the details. Table 10 presents the coverage probability of

our CS for the subset of parameters (β,∆1,∆2). The results presented there correspond to pro-

jections, for that subset of parameters, of the overall CS for the entire parameter vector. Because

these are projections, the coverage probability is (for large enough sample sizes) larger than the

target nominal coverage probability of 95%. We find that, for very small sample sizes (n = 250),

our approach has under-coverage when the underlying game has many equilibria and a very rich

support of outcomes (η = 0.25). This problem was largely absent for all the other values of η used,

and it disappeared quickly for η = 0.25 for moderately large sample sizes (n ≥ 500). When the

sample size is n = 1000 (very close to the sample size of n = 954 in our empirical application),

our approach has very good coverage for these parameters across the board for all the designs we

employed.

Table 11 presents a 95% CI for W from our results, constructed once again as the projection

of our overall CS. We find that our approach performs well, generating CI’s that contain the true

value of W in all the designs and for all sample sizes analyzed; furthermore, the resulting CI’s
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are not too wide, and they consistently shrink as n increases. The sign of the correlation in the

unobserved shocks (the sign of λ) had no significant or systematic impact in the performance

of our method given the values analyzed for λ. The inferential results of our approach when the

game is correctly specified as ordinal stand in sharp contrast with the results from the misspecified

binary game.

2 Application to a Multiple Entry Game between Home Depot and

Lowe’s. Additional results excluded from the main paper

Here we present and discuss results from our empirical application that were excluded from the

main paper for the sake of brevity.

2.1 Profiled likelihood function and evidence of point-identification of θ1

Figure 1 in Section B depicts the profiled log-likelihood function for individual parameters in

θ1. The figure supports the point identification result for the subvector θ1 from the conditional

probability of the event Y = (0,0) provided in the paper.

2.2 Two-dimensional joint confidence sets for payoff parameters

Section B includes graphical depictions of pairwise 95% joint confidence sets (CS) for our payoff
parameters, which were obtained as projections from the 95% CS estimated for the entire param-

eter vector. As figures 2, 3 and 4 show, there is no evidence of “holes”. As is commonly the case

in these problems, the border of each CS is a bit more “fuzzy” than the interior. However, a quick

visual inspection shows that these CS are quite informative in many cases.

2.3 Comparison of the propensity of equilibrium selection across specific outcome
profiles

As we described in the main paper, our results can also be used for inference about economic

quantities of interest such as the propensity of equilibrium selection (i.e, the likelihood that the

underlying equilibrium selection mechanism will choose a particular profile y conditional on y

being a PSNE). As in the paper, we denote this propensity as PM (y). We conducted a comparison

for this propensity across specific outcomes; we excluded these results in the main paper for the

sake of brevity but we include them here. Figure 5 makes such comparisons by plotting P̂M (y;θ)

for each θ ∈ CS1−α. As Figure 3 shows, CS1−α includes parameter values θ for which ∆1 = 0. For

such values, the optimal decision of Lowes does not depend on the actions of Home Depot; by

strict concavity of payoffs, this eliminates the possibility of multiple equilibria for any such θ.
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Consequently for such parameter values the propensity to select equilibria is always equal to one

for any outcome. This explains why the upper bound for PM (y) in our CS is always 1 for any y.

However, as Figure 5 shows, our results yield nontrivial lower bounds for these propensi-

ties and they also allow us to make comparisons across different outcomes to try to understand

whether firms have a particular preference towards certain equilibrium outcomes. The compar-

isons in parts (A)-(C) of Figure 5 can be summarized as follows:

(A) Equilibria with at most one store by each firm: We compare the propensity of equilibrium se-

lection for the outcomes (0,1), (1,0) and (1,1). Our results yield two findings: (i) Comparing

equilibria where only one store is opened, there is a higher selection propensity for Lowe’s

to have the only store than for Home Depot. (ii) There is a greater selection propensity for

the equilibrium in which both firms operate one store than those where only one firm does.

(B) Equilibria with a monopolist opening multiple stores: We focus on the outcomes (0,2), (2,0),

(0,3) and (3,0). Our results indicate that the selection propensity is higher for the outcome

in which Lowe’s operates two stores than those where Home Depot operates two stores. Our

findings regarding selection propensities for (0,3) and (3,0) were less conclusive.

(C) Equilibria where both firms enter with the same number of stores: We focus on the outcomes

(1,1), (2,2) and (3,3). Although not illustrated in the figure, the propensity to select sym-

metric equilibria where both firms are present appeared to be comparably higher than

the propensity to select equilibria where there is only one firm in the market. For most

θ ∈ CS1−α, the outcome (1,1) was the most favored.

2.4 Counterfactual equilibrium selection rules

As we discussed in the main paper, our framework allows us to study the likelihood that other

outcomes could have co-existed as equilibria along with the outcomes actually observed in each

market in the data. With this information at hand we can do counterfactual analysis based on pre-

specified (by us) equilibrium selection mechanisms. Here we generate counterfactual outcomes

in each market based on four hypothetical equilibrium selection rules. We focus our analysis on

those markets where at least one firm entered and each firm opened at most 15 stores.2 This

accounts for approximately 70% of the entire sample.

(A) Selection rule favoring Lowe’s. For each market i, a counterfactual outcome yci ≡
(
yci1, yci2

)
was generated through the following steps:

2Recall again that observing (0,0) in a given market implies that no other counterfactual equilibrium was possible.
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1.− Find all the outcomes y for which

P E(y|Yi ,Xi) = max {PE(y|Yi ,Xi ,θ) : θ ∈ CS1−α}

was at least 95%. Here PE(y|Yi ,Xi ,θ) is as defined in the main test in Section 7.5.2. In words,

P E(y|Yi ,Xi) is the largest possible value consistent with θ in our CS for the probability that

y is an equilibrium simultaneously with Yi conditional on the observed outcome Yi and

market covariates Xi . If there are no such outcomes, then set yci = Yi . Otherwise proceed to

step 2.

2.− Choose the outcome y with the largest number of Lowe’s stores. If there are ties, choose the

one with the largest number of Home Depot stores.

(B) Selection rule favoring Home Depot. Same as (A), but switching the roles of Home Depot

and Lowe’s.

(C) Selection rule favoring entry by both firms and largest total number of stores. Here we

took the following steps to determine yci :

1.− As in (A) and (B), look for all the outcomes y for which P E(y|Yi ,Xi) ≥ 0.95. If no such y , Yi
exists, set yci = Yi . Do the same if no y was found where both firms enter. Otherwise proceed

to step 2.

2.− Among the outcomes y found in step 1, look for the one that maximizes the total number of

stores y1 + y2. If there are ties, then choose the one that minimizes |y1 − y2|. If more than one

such outcome exists, choose randomly among them using uniform probabilities.

(D) Selection rule favoring symmetry. Each yci was generated as follows:

1.− As in (A)-(C), look for all the outcomes y for which P E(y|Yi ,Xi) ≥ 0.95. If no such y , Yi
exists, set yci = Yi . Otherwise proceed to step 2.

2.− Among the outcomes y found in step 1, look for the one that minimizes |y1 − y2|. If more

than one such outcomes exist, choose randomly among them using uniform probabilities.

Examining Table 1, the pattern of market outcomes that results from counterfactual selection

rules (A), (B) and (C) is decisively different from the features of the observed outcomes in the data.

This is less so for selection rule (D). Table 1 also suggests that a selection mechanism which max-

imizes the total number of stores in each market (rule (C)) would produce a pattern of outcomes

heavily biased in favor of Lowe’s. Overall, among these counterfactual experiments, the one em-

ploying selection rule (D) favoring symmetry most closely matches the observed pattern of store

profiles in the data.
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Table 1: Results of counterfactual equilibrium selection experiments
Selection rules

Observed data† (A) (B) (C) (D)
Y1 Y2 yc1 yc2 yc1 yc2 yc1 yc2 yc1 yc2

Average 1.76 1.62 4.72 0.41 0.66 2.85 3.27 1.02 1.79 1.67
Median 1 1 1 0 0 1 1 1 1 1

75th percentile 2 1 5 0 1 3 2 1 2 1
90th percentile 4 4 13 1 1 7 10 1 4 4
95th percentile 6 7 20 1 1 15 18 2 8 7

Total 1,180 1,090 3,014 319 283 2,062 2,121 730 1,172 1,120
%(y1 > y2) 47% 64% 17% 44% 33%
%(y1 = y2) 23% 21% 28% 42% 48%

(†) The markets considered in this experiment where those where at least one firm entered and each firm

opened at most 15 stores. This included approx. 70% of the entire sample.

2.5 Counterfactual experiments: cooperative behavior

Our results allow us to analyze counterfactual alternatives to noncooperative behavior. Here, we

consider a simple cooperative counterfactual scenario in which the firms maximize the sum of

their payoff functions, assigning equal weight to each. This produces an outcome on the frontier

of the set of feasible firm payoffs. We refer to this counterfactual as “cooperative behavior.”

Fix a parameter value θ and focus on market i. Let (yi ,xi ,ui) denote the realizations of (Y ,X,U )

in that market. Let
(
ye1(xi ,ui ;θ), ye2(xi ,ui ;θ)

)
be an element of

arg max
(y1,y2)

[
π1

(
y1, y2,x1,i ,u1,i ;θ

)
+π2

(
y1, y2,x2,i ,u2,i ;θ

)]
,

so that
(
ye1(xi ,ui ;θ), ye2(xi ,ui ;θ)

)
denotes an action profile maximizing the sum of firm payoffs.

Recall from above that PU (Rθ(y,x);θ) denotes the probability that y is an equilibrium outcome

given X = x. We are interested in the following two functionals,

yej (yi ,xi ,θ) =
∫

u∈Rθ(yi ,xi )

yej (xi ,u;θ)f (u;λ)du

PU (Rθ(yi ,xi);θ)
for j = 1,2.

P e(yi ,xi ,θ) =
∫

u∈Rθ(yi ,xi )

1
[(
y1,i , y2,i

)
=

(
ye1 (xi ,u;θ) , ye2 (xi ,u;θ)

)]
f (u;λ)du

PU (Rθ(yi ,xi);θ)
.

Conditional on X = xi and conditional on yi being an equilibrium outcome, yej (yi ,xi ,θ) is the

expected cooperative choice for j and P e(yi ,xi ,θ) is the probability that the outcome observed in

the ith market is the cooperative outcome.
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We apply this analysis to the 308 (out of 954) markets that had a single store in our sample. We

use S1 to denote this collection of markets. Our goal is to compare observed market outcomes to

those that would be obtained under cooperative behavior, and in particular to determine whether

cooperation would lead to more stores in the markets in S1. Let
[
T 1, T 1

]
denote a 95% CI for the

total number of stores we would observe in the markets in S1 under a cooperative regime. Of

particular interest to us is how 308 (the actual number of stores observed in S1) compares to this

CI. Our results yielded
[
T 1, T 1

]
=

[
308, 445.10

]
. Note first that the number of stores observed in

these markets corresponds to the lower bound we would observe under cooperation. This is by

construction, since the number of stores in markets in S1 could only be lower if the outcome were

(0,0), which would necessarily produce lower total payoff (specifically zero) than the observed

single-entrant PSNE outcome, as otherwise it would not have been a PSNE. On the other hand, a

market in which equilibrium resulted in a single entrant could have resulted in more stores under

cooperation if the firm that did not enter would find it more profitable to operate multiple stores

absent the presence of the firm that actually entered. Our analysis reveals that we could have as

many as 45% more expected stores under this counterfactual scenario. Table 2 summarizes some

of the main findings.

Table 2: Summary of counterfactual results under cooperation.
• There exist at least 96 markets (out of 308) where Home Depot had more stores (and Lowe’s

had fewer stores) than the expected outcome under cooperation. The number of such markets
could be as large as 110.

• There existed parameter values in our confidence set for which every market in S1 had fewer
total stores than under cooperation.

• The expected number of total stores under cooperation would increase from 1 to at least 2 in as
many as 85 markets.

• There were 286 markets for which we could not reject that P e(yi ,xi) < 50%, 93 markets for
which we could not reject that P e(yi ,xi) < 10% and 47 markets for which we could not reject
that P e(yi ,xi) < 5%. There were 15 markets for which we could not reject that P e(yi ,xi) = 0.

Our results suggest that in this market segment noncooperative behavior has led to less entry

by Lowe’s and greater entry by Home Depot than would be optimal under the counterfactual

cooperative regime. These results are in line with some of our findings depicted in Figure 5

showing a higher propensity to select equilibria favoring Lowe’s in markets with at most one

store.
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2.6 Counterfactual experiment: Monopolistic behavior

Our results also allow us to analyze the implications of how each of these firms would behave if

their opponent left the industry. For firm j in the ith market let

ymj (xj,i ,uj,i ;θ) = arg max
yj

πj
((
yj ,0

)
,xj,i ,uj,i ;θ

)
denote the optimal choice if j is the monopolist in market i. Let

ymj (yi ,xi ,θ) =
∫

uj∈Rθ(yi ,xi )

ymj
(
xj,i ,uj ;θ

)
fj

(
uj

)
duj

PU (Rθ(yi ,xi);θ)

denote the expected monopolistic choice firm j would make in market i given that the observed

outcome there is a PSNE. We constructed a 95% confidence set for this expected choice for every

market in our sample. Our main finding is that there is a stark contrast in the monopolistic be-

havior of both firms. While Lowe’s would enter many markets where it has no current presence if

Home Depot dropped out of the industry, the opposite is not true: Home Depot would concentrate

its presence in relatively fewer markets, remaining out of multiple markets where it currently has

no presence. Lowe’s on the other hand would spread its presence over a larger geographic area

including smaller markets. Table 3 summarizes some of our main findings.

Table 3: Summary of counterfactual results under monopolistic behavior.
• There exist at least 119 markets where Lowe’s is currently absent where it would enter if it were

a monopolist.

• We could not reject that Home Depot would not enter any market where it is currently absent
if it were a monopolist.

• In our data there were 251 markets with no stores. If Lowe’s were a monopolist, this number
would increase to no more than 257. In contrast, if Home Depot were a monopolist this number
could grow to as many as 465 markets (almost half of the total markets in our data).

• There exist 3,483 stores in our data. If Lowe’s were a monopolist the expected number of stores
would be at least 2,130. If Home Depot were a monopolist, this number could fall as low as
1,860, constituting approximately a 50% drop).

In summary, a sizeable number of markets that are currently served by Lowe’s (as many as 214)

could go unserved by Home Depot if the latter were a monopolist. In contrast, Lowe’s would enter

almost every market where Home Depot has a presence, staying out of at most 6 such markets.
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While our model does not reveal the source of asymmetry in its predictions of monopolistic

behavior, these predictions align with differences in store branding. Fernando (2015) notes that

Home Depot’s stores are more geared toward professional customers, with an “industrial asthetic”

and some shelves that can only be reached by using forklifts. Lowe’s on the other hand is more

friendly to the typical nonprofessional home improvement customer, featuring, “more elaborate

floor displays or themed products such as patio sets or holiday decor items.” A similar view

of the stores’ distinguishing features is given by Mitchell (2015). It may then be plausible that

Lowe’s stores are more suited to certain rural markets with a relatively low density of construction

professionals, which Home Deport would not find profitable. Although not directly captured by

our model, this conjecture offers a possible explanation for the observed difference in monopolistic

behavior.

2.7 Estimation as a binary entry game

One of the goals of our Monte Carlo experiments was to study the consequences of misspecify-

ing a true ordinal game as a binary-choice one. Our designs, modeled to mimic the properties of

the data used in this empirical application showed two main consequences derived from a binary

choice misspecification: (i) a systematic downward bias in the estimates of non-strategic payoff
components, and (ii) poor coverage of confidence sets for strategic interaction coefficients. We

revisit this issue here by estimating our model as a binary-choice (entry) game under the assump-

tion of strategic substitutes. As we did in our Monte Carlo experiments, following Bresnahan and

Reiss (1991) we estimate the model by using MLE where the outcome variable is the number of

entrants (zero, one or two) in each market. As we did in our Monte Carlo experiments, we aggre-

gate the estimation results of non-strategic payoff components through their average. Parallel to

our definition of W in (1), let

Ŵ = X
pop · βpop +X

pay · βpay +X
area · βarea +

1
2

(
X
dist
1 +X

dist
2

)
· βdist (2)

The point estimate for Ŵ when we model the game as a binary-action entry game was 5.905,

with a 95% CI (taking the sample means of the payoff shifters as fixed) of [5.121, 6.688]. In con-

trast, a 95% CI for W using our approach3 was [5.975, 8.914], which excluded the binary choice

point-estimate, although it had some overlap with the CI in that case. Overall, the feature of es-

timated non-strategic payoff components “shifted to the left” under a binary choice specification

that we observed in our Monte Carlo experiments appears to be present in our empirical appli-

cation. Lastly, we compared the inferential results for the strategic coefficients. Misspecification

in our Monte Carlo experiments produced CS for (∆1,∆2) that undercovered (or excluded) the

3This was computed as the projection of our CS over W , taking the sample means of payoff shifters as fixed.
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true parameter values systematically. One way to evaluate this is to compare our CS with that

of the binary-choice MLE specification. In this case, a 95% CI (truncated at 0) was [0, 1.189] for

∆1, and [0, 0.274] for ∆2. In particular, the CI for ∆2 is entirely disjoint with the CI that follows

from our results. Figure 6 compares the joint (∆1,∆2) CS in both cases (truncated at zero since

we maintain strategic substitutes). The figure shows very clearly how the confidence sets are dis-

joint, which is entirely consistent with the pattern we observed in our Monte Carlo experiments

when an ordered-response game is misspecified as a binary one. Lastly, let di = 1[Yi ≥ 1] de-

note the decision of “entry”. In the Monte Carlo experiment designs we used, we found evidence

that P r
(
di = 1|Yj ,X

)
– the conditional probability of entry (as a binary choice) given the rival’s

intensity of entry Yj – is nonincreasing in Yj when the true underlying game is ordinal instead

of binary. While this does not constitute a proper specification test but rather a feature of our

designs (which were motivated by our empirical data), it is useful to revisit this here. Table 4

displays the observed probabilities conditional on POPULAT ION (market size) being between

the 45th and the 55th percentiles (i.e, around the median market size). The probabilities shown

there display the same decreasing monotonicity of firms’ conditional entry probabilities in their

rival’s competitive intensity produced by ordered-response games with the types of designs ana-

lyzed in Section 1.4 We reiterate that, while these features do not constitute in any way a formal

specification test, they are nevertheless consistent with the properties5 of true ordered-response

games with the types of designs analyzed in Section 1.

Table 4: Probability of entry (di = 1) conditional on the number of stores of the opponent (Yj ) for
markets whose size (population) was between the 45th and the 55th percentiles.

Player 1 (Lowe’s) Y2 = 1 Y2 = 2 Y2 = 3 Y2 ≥ 4
P r(d1 = 1|Y2) 46.5% 0.3% 0% 0%

Player 2 (Home Depot) Y1 = 1 Y1 = 2 Y1 = 3 Y1 ≥ 4
P r(d2 = 1|Y1) 32.2% 20.0% 1.2% 0%

4For other quantiles of POPULATION these probabilities immediately died off to zero.
5While there were quantiles of POPULATION for which the probabilities shown in 4 increased, in all cases they

were nonincreasing for Yj ≥ 3.
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A Monte Carlo Experiment Tables

Table 5: Summary statistics for our Monte Carlo designs†.
Positive correlation in Negative correlation in

unobserved payoff shocks: unobserved payoff shocks:
λ = 0.5 λ = −0.5

and and
ρ(U1,U2) = 0.153 ρ(U1,U2) = −0.153

Value of η Value of η
(concavity coefficient) (concavity coefficient)

0.25 0.75 1.50 4.50 0.25 0.75 1.50 4.50
ρ(Y1,Y2) −0.37 −0.23 0.63 0.74 −0.39 −0.26 0.58 0.72
P r(Y1 = 0,Y2 = 0) 4% 6% 10% 42% 4% 5% 9% 40%
P r(Y1 ≥ 2) 51% 61% 40% 7% 52% 61% 40% 7%
P r(Y2 ≥ 2) 45% 24% 24% 6% 44% 26% 25% 6%
P r(Y1 ≥ 4) 45% 35% 10% 1% 46% 36% 10% 1%
P r(Y2 ≥ 4) 41% 9% 4% 1% 41% 11% 4% 1%
F−1
Y1

(0.75) 9 5 2 1 9 5 2 1
F−1
Y2

(0.75) 9 1 1 1 9 2 2 1
F−1
Y1

(0.95) 24 11 5 2 24 11 5 2
F−1
Y2

(0.95) 24 4 3 2 24 5 3 2
P r(multiple eqbia) 0.69 0.21 0.17 0.03 0.67 0.20 0.16 0.03
(†) Probabilities computed from 5 million simulations.
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Table 6: Approximating the outcome probabilities of an ordered-response game with a binary-
choice game.

Positive correlation in Negative correlation in
unobserved payoff shocks: unobserved payoff shocks:

λ = 0.5 λ = −0.5
and and

ρ(U1,U2) = 0.153 ρ(U1,U2) = −0.153
Binary-
choice
game
with same
parame-
ters as the
ordered-
response
game
(W =
5.463)

Binary-
choice
game
with al-
ternative
slope co-
efficients
(W =
−1.835)

Range of
probabilities¶

for the
ordered
response
games
in our
Monte
Carlo
designs.

Binary-
choice
game
with same
parame-
ters as the
ordered-
response
game
(W =
5.463)

Binary-
choice
game
with al-
ternative
slope co-
efficients
(W =
−1.835)

Range of
probabilities¶

for the
ordered
response
games
in our
Monte
Carlo
designs.

Pr(duopoly) 67.2% 23.2% [2.9%, 37.8%] 66.1% 20.2% [2.8%, 35.5%]
Pr(monopoly) 29.1% 60.7% [33.5%, 92.7%] 30.5% 65.5% [36.3%, 93.3%]
Pr(no entrant) 3.7% 16.1% [4.4%, 42.1%] 3.4% 14.3% [3.9%, 40.3%]
(†) Probabilities computed from 5 million simulations.
(¶) Probability range taken over the corresponding range of values η ∈ {0.25,0.75,1.5,4.5} for the
concavity coefficient in our Monte Carlo designs.

Table 7: Relation between players’ extensive margin decision (binary choice “entry” decision) and
the opponent’s intensive margin choice in our designs

Player 1 η = 0.25 η = 0.75 η = 1.50 η = 4.50
P r(d1 = 1|Y2 = 1,W1 =median(W1)) 72.6% 82.3% 75.4% 7.1%
P r(d1 = 1|Y2 = 2,W1 =median(W1)) 61.3% 46.3% 32.6% 4.0%
P r(d1 = 1|Y2 = 3,W1 =median(W1)) 43.4% 16.6% 12.2% 0.3%
P r(d1 = 1|Y2 ≥ 4,W1 =median(W1)) 2.7% 3.0% 3.5% 0%

Player 2 η = 0.25 η = 0.75 η = 1.50 η = 4.50
P r(d2 = 1|Y1 = 1,W2 =median(W2)) 86.0% 73.6% 58.4% 5.8%
P r(d2 = 1|Y1 = 2,W2 =median(W2)) 46.4% 18.7% 13.0% 3.4%
P r(d2 = 1|Y1 = 3,W2 =median(W2)) 8.3% 1.4% 1.5% 0%
P r(d2 = 1|Y1 ≥ 4,W2 =median(W2)) 0.1% 0.1% 0.1% 0%
• Probabilities computed from 5 million simulations.
• Values shown correspond to λ = 0.5 (positive correlation in unobserved
payoff shocks). The same type of monotonic pattern was observed for λ = −0.5.
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Table 8: Results from Estimating the Misspecified Binary Choice Game.
Empirical coverage probability§ for the strategic-interaction coefficients (∆1,∆2)

of the MLE-based analytical CS with nominal Coverage Probability: 95%
Positive correlation in Negative correlation in

unobserved payoff shocks: unobserved payoff shocks:
λ = 0.5 λ = −0.5

and and
ρ(U1,U2) = 0.153 ρ(U1,U2) = −0.153

Value of η Value of η
Sample (concavity coefficient) (concavity coefficient)

size 0.25 0.75 1.50 4.50 0.25 0.75 1.50 4.50
250 1.3% 42.1% 90.9% 93.6% 1.7% 46.5% 91.3% 94.7%
500 0% 4.0% 65.6% 91.3% 0.3% 5.6% 80.3% 93.4%

1000 0% 0.3% 26.4% 88.9% 0% 0.7% 33.1% 91.5%
(§) Let ∆̂ ≡ (∆̂1, ∆̂2) denote the binary-game MLE estimated strategic-interaction coef-
ficients, and let ∆0 = (∆0

1,∆
0
2) denote their true values. Let Σ̂∆ denote the estimated

MLE variance-covariance matrix of ∆̂. The entries in the table correspond to the
observed frequency (over 500 Monte Carlo simulations) with which the test-statistic
J∆ = n · (∆̂−∆0)′Σ̂−1

∆
(∆̂−∆0) was below the χ2

2 95% critical value. This is the frequency
with which the true value ∆0 of the strategic-coefficients was included in the analytical,
MLE-based 95% CS in the (misspecified) binary-game.
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Table 10: Results from our methodology.
Empirical Coverage Probability for the slopes and strategic-interaction

coefficients† (β,∆1,∆2). Nominal Coverage Probability: 95%
Positive correlation in Negative correlation in

unobserved payoff shocks: unobserved payoff shocks:
λ = 0.5 λ = −0.5

and and
ρ(U1,U2) = 0.153 ρ(U1,U2) = −0.153

Value of η Value of η
Sample (concavity coefficient) (concavity coefficient)

size 0.25 0.75 1.50 4.50 0.25 0.75 1.50 4.50
250 25.0% 82.0% 95.9% 96.7% 31.3% 87.3% 97.0% 96.5%
500 84.4% 98.5% 97.3% 97.8% 89.4% 99.1% 97.7% 97.1%

1000 98.6% 99.1% 98.5% 98.9% 99.0% 99.7% 98.3% 97.8%
(†) Results correspond to the projection of our CS for the subvector of parameters
(β,∆1,∆1). Accordingly, the table reports the observed frequency (over 500 Monte Carlo
simulations) with which the true values of (β,∆1,∆1) were included in our estimated
95% CS for the entire parameter vector.

17



Ta
bl

e
11

:R
es

u
lt

s
fr

om
ou

r
m

et
ho

d
ol

og
y.

95
%

co
nfi

d
en

ce
in

te
rv

al
�

fo
r
W

(5
00

M
on

te
C

ar
lo

si
m

u
la

ti
on

s)
Tr

u
e

va
lu

e:
W

=
5.

46
3

Po
si

ti
ve

co
rr

el
at

io
n

in
N

eg
at

iv
e

co
rr

el
at

io
n

in
u

no
bs

er
ve

d
p

ay
off

sh
oc

ks
:

u
no

bs
er

ve
d

p
ay

off
sh

oc
ks

:
λ

=
0.

5
λ

=
−0
.5

an
d

an
d

ρ
(U

1
,U

2
)=

0.
15

3
ρ

(U
1
,U

2
)=
−0
.1

53
V

al
u

e
of
η

V
al

u
e

of
η

Sa
m

p
le

(c
on

ca
vi

ty
co

effi
ci

en
t)

(c
on

ca
vi

ty
co

effi
ci

en
t)

si
ze

0.
25

0.
75

1.
50

4.
50

0.
25

0.
75

1.
50

4.
50

25
0

[3
.6

3,
8.

27
]

[3
.6

1,
8.

45
]

[3
.4

8,
8.

56
]

[3
.7

4,
8.

66
]

[3
.5

5,
8.

48
]

[3
.4

9,
9.

17
]

[3
.6

7,
8.

19
]

[3
.8

1,
7.

97
]

50
0

[3
.8

8,
8.

02
]

[3
.7

6,
8.

02
]

[3
.9

0,
7.

91
]

[3
.9

4,
7.

96
]

[3
.6

4,
8.

11
]

[3
.6

3,
8.

24
]

[3
.8

9,
8.

15
]

[3
.8

8,
7.

96
]

10
00

[4
.0

5,
7.

86
]

[4
.0

0,
7.

85
]

[3
.9

5,
7.

77
]

[4
.1

5,
6.

95
]

[3
.9

5,
7.

81
]

[3
.9

9,
7.

80
]

[4
.3

0,
7.

74
]

[4
.5

0,
7.

33
]

(�
)R

es
u

lt
s

sh
ow

n
ar

e
ba

se
d

on
th

e
p

ro
je

ct
io

n
of

ou
r

95
%

C
S

fo
r
W

=
X
β

.F
or

th
e
st
h

M
on

te
C

ar
lo

si
m

u
la

ti
on

,w
e

co
m

p
u

te
th

e
W

s L
an

d
W

s U
as

th
e

sm
al

le
st

an
d

la
rg

es
t

va
lu

es
,r

es
p

ec
ti

ve
ly

,o
f
X
β

,t
ak

en
ov

er
al

l
th

e
β

’s
th

at
w

er
e

in
cl

u
d

ed
in

ou
r

es
ti

m
at

ed
95

%
C

S.
T

he
lo

w
er

an
d

u
p

p
er

bo
u

nd
s

in
th

e
in

te
rv

al
s

re
p

or
te

d
in

th
e

ta
bl

e
co

rr
es

p
on

d
,r

es
p

ec
ti

ve
ly

,t
o

th
e

sm
al

le
st

va
lu

e
of
W

s L
,a

nd
th

e
la

rg
es

t
va

lu
e

of
W

s U
ob

se
rv

ed
in

ou
r

50
0

M
on

te
C

ar
lo

si
m

u
la

ti
on

s.
A

s
in

th
e

bi
na

ry
-g

am
e

re
su

lt
s

re
p

or
te

d
in

Ta
bl

e
9,

th
e

va
lu

es
u

se
d

fo
r
X

co
rr

es
p

on
d

to
th

e
tr

u
e

m
ea

ns
of

ou
r

ge
ne

ra
te

d
p

ay
off

sh
if

te
rs

.

18



B Empirical application auxiliary figures

Figure 1: Profiled log-likelihood for each parameter in θ1
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Figure 2: Joint 95% confidence regions for slopes, intercept, and η
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Figure 3: Joint 95% confidence region for strategic interaction coefficients
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Figure 4: Joint 95% confidence region for strategic interaction coefficients and slope parameters
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Figure 5: Confidence sets for estimated propensities of equilibrium selection

(A) Equilibria with at most one store by each firm

(B) Equilibria with a monopolist opening multiple stores

(C) Equilibria where both firms enter with the same number of stores
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Figure 6: Confidence sets for strategic interaction coefficients (target coverage 95%). Comparison
of our results with those derived from a binary-choice specification
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