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Abstract
This document includes the step-by-step proofs of Result 1 and Lemma 1 in the paper,
along with additional results and extensions referenced throughout the paper, such as
the description of our estimator for the variance of our test-statistic and its asymptotic
properties. Every section in this document has the format AX.X and every equation
has the format (A-XX). Any section or equation that we reference here which does not
have this format refers to a section or an equation in the paper.

A1 Proof of Result 1

The statements in Result 1 are a summary of the results described in equations (10), (11), (12), (13)

and (14) in the text. We will show here that these equations follow from the restrictions (R1), (R2),

(R3) and (R4). In what follows, (Vi ,Vj ) represent to independent draws from F. We begin with

equation (10). By restriction (R1), for any β1 ∈Θ, there exists d < d such that [d,d] ⊆ Supp(X ′1Lβ1)∩
Supp(X ′1Uβ1). From here, it follows that PF(X ′1Ujβ1 ≤ X ′1Liβ1) > 0 for all β1 ∈ Θ. Next, also by

(R2), for any pair β1 , β̃1 in Θ, there exist c < c such that [c,c] ⊆ Supp(X ′1Lβ1|X ′1Lβ̃1,X
′
1U β̃1) ∩

Supp(X ′1Uβ1|X ′1Lβ̃1,X
′
1U β̃1). Thus, from (R1) for any β1 , β̃1 in Θ, there exist c < c such that, for

any ε > 0, if we let 0 < ε′ ≤ ε∧ c − c, then PF(X ′1Liβ1 < X
′
1Ujβ1 < X

′
1Liβ1 + ε′ , X ′1Uj β̃1 ≤ X ′1Li β̃1) > 0.

Since ε′ < ε, the event X ′1Liβ1 < X
′
1Ujβ1 < X

′
1Liβ1 + ε′ implies X ′1Liβ1 < X

′
1Ujβ1 < X

′
1Liβ1 + ε. Since

ε > 0 was arbitrary, The above yields PF
(
X ′1Liβ1 < X

′
1Ujβ1 < X

′
1Liβ1 + ε , X ′1Uj β̃1 ≤ X ′1Li β̃1

)
> 0

∀ β1, β̃1 ∈ Θ: β1 , β̃1, ∀ ε > 0. Therefore, equation (10) follows from the restrictions in (R1).

We move on to proving equation (11). Take any β1 ∈ Θ : β1 , β10. By (R1) and part (i) of

(R2), ∃ δ > 0 such that PF(X ′1Ujβ1 ≤ X ′1Liβ1 , X ′1Liβ10 < X
′
1Ujβ10 , HF(X ′1Ujβ10) > HF(X ′1Liβ10) + δ) >

0. Let ε ≡ δ/3. By part (ii) of (R2), PF(X ′1Ujβ1 ≤ X ′1Liβ1 , X ′1Liβ10 < X ′1Ujβ10 , HF(X ′1Ujβ10) >

HF(X ′1Liβ10 , µ1F(W1i < HF(X ′1Liβ10) + ε , µ1F(W1j ) > HF(X ′1Ujβ10 − ε) > 0. Thus, PF
(
µ1F(W1i) <

µ1F(W1j ) , X ′1Ujβ1 ≤ X ′1Liβ1

)
> 0. Since β1 , β10 was an arbitrary element in Θ, this immediately

implies PF
(
µ1F(W1i) < µ1F(W1j ) , X ′1Ujβ1 ≤ X ′1Liβ1

)
> 0 ∀ β1 ∈ Θ : β1 , β10. Therefore, equation

(11) follows from restrictions (R1) and (R2).
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We move on to equation (12). Fix ε > 0. By the Lipschitz restriction in part (i) of (R3),

∃ δ > 0 : |u − u′ | < δ ⇒ |λF(u) − λF(u′)| < ε/3, and y restriction (R1) (and equation 10), we have

PF(X ′1Liβ10 − δ < X ′1Ujβ10 ≤ X ′1Liβ10) > 0. Next, by part (ii) of (R3), we also have PF(λF(X ′1Liβ10) −
ε/3 < EF[λF(X ′1iβ10)|Vi] ≤ λF(X ′1Liβ10) , λF(X ′1Ujβ10) ≤ EF[λF(X ′1jβ10)|Vj ] < λF(X ′1Ujβ10) + ε/3) >

0. Since ε > 0 was arbitrary, it follows from here that, if restrictions (R1) and (R3) hold, we

have PF
(∣∣∣EF[λF(X ′1iβ0)|Vi] − EF[λF(X ′1jβ0)|Vj ]

∣∣∣ < ε , X ′1Ujβ10 ≤ X ′1Liβ10

)
> 0 ∀ ε > 0. This proves

the second part of equation (12). Now we prove the first part. By restriction (R1) and part

(i) of (R3) (strict monotonicity), there exists ε > 0 such that PF(X ′1Ujβ10 ≤ X ′1Liβ1 , X ′1Ujβ10 >

X ′1Liβ10 , λF(X ′1Ujβ10) < λF(X ′1Liβ10) − ε) > 0. Take any β1 ∈ Θ : β1 , β10. Combining the pre-

vious result with part (ii) of (R3), this means that there exists ε > 0 such that PF(X ′1Ujβ10 ≤
X ′1Liβ1 , X ′1Ujβ10 > X ′1Liβ10 , λF(X ′1Ujβ10) < λF(X ′1Liβ10) − ε , EF[λF(X ′1jβ10)|Vj ] < λF(X ′1Ujβ10) +

ε/3 , EF[λF(X ′1iβ10)|Vi] > λF(X ′1Liβ10) − ε/3) > 0. Thus, PF(EF[λF(X ′1iβ10)|Vi] > EF[λF(X ′1jβ10)|Vj ]
, X ′1Ujβ1 ≤ X ′1Liβ1) > 0. Since β1 , β10 was an arbitrary element in Θ, it follows that if restrictions

(R1) and (R3) hold, PF
(
EF[λF(X ′1iβ0)|Vi] > EF[λF(X ′1jβ0)|Vj ] , X ′1Ujβ1 ≤ X ′1Liβ1

)
> 0 ∀ β1 ∈ Θ : β1 ,

β10. This shows the first part of equation (12) and concludes the proof that both parts of this

equation hold.

We move on to proving equation (13). Take any β1 ∈ Θ. From restriction (R1) and equation

(10), PF(X ′1Ujβ1 ≤ X ′1Liβ1) > 0, and from restriction (R4), for this β1 and any δ , 0, PF(X ′2jδ2 >

X ′2iδ2|X ′1Ujβ1 ≤ X ′1Liβ1) > 0 and PF(X ′2jδ2 < X
′
2iδ2|X ′1Ujβ1 ≤ X ′1Liβ1) > 0. Combined, this implies

that, if restrictions (R1) and (R4) hold, PF
(
X ′2jδ2 > X

′
2iδ2 , X ′1Ujβ1 ≤ X ′1Liβ1

)
> 0 and PF

(
X ′2jδ2 <

X ′2iδ2 , X ′1Ujβ1 ≤ X ′1Liβ1

)
> 0 ∀ β1 ∈ Θ, ∀ δ2 , 0. This proves equation (13). Finally, we move on

to proving equation (14). Recall first that, for any β2, we have µ2F(V )−X ′2β2 = EF[λF(X ′1β10)|V ] +

X ′2(β20−β2). For any (β1,β2) , (β10,β20), there are two possible cases: (i) β2 , β20 or (ii) β2 = β20 and

β1 , β10. Let us begin with case (i). Take any (β1,β2) ∈Θ such that β2 , β20. Combining restrictions

(R1) (equation (10)), and (R3) (equation (12)) with restriction (R4), there exists ε > 0 such that

PF(|EF[λF(X ′1iβ10)|Vi]−EF[λF(X ′1jβ10)|Vj ]| < ε , X ′2i(β20−β2) > X ′2j(β20−β2)+ε , X ′1Ujβ1 ≤ X ′1Liβ1) > 0

and, therefore, PF(EF[λF(X ′1iβ10)|Vi] +X ′2i(β20 − β2) > EF[λF(X ′1jβ10)|Vj ] +X ′2j(β20 − β2) , X ′1Ujβ1 ≤
X ′1Liβ1) > 0. Now, consider case (ii) and take any (β1,β20) where β1 ∈ Θ and β1 , β10. From the

first part of equation (12), we immediately have PF
(
EF[λF(X ′1iβ0)|Vi] > EF[λF(X ′1jβ0)|Vj ] , X ′1Ujβ1 ≤

X ′1Liβ1

)
> 0. Combined, cases (i) and (ii) yield that, if restrictions (R1), (R3) and (R4) hold, then

PF(EF[λF(X ′1iβ10)|Vi] +X ′2i(β20 − β2) > EF[λF(X ′1jβ10)|Vj ] +X ′2j(β20 − β2) , X ′1Ujβ1 ≤ X ′1Liβ1) > 0 for

any (β1,β2) , (β10,β20). From here, since µ2F(V )−X ′2β2 = EF[λF(X ′1β10)|V ] +X ′2(β20 − β2), we have

that, if restrictions (R1), (R3) and (R4) hold, then PF(µ2F(Vi) −X ′2iβ2 > µ2F(Vj ) −X ′2jβ2 , X ′1Ujβ1 ≤
X ′1Liβ1) > 0 for any (β1,β2) ∈ Θ : (β1,β2) , (β10,β20). This is exactly the claim in equation (14).

Therefore, we have shown that this equation follows from restrictions (R1), (R3) and (R4). This

concludes the proof that the results described in equations (10), (11), (12), (13) and (14) in the text

follow from restrictions (R1), (R2), (R3) and (R4). Since the statements in Result 1 are a summary
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of the results in these equations, this concludes the proof of Result 1 ■

A1.1 Without an exclusion restriction between X2X2X2 and W1W1W1, the result in (13) cannot
hold

The exclusion restriction in (R4) is a necessary condition for (13) to hold. The key is the following

claim.

Claim 2 Suppose X2 =W1. Then, for any β1 ∈Θ, there exists a δ2 such that δ′2X2 = −β′1X1L − β′1X1U .

Proof: Split our regressors inX1 asX1 = (X1
1 , . . . ,X

r1
1 ,X

r1+1
1 , . . . ,Xd1

1 ), where (X1
1 , . . . ,X

r1
1 ) are interval-

data observed, and (Xr1+1
1 , . . . ,Xd1

1 ) are exactly observed (we can have r1 = d1, so all regressors are

interval-data observed). Recall that W1 ≡ X1 ∪X1, so we can express,

W1 = (X1
1, . . . ,X

r1
1 ,X

1
1, . . . ,X

r1
1 ,X

r1+1
1 , . . . ,Xd1

1 ).

Take any β1 ∈Θ and express it accordingly as β1 = (β1
1 , . . .β

r1
1 ,β

r1+1
1 , . . . ,βd1

1 ). Let

δ2 ≡ −(β1
1 , . . . ,β

r1
1 ,β

1
1 , . . . ,β

r1
1 ,2 · β

r1+1
1 , . . . ,2 · βd1

1 ).

Suppose X2 =W1. Then,

δ′2X2 = −

 r1∑
ℓ=1

βℓ1X
ℓ
1 +

r1∑
ℓ=1

βℓ1X
ℓ
1 +

d1∑
ℓ=r1+1

2βℓ1X
ℓ
1

 = −β′1X1L − β′1X1U . ■

Thus, if X2 = W1, for any β1 ∈ Θ, there exists a δ2 such that δ′2X2i = −β′1X1Ui − β′1X1Li ≤ −2β′1X1Li ,

and δ′2X2j = −β′1X1Uj − β′1X1Lj ≥ −2β′1X1Uj . Thus, having β′1X1Uj ≤ β′1X1Li implies δ′2X2j ≥ δ′2X2i

(since δ′2X2j ≥ −2β′1X1Uj ≥ −2β′1X1Li ≥ δ′2X2i), so PF
(
X ′2jδ2 < X

′
2iδ2 , X ′1Ujβ1 ≤ X ′1Liβ1

)
= 0 for this

particular δ2. Also, letting δ̃2 ≡ −δ2, we have PF
(
X ′2j δ̃2 > X

′
2i δ̃2 , X ′1Ujβ1 ≤ X ′1Liβ1

)
= 0. Thus, the

condition in (13) cannot hold if X2 =W1. This explains the exclusion restriction in part (i) of (13).

A2 Some alternative versions of our bivariate sample selection model

The bivariate sample selection model described in Section 3.1, which served as the foundation

of the results in the paper, can be modified in various ways. Here we discuss two modifica-

tions/extensions. The first one describes the case where we have unobserved covariates in both

the selection and outcome equations, with bounds that depend on observables (as in the main case

we studied in the paper). The second modification discusses the truncated-data case, where our

data consists only of observations where Y ∗1i > 0. In each case we discuss the pairwise functional
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inequalities that result, which are the equivalent versions of the inequalities in (17) in the general

model we studied in Section 3.1 of the main text. Once we describe these pairwise inequalities,

inference would be carried out by modifying the procedure we proposed in Section 3 accordingly.

A2.1 A bivariate sample selection model with unobserved covariates in the selection
and outcome equations

Suppose now that at least a subset of components of X2 in the outcome equation are also unob-

served, but that we have interval data for these covariates, so that

X ′2Lβ20 ≤ X ′2β20 ≤ X ′2Uβ20 w.p.1. (A-1)

where (X2L,X2U ) are observable. We assume that the bounds in equation (19) remain valid for

the selection-equation control function. Group W2 ≡ (X2L ∪X2U ), and V ≡ (W1,W2). Suppose we

have a random sample (Y1i ,Y2i ,Vi)
n
i=1 generated by F. Maintain the restrictions Assumption 1,

modifying part (i) to the restriction, (ε1, ε2)⊥(X1,X2,V ). As before, let µ2F(V ) ≡ EF [Y2|V ,Y1 = 1].

We now have,

µ2F(V ) = EF
[
X ′2β20|V

]
+EF [λF(g1(X1,β10)|V ] .

Since λF(·) is nonincreasing and HF(·) is nondecreasing, we now have

X ′2Lβ20 +λF (g1U (W1,β10)) ≤ µ2F(V ) ≤ X ′2Uβ20 +λF (g1L(W1,β10)) ,

HF(g1L(W1,β10)) ≤ µ1F(W1) ≤HF(g1U (W1,β10)).

Again, without further restrictions, the above bounds are sharp for the functionals involved. For

a given β ≡ (β1,β2), let

m1(V ,β) ≡
−g2L(W2,β2)

g1U (W1,β1)

 m2(V ,β) ≡
−g2U (W2,β2)

g1L(W1,β1)


Let (Vi ,Vj ) be independent draws from F. Since λF(·) is nonincreasing and HF(·) is nondecreasing,

the model produces the following two functional inequalities,(
µ2F(Vi)−µ2F(Vj )

)
1

{
m1(Vj ,β0) ≤m2(Vi ,β0)

}
≤ 0 w.p.1.(

µ1F(W1j )−µ1F(W1i)
)
·1

{
g1U (W1j ,β10) ≤ g1L(W1i ,β10)

}
≤ 0 w.p.1.

(A-2)

(A-2) is a modified version of the pairwise inequalities in (17). While the second inequality (cor-

responding to the selection equation) is identical, the outcome-equation inequality is modified.

Inference would then take place by replacing (17) with (A-2) in the construction of the statistic

described in Section 3.
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A2.2 A bivariate sample selection model with truncated data

Suppose we have a truncated sample generated by the bivariate sample selection model described

in Section 3.1. As we did there, group V ≡ (X2,W1) ∈ RLv . Suppose our truncated sample is

(Y2i ,Vi)
n
i=1, where Y2i = Y ∗2i and Y ∗1i > 0 for all i. By the truncated nature of our data, the second

inequality (corresponding to the selection equation) in (17) is no longer useful, since Y1i = 1 for all

i. However, the first inequality in (17) is still valid and can be used for inference. The modification

of the inferential procedure described in Section 3 is straightforward, as it would simply require

dropping the selection-equation inequality from the construction of our statistic.

A3 Proof of Lemma 1

We will focus for brevity on proving part (A) of Lemma 1. The proof of part (B) follows parallel

and analogous steps, so we will just summarize it towards the end. Part (C) follows immediately

from (A) and (B). We begin by presenting a maximal inequality result that will be useful through-

out various steps of our proofs.

A3.1 A useful maximal inequality result

Let us begin by presenting once again the definition of Euclidean classes of functions. What

follows is taken from Nolan and Pollard (1987, Definition 8), Pakes and Pollard (1989, Definition

2.7), and Sherman (1994, Definition 3).

Definition: Euclidean classes of functions

Let T be a space and d be a pseudometric defined on T . For each ε > 0, define the packing
number D(ε,d,T ) to be the largest number D for which there exist pointsm1, . . . ,mD in T such that

d(mi ,mj ) > ε for each i , j. Packing numbers are a measure of how big T is with respect to d. Let

G be a class of functions defined on a set SkZ . We say that G is an envelope for G is supG |g(·)| ≤ G(·).
Let µ be a measure on SkZ and denote µh ≡

∫
h(z1, . . . , zk)dµ(z1, . . . , zk). We say that the class of

functions G is Euclidean (A,V ) for the envelope G if, for any measure µ such that µG2 < ∞, we

have D(ε,dµ,G ) ≤ Aε−V ∀ 0 < ε ≤ 1, where, for g1, g2 ∈ G , dµ(g1, g2) =
(
µ|g1 − g2|2/µG2

)1/2
. The

constants A and V must not depend on µ. ■

The name “Euclidean” is owed to the fact that Aε−V is the generic expression of packing numbers

for any bounded subset of the Euclidean spaceRV . Examples of Euclidean classes of functions can

be found, in Pollard (1984), Nolan and Pollard (1987), Pakes and Pollard (1989), Pollard (1990),

Sherman (1994) and Andrews (1994). Notable examples found in many econometric models in-

clude the following.
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(i) (Pakes and Pollard (1989, Lemma 2.13)) Let G = {g(·, t) : t ∈ T } be a class of functions on

X indexed by a bounded subset T of Rd . If there exists an α > 0 and a φ(·) ≥ 0 such that

|g(x, t)− g(x, t′)| ≤ φ(x) · ∥t − t′∥α for x ∈X and t, t′ ∈ T . Then G is Euclidean for the envelope

G ≡ |g(·, t0)|+Mφ(·), where t0 ∈ T is an arbitrary point and M ≡ (2
√
d supT ∥t − t0∥)α.

(ii) (Nolan and Pollard (1987, Lemma 22), Pakes and Pollard (1989, Example 10)) Let λ(·) be

a real-valued function of bounded variation on R. The class G of all functions on R
d of

the form x→ λ(α′x + β), with α ranging over Rd and β ranging over R is Euclidean for the

constant envelope G ≡ sup |λ|.

(iii) (Pakes and Pollard (1989, p. 1033)) Classes of indicator functions over VC classes of sets are

Euclidean for the constant envelope 1.

(iv) Type I, II and III classes of functions described in Andrews (1994) are special cases of Eu-

clidean classes.

From the above examples, it follows from Assumptions 2 and 3 (compactness of Θ and the restric-

tion that EF[∥X4∥] ≤ C4 for all F ∈ F ), that the class of functions

G2 ≡
{
m(x2) = x′2β2 for some β2 ∈Θ

}
is Euclidean. Pointwise algebraic operations such as products, linear combinations, minima and

maxima allow us to combine Euclidean classes and preserve the Euclidean property (see Pakes

and Pollard (1989, Lemma 2.14)). Empirical processes and U-processes produced by Euclidean

classes of functions satisfy the Pollard’s entropy condition (see Andrews (1994, Definition 4.2)) and

manageability (see Pollard (1990, Definition 7.9), Andrews (1994, Equation A.1)).

A3.1.1 A maximal inequality for degenerate U-processes

The following result is taken from Sherman (1994), who obtained maximal inequalities for degen-

erate U-Processes. Let Z1, . . . ,Zn be i.i.d observations from a distribution F on a set SZ . Let k be a

positive integer and G a class of real-valued functions on SkZ = SZ ⊗ · · · ⊗ SZ (k factors). For each

g ∈ G , define

U k
ng = (n)−1

k

∑
iiik

g(Zi1 , . . . ,Zik ),

where (n)k = n(n−1) · · · (n− k + 1) and
∑
iiik

denotes the sum over the (n)k distinct integers {i1, . . . , ik}
from the set {1, . . . ,n}. U k

ng is a U-statistic of order k and the collection {U k
ng: g ∈ G } is called a
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U-process of order k, indexed by G . If every g ∈ G is such that

EF [g(s1, . . . , si−1,Z, si+1, . . . , sk)] ≡ 0︸                                       ︷︷                                       ︸
EF [g(Z1,...,Zk)|Z1=s1,...,Zi−1=si−1,Zi+1=si+1,...,Zk=sk]≡0

, i = 1, . . . , k,

then G is called an F−degenerate class of functions on SkZ and {U k
ng: g ∈ G } is a degenerate U-process

of order k.

Result A1 (Sherman (1994, Corollary 4A)) Let G be a class of F−degenerate functions on SkZ , k ≥ 1.
Suppose G is Euclidean (A,V ) for an envelope G such that EF

[
G(Z1, . . . ,Zk)4p

]
<∞ for a positive integer

p. Then,

EF

[(
sup

G

∣∣∣nk/2U k
ng

∣∣∣)p] ≤ Υ ·
(
EF

[
G(Z1, . . . ,Zk)

4p
])1/2

≡M,

where Υ is a constant that depends only on p, A, V and EF
[
G(Z1, . . . ,Zk)2

]
. By a Chebyshev inequality,

this implies that for each ε > 0,

PF

(
sup

G

∣∣∣nk/2U k
ng

∣∣∣ > ε) ≤ M
εp

and therefore PF

(
sup

G

∣∣∣U k
ng

∣∣∣ > ε) ≤ M(
nk/2 · ε

)p .
From the last result, we also have

sup
G

∣∣∣U k
ng

∣∣∣ =Op
( 1
nk/2

)
. ■

We will invoke Result A1 at various points throughout our proofs.

A3.1.2 VC classes of sets and Assumption 3

VC classes of sets are defined, e.g, in Pakes and Pollard (1989, Definition 2.2) and Kosorok (2008,

Section 9.1.1). Verifiable criteria that suffice for a class of sets to have the VC property can be

found, e.g, in Pollard (1984, Section II.4), Dudley (1984, Section 9), or Kosorok (2008, Section

9.1.1). An example commonly encountered in econometric models (Pakes and Pollard (1989,

Lemma 2.4) is the class of sets of the form {g ≥ t} or {g > t}, with g ∈ G and t ∈ R, where G

is a finite dimensional vector space of real-valued functions. This class encompasses economet-

ric models where the parameters of interest enter through linear indices. Combining VC classes

of sets through a finite number of Boolean operations (e.g, unions, intersections and/or comple-

ments) preserves the VC property (Pakes and Pollard (1989, Lemma 2.5)). Assumption 3 implies

that the following is a VC class of sets for each F, with VC dimension uniformly bounded over F
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by a finite constant V D ,

D
τ2
1,F ≡

{
(v1,v2) ∈RLv ×RLv : τ2F(v1,v2,β) ≥ 0 for some β ∈Θ

}
And, by VC-preserving properties of Boolean operations described, e.g, in Pakes and Pollard

(1989, Lemma 2.5), Assumption 3 implies that, for each F ∈ F , the following class of sets is also a

VC class, with VC dimension uniformly bounded over F by a finite constant,

D
τ2
2,F ≡

{
(v1,v2) ∈RLv ×RLv : − c ≤ τ2F(v1,v2,β) < 0 for some 0 < c ≤ c0 and β ∈Θ

}
.

Indicator functions for these classes of sets are relevant in our problem. The VC properties in

Assumption 3 will lead us to invoke the maximal inequality properties in Result A1 since indicator

functions over VC classes of sets are Euclidean classes of functions (Pakes and Pollard (1989, p.

1033)).

A3.2 Asymptotic properties of Q̂2̂Q2̂Q2 and R̂2̂R2̂R2

Note: In all the results that follow, ϵ > 0 denotes the constant described in Assumption 4 of the

paper.

Recall that, as described in equation (27) in the paper, for a given v ≡ (vc,vd), we defined,

K
(
V c
i − v

c

hn

)
≡

r∏
m=1

κ

(
V c
mi − v

c
m

hn

)
, Γ (Vi ,v,hn) ≡ K

(
V c
i − v

c

hn

)
·1

{
V d
i = vd

}
,

and, from here,

R̂2(v) ≡ 1
n · hrn

n∑
i=1

Y2iY1iφ2(Vi)Γ (Vi ,v,hn), Q̂2(v) ≡ 1
n · hrn

n∑
i=1

Y1iφ2(Vi)Γ (Vi ,v,hn).

We proceed next to characterize the asymptotic properties of R̂2(v) and Q̂2(v) under our assump-

tions. Let λ(·) be a real-valued function of bounded variation on R. By Nolan and Pollard (1987,

Lemma 22) (or Pakes and Pollard (1989, Example 10)), the class G of all functions on Rd of the

form x→ λ(α′x + β), with α ranging over Rd and β ranging over R is Euclidean for the constant

envelope G ≡ sup |λ|. Therefore, since our kernel is a function of bounded variation, the class of

functions
{
m(v) = k

(
v−u
h

)
for some u ∈R, h > 0

}
is Euclidean (Ak ,Vk) for the constant envelope k

(neither (Ak ,Vk), nor k depend on F). From here and Sherman (1994, Lemma 5), the following
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empirical processes νQ2
n (·) and νR2

n (·) defined as follows, satisfy the conditions of Result A1,νQ2
n (v,h) =

1
n

n∑
i=1

(Y1iφ2(Vi)Γ (Vi ,v,h)−EF [Y1φ2(V )Γ (V ,v,h)]) : v ∈RLV , h > 0

 ,νR2
n (v,h) =

1
n

n∑
i=1

(Y2iY1iφ2(Vi)Γ (Vi ,v,h)−EF [Y2Y1φ2(V )Γ (V ,v,h)]) : v ∈RLV , h > 0


(A-3)

for the constant envelope φ ·K , and the envelope |Y2| ·φ ·K , respectively. From here, Result A1 and

the condition that EF[|Y2|4] ≤ D2 for all F ∈ F (Assumption 3) imply that there exists a finite M

such that, for each ε > 0,

PF

 sup
v∈RLv
h>0

∣∣∣∣νQ2
n (v,h)

∣∣∣∣ > ε
 ≤ M

n1/2 · ε
, and PF

 sup
v∈RLv
h>0

∣∣∣∣νR2
n (v,h)

∣∣∣∣ > ε
 ≤ M

n1/2 · ε
∀ F ∈ F (A-4)

and therefore,

sup
v∈RLv
h>0

∣∣∣∣νQ2
n (v,h)

∣∣∣∣ =Op
( 1
n1/2

)
, and sup

v∈RLv
h>0

∣∣∣∣νR2
n (v,h)

∣∣∣∣ =Op
( 1
n1/2

)
, uniformly over F (A-5)

We have,

Q̂2(v)−Q2F(v) =
1

h
rv
n
· νQ2
n (v,hn) +BQ2

n,F(v), where BQ2
n,F(v) ≡ 1

h
rv
n
·
(
Q2F(v)−EF [Y1φ2(V )Γ (V ,v,hn)]

)
,

R̂2(v)−R2F(v) =
1

h
rv
n
· νR2
n (v,hn) +BR2

n,F(v), where BR2
n,F(v) ≡ 1

h
rv
n
·
(
R2F(v)−EF [Y2Y1φ2(V )Γ (V ,v,hn)]

)
,

(A-6)

The smoothness conditions in Assumption 2 and the kernel properties in Assumption 4 anMth−order

approximation implies that there exists a finite B such that

sup
v∈V

∣∣∣∣BQ2
n,F(v)

∣∣∣∣ ≤ B · hMn , and sup
v∈V

∣∣∣∣BR2
n,F(v)

∣∣∣∣ ≤ B · hMn ∀ F ∈ F (A-7)

From (A-6) and (A-7) we have,

sup
v∈V

∣∣∣Q̂2(v)−Q2F(v)
∣∣∣ ≤ 1

hrvn
· sup
v∈V

∣∣∣∣νQ2
n (v,hn)

∣∣∣∣+B · hMn

sup
v∈V

∣∣∣R̂2(v)−R2F(v)
∣∣∣ ≤ 1

hrvn
· sup
v∈V

∣∣∣∣νR2
n (v,hn)

∣∣∣∣+B · hMn

 ∀ F ∈ F (A-8)
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From (A-5) and (A-8), and the bandwidth convergence restrictions in Assumption 4, we have

sup
v∈V

∣∣∣Q̂2(v)−Q2F(v)
∣∣∣ =Op

(
1

hrvn ·n1/2

)
+B · hMn = op

(
1

n1/4+ϵ/2

)
sup
v∈V

∣∣∣R̂2(v)−R2F(v)
∣∣∣ =Op

(
1

hrvn ·n1/2

)
+B · hMn = op

(
1

n1/4+ϵ/2

)
 uniformly over F (A-9)

Where ϵ > 0 denotes the constant described in Assumption 4. Take any sequence εn > 0 such that

n1/2 · hrvn · εn −→ ∞. Given the bandwidth convergence restrictions in Assumption 4, there exists

n0 > 0 such that n1/2 · hrvn · ε − B · n1/2 · hrv+M
n > 0, for all n > n0, and from the results in (A-4) and

(A-8),

PF

(
sup
v∈V

∣∣∣Q̂2(v)−Q2F(v)
∣∣∣ > εn) ≤ M

n1/2·hrvn ·εn−B·n1/2·hrv+M
n

PF

(
sup
v∈V

∣∣∣R̂2(v)−R2F(v)
∣∣∣ > εn) ≤ M

n1/2·hrvn ·εn−B·n1/2·hrv+M
n

 ∀ F ∈ F , ∀ n > n0 (A-10)

Therefore, under the conditions in Assumptions 2 and 4, we have

sup
F∈F

PF

(
sup
v∈V

∣∣∣Q̂2(v)−Q2F(v)
∣∣∣ > εn) −→ 0

sup
F∈F

PF

(
sup
v∈V

∣∣∣R̂2(v)−R2F(v)
∣∣∣ > εn) −→ 0

 ∀ εn > 0 : n1/2 · hrvn · εn −→∞

A3.3 Asymptotic properties of τ̂2(v, ṽ,β)τ̂2(v, ṽ,β)τ̂2(v, ṽ,β)

We have defined,

τ̂2(v, ṽ,β) =((
R̂2(v)Q̂2(ṽ)− R̂2(ṽ)Q̂2(v)

)
− (x′2β2 − x̃′2β2)Q̂2(v)Q̂2(ṽ)

)
·1 {g1U (w̃1,β1) ≤ g1L(w1,β1)}

·φ2(v)φ2(ṽ),

τ2F(v, ṽ,β) =(
(R2F(v)Q2F(ṽ)−R2F(ṽ)Q2F(v))− (x′2β2 − x̃′2β2)Q2F(v)Q2F(ṽ)

)
·1 {g1U (w̃1,β1) ≤ g1L(w1,β1)}

·φ2(v)φ2(ṽ),
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Therefore,

τ̂2(v, ṽ,β)− τ2F(v, ṽ,β) =((
R2F(v)− (x′2β2 − x̃′2β2)Q2F(v)

)
·
(
Q̂2(ṽ)−Q2F(ṽ)

)
−
(
R2F(ṽ) + (x′2β2 − x̃′2β2)Q2F(ṽ)

)
·
(
Q̂2(v)−Q2F(v)

)
+Q2F(ṽ) ·

(
R̂2(v)−R2F(v)

)
−Q2F(v) ·

(
R̂2(ṽ)−R2F(ṽ)

))
·1 {g1U (w̃1,β1) ≤ g1L(w1,β1)}φ2(v)φ2(ṽ)

+ ξτ2
a,n(v, ṽ,β),

(A-11)

where

ξτ2
a,n(v, ṽ,β) ≡

((
R̂2(v)−R2F(v)

)
·
(
Q̂2(ṽ)−Q2F(ṽ)

)
−
(
R̂2(ṽ)−R2F(ṽ)

)
·
(
Q̂2(v)−Q2F(v)

)
− (x′2β2 − x̃′2β2) ·

(
Q̂2(v)−Q2F(v)

)
·
(
Q̂2(ṽ)−Q2F(ṽ)

))
·1 {g1U (w̃1,β1) ≤ g1L(w1,β1)}φ2(v)φ2(ṽ)

From the conditions in Assumption 2, there exists a finite constant D such that

sup
v,ṽ∈RLV ×RLV

β∈Θ

max
{
|R2F(v)| , |Q2F(v)| ,

∣∣∣x′2β2 − x̃′2β2

∣∣∣} ≤ 2D ∀ F ∈ F .

Therefore, there exists D2 such that, for each F ∈ F ,

sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣ ≤D2 ·

sup
v∈V

∣∣∣Q̂2(v)−Q2F(v)
∣∣∣+ sup

v∈V

∣∣∣R̂2(v)−R2F(v)
∣∣∣

+ sup
v∈V

∣∣∣Q̂2(v)−Q2F(v)
∣∣∣× sup

v∈V

∣∣∣R̂2(v)−R2F(v)
∣∣∣+

(
sup
v∈V

∣∣∣Q̂2(v)−Q2F(v)
∣∣∣)2

Therefore, there exists a finite constant C2 such that, for any b > 0

PF

 sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣ > b

 ≤ PF
(
sup
v∈V

∣∣∣Q̂2(v)−Q2F(v)
∣∣∣ > C2 ·

(
b∧ b1/2

))

+ PF

(
sup
v∈V

∣∣∣R̂2(v)−R2F(v)
∣∣∣ > C2 ·

(
b∧ b1/2

))
∀ F ∈ F
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Fix b > 0. From the previous result, equation (A-10) implies that, under Assumptions 2, 3 and 4,

there exist constants M, B and C2 and n0 such that, for n > n0,

PF

 sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣ > b

 ≤
2M

n1/2 · hrvn ·C2 ·
(
b∧ b1/2

)
−B ·n1/2 · hrv+M

n

∀ F ∈ F

In particular, take any sequence bn > 0 such that bn −→ 0 and n1/2 · hrn · bn −→ ∞. The previous

result implies that, under Assumptions 2, 3 and 4, for any such sequence, we have,

sup
F∈F

PF

 sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣ > bn

 −→ 0. (A-12)

Note that (A-12) immediately implies,

sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣ = op(1), uniformly over F , (A-13)

and

sup
v,ṽ∈RLV ×RLV

β∈Θ

1

{∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣ > bn} = op(1), uniformly over F . (A-14)

Next, note that∣∣∣1 {τ̂2(v, ṽ,β) ≥ −bn} −1 {τ2F(v, ṽ,β) ≥ 0}
∣∣∣

=1 {τ̂2(v, ṽ,β) ≥ −bn , − 2bn ≤ τ2F(v, ṽ,β) < 0}+1 {τ̂2(v, ṽ,β) ≥ −bn , τ2F(v, ṽ,β) < −2bn}

+1 {τ̂2(v, ṽ,β) < −bn , τ2F(v, ṽ,β) ≥ 0}

≤1 {−2bn ≤ τ2F(v, ṽ,β) < 0}+1
{∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)

∣∣∣ ≥ bn}
(A-15)

And, by the conditions in Assumption 2, there exists a finite constant τ2 such that

sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ2F(v, ṽ,β)
∣∣∣ ≤ τ2 ∀ F ∈ F . (A-16)
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We have

τ̂2(v, ṽ,β) ·1 {τ̂2(v, ṽ,β) ≥ −bn} = (τ2F(v, ṽ,β))+

+ τ2F(v, ṽ,β) ·
(
1 {τ̂2(v, ṽ,β) ≥ −bn} −1 {τ2F(v, ṽ,β) ≥ 0}

)
+ (τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)) ·1 {τ̂2(v, ṽ,β) ≥ −bn} .

From here, using the results in (A-15) and (A-16),

sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β) ·1 {τ̂2(v, ṽ,β) ≥ −bn} − (τ2F(v, ṽ,β))+

∣∣∣
≤ τ2 · sup

v,ṽ∈RLV ×RLV

β∈Θ

1

{∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣ > bn}

︸                                                   ︷︷                                                   ︸
op(1) uniformly over F , by (A-14)

+ sup
v,ṽ∈RLV ×RLV

β∈Θ

(
|τ2F(v, ṽ,β)| ·1 {−2bn ≤ τ2F(v, ṽ,β) < 0}

)
︸                                                              ︷︷                                                              ︸

≤ 2bn→ 0 for all F, by construction

+ sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣

︸                                        ︷︷                                        ︸
op(1) uniformly over F , by (A-13)

Therefore,

sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣∣τ̂2(v, ṽ,β) ·1 {τ̂2(v, ṽ,β) ≥ −bn} − (τ2F(v, ṽ,β))+

∣∣∣∣ = op(1), uniformly over F . (A-17)

And from the definition of T̂2(β) in equation (28), the result in (A-17) immediately implies,

sup
β∈Θ

∣∣∣T̂2(β)−T2F(β)
∣∣∣ = op(1), uniformly over F . (A-18)

Let us go back to (A-11). Plugging in (A-6) into (A-11), we have,

τ̂2(v, ṽ,β)− τ2F(v, ṽ,β) =[(
R2F(v)− (x′2β2 − x̃′2β2)Q2F(v)

)
· 1
hrn
· νQ2
n (v′ ,hn)

−
(
R2F(ṽ) + (x′2β2 − x̃′2β2)Q2F(ṽ)

)
· 1
hrn
· νQ2
n (v,hn)

+Q2F(ṽ) · 1
hrn
· νR2
n (v,hn)−Q2F(v) · 1

hrn
· νR2
n (v′ ,hn)

]
·1 {g1U (w̃1,β1) ≤ g1L(w1,β1)}φ2(v)φ2(ṽ)

+ ξτ2
a,n(v, ṽ,β) + ξτ2

b,n(v, ṽ,β),

(A-19)
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where

ξτ2
b,n(v, ṽ,β) ≡

[(
R2F(v)− (x′2β2 − x̃′2β2)Q2F(v)

)
·BQ2

n,F(ṽ)

−
(
R2F(ṽ) + (x′2β2 − x̃′2β2)Q2F(ṽ)

)
·BQ2

n,F(v)

+Q2F(ṽ) ·BR2
n,F(v)−Q2F(v) ·BR2

n,F(ṽ)
]
·1 {g1U (w̃1,β1) ≤ g1L(w1,β1)}φ2(v)φ2(ṽ)

By the conditions in Assumption 2 and the result in (A-7), there exist finite constants D2 and B

such that,

sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣ξτ2
b,n(v, ṽ,β)

∣∣∣ ≤D2 ·
(
sup
v∈V

∣∣∣∣BQ2
n,F(v)

∣∣∣∣+ sup
v∈V

∣∣∣∣BQ2
n,F(v)

∣∣∣∣) ≤ 2 ·D2 ·B · hMn

≡ B3 · hMn = o
( 1
n1/2+ϵ

)
∀ F ∈ F

(A-20)

where the last equality follows from Assumption 4, and ϵ > 0 is the constant described there.

Next we turn our attention to ξτ2
a,n(v, ṽ,β). By the conditions in Assumption 2, there exists a finite

constant D such that,

sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣ξτ2
a,n(v, ṽ,β)

∣∣∣ ≤ 2 · sup
v∈V

∣∣∣Q̂2(v)−Q2F(v)
∣∣∣× sup

v∈V

∣∣∣R̂2(v)−R2F(v)
∣∣∣+D ·

(
sup
v∈V

∣∣∣Q̂2(v)−Q2F(v)
∣∣∣)2

,

for all F ∈ F . And from here, the result in (A-9) yields,

sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣ξτ2
a,n(v, ṽ,β)

∣∣∣ =
[
op

( 1
n1/4+ϵ/2

)]2
= op

( 1
n1/2+ϵ

)
, uniformly over F . (A-21)

Where ϵ > 0 denotes the constant described in Assumption 4. For a given y2 ∈ R, y1 ∈ {0,1} and

u, ũ ∈RLV ×RLV and h > 0, let

ϕQ2
F (y1,u, ũ,h) ≡ y1 ·φ2(u) · Γ (u, ũ,h)−EF [Y1φ2(V ) · Γ (V , ũ,h)] ,

ϕR2
F (y2, y1,u, ũ,h) ≡ y2 · y1 ·φ2(u) · Γ (u, ũ,h)−EF [Y2Y1φ2(V ) · Γ (V , ũ,h)] ,

(A-22)
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and for a given v, ṽ ∈RLV ×RLV and β ∈Θ, let

ζτ2
a,F(v, ṽ,β) ≡ (R2F(v)− (x′2β2 − x̃′2β2)Q2F(v)) ·1 {g1U (w̃1,β1) ≤ g1L(w1,β1)}φ2(v)φ2(ṽ),

ζτ2
b,F(v, ṽ,β) ≡ (R2F(ṽ) + (x′2β2 − x̃′2β2)Q2F(ṽ)) ·1 {g1U (w̃1,β1) ≤ g1L(w1,β1)}φ2(v)φ2(ṽ),

ζτ2
c,F(v, ṽ,β) ≡Q2F(ṽ) ·1 {g1U (w̃1,β1) ≤ g1L(w1,β1)}φ2(v)φ2(ṽ),

ζτ2
d,F(v, ṽ,β) ≡Q2F(v) ·1 {g1U (w̃1,β1) ≤ g1L(w1,β1)}φ2(v)φ2(ṽ),

and

ζτ2
F (Y2,Y1,V ,v, ṽ,β,h) ≡ ζτ2

a,F(v, ṽ,β)ϕQ2
F (Y1,V , ṽ,h)− ζτ2

b,F(v, ṽ,β)ϕQ2
F (Y1,V ,v,h)

+ ζτ2
c,F(v, ṽ,β)ϕR2

F (Y2,Y1,V ,v,h)− ζd,F(v, ṽ,β)τ2ϕR2
F (Y2,Y1,V , ṽ,h)

Note that EF[ζτ2
F (Y2,Y1,V ,v, ṽ,β,h)] = 0 for all (v, ṽ,β,h). Plugging in (A-20) and (A-21) into (A-19),

and using the definitions of νQ2
n (·) and νR2

n (·) given in (A-3), we have

τ̂2(v, ṽ,β)− τ2F(v, ṽ,β) =
1

h
rv
n
· 1
n

n∑
k=1

ζτ2
F (Y2k ,Y1k ,Vk ,v, ṽ,β,hn) + ξτ2

n (v, ṽ,β),

where sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣ξτ2
n (v, ṽ,β)

∣∣∣ = op
( 1
n1/2+ϵ

)
, uniformly over F

(A-23)

Where ϵ > 0 denotes the constant described in Assumption 4. Let

ατ2
F (v, ṽ,β) ≡

(
ζτ2
a,F(v, ṽ,β), ζτ2

b,F(v, ṽ,β), ζτ2
c,F(v, ṽ,β), ζτ2

d,F(v, ṽ,β)
)
.

By the conditions in Assumption 2, there exists a finite constant M2 such that

sup
v,ṽ∈RLV ×RLV

β∈Θ

∥∥∥ατ2
F (v, ṽ,β)

∥∥∥ ≤M2 ∀ F ∈ F .

Consider the class of functions,

H1,F ≡
{
m(y2, y1,v) = α1ϕ

Q2
F (y1,v, ũ,h) +α2ϕ

Q2
F (y1,v,u,h) +α3ϕ

R2
F (y2, y1,v,u,h) +α4ϕ

R2
F (y2, y1,v, ũ,h) :

u, ũ ∈RLV ×RLV , β ∈Θ , h > 0 , ∥(α1,α2,α3,α4)∥ ≤M2

}
By Nolan and Pollard (1987, Lemma 22) (or Pakes and Pollard (1989, Example 10)), and Pakes

and Pollard (1989, Lemma 2.14) and the bounded-variation properties of the weight functionφ2(·)
and the kernel K(·), there exist constants (A,V ) such that H1,F is Euclidean (A,V ) for all F ∈ F , for
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an envelope of the form H1 = C1 +C2 · |Y2|, where C1 and C2 are constant for all F. Now define,

G1,F ≡
{
m(y2, y1,v) = ζτ2

F (y2, y1,v,u, ũ,β,h) : u, ũ ∈RLV ×RLV , β ∈Θ , h > 0
}
.

Note that G1,F ⊆H1,F . Therefore, there exist constants (A,V ) such that G1,F is Euclidean (A,V ) for

all F ∈ F , for an envelope of the form H1 = C1 +C2 · |Y2|, where C1 and C2 are constant for all F.

Define the empirical process ντ2
n (·) given by,ντ2

n (u, ũ,β,h) =
1
n

n∑
i=1

ζτ2
F (Y2i ,Y1i ,Vi ,u, ũ,β,h) : u, ũ ∈RLV ×RLV , β ∈Θ , h > 0

 .
ντ2
n (·) satisfies the conditions of Result A1. Since there exists a finite constant D4 such that

EF[|Y2|4] ≤ D4 for all F ∈ F by Assumption 3, Result A1 implies that there exists a constant M

such that, for each ε > 0,

PF

 sup
u,ũ∈RLV ×RLV

β∈Θ,h>0

∣∣∣ντ2
n (u, ũ,β,h)

∣∣∣ > ε
 ≤

M

n1/2ε
∀ F ∈ F .

Therefore,

sup
u,ũ∈RLV ×RLV

β∈Θ,h>0

∣∣∣ντ2
n (u, ũ,β,h)

∣∣∣ =Op
( 1
n1/2

)
uniformly over F .

From here, (A-23) yields,

sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣ =Op

(
1

h
rv
n ·n1/2

)
+ op

( 1
n1/2+ϵ

)

= op
( 1
n1/4+ϵ/2

)
uniformly over F .

(A-24)

Where ϵ > 0 is the constant described in Assumption 4. By the conditions in Assumption 2, there

exists a finite constant τ2 such that

sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ2F(v, ṽ,β)
∣∣∣ ≤ τ2 ∀ F ∈ F .
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From here and (A-24), we obtain,

sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)
∣∣∣ =Op(1) uniformly over F . (A-25)

The results in (A-12), (A-23), (A-24) and (A-25) summarize the relevant asymptotic properties of

τ̂2(v, ṽ,β) for our problem.

A3.4 Asymptotic properties of T̂2(β)T̂2(β)T̂2(β)

Recall that,

T̂2(β) ≡ 1
n · (n− 1)

n∑
i=1

∑
j,i

τ̂2(Vi ,Vj ,β) ·1
{
τ̂2(Vi ,Vj ,β) ≥ −bn

}
.

Let

T̃2(β) ≡ 1
n · (n− 1)

n∑
i=1

∑
j,i

τ̂2(Vi ,Vj ,β) ·1
{
τ2F(Vi ,Vj ,β) ≥ 0

}
.

Note that T̃2(β) takes T̂2(β) and replaces the indicator function 1
{
τ̂2(Vi ,Vj ,β) ≥ −bn

}
with the indi-

cator function 1
{
τ2F(Vi ,Vj ,β) ≥ 0

}
. Our first step is to analyze T̂2(β)− T̃2(β). Denote,

rT2
n,F(β) ≡ T̂2(β)− T̃2(β) =

1
n · (n− 1)

n∑
i=1

∑
j,i

τ̂2(Vi ,Vj ,β) ·
[
1

{
τ̂2(Vi ,Vj ,β) ≥ −bn

}
−1

{
τ2F(Vi ,Vj ,β) ≥ 0

}]
.

Thus,

∣∣∣∣rT2
n,F(β)

∣∣∣∣ ≤ 1
n · (n− 1)

n∑
i=1

∑
j,i

∣∣∣τ̂2(Vi ,Vj ,β)
∣∣∣ · ∣∣∣∣1 {

τ̂2(Vi ,Vj ,β) ≥ −bn
}
−1

{
τ2F(Vi ,Vj ,β) ≥ 0

}∣∣∣∣ .
As we pointed out in (A-15), we have∣∣∣∣1 {

τ̂2(Vi ,Vj ,β) ≥ −bn
}
−1

{
τ2F(Vi ,Vj ,β) ≥ 0

}∣∣∣∣
=1

{
τ̂2(Vi ,Vj ,β) ≥ −bn , − 2bn ≤ τ2F(Vi ,Vj ,β) < 0

}
+1

{
τ̂2(Vi ,Vj ,β) ≥ −bn , τ2F(Vi ,Vj ,β) < −2bn

}
+1

{
τ̂2(Vi ,Vj ,β) < −bn , τ2F(Vi ,Vj ,β) ≥ 0

}
≤1

{
−2bn ≤ τ2F(Vi ,Vj ,β) < 0

}
+1

{∣∣∣τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)
∣∣∣ ≥ bn}

(A-26)
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From here, we have,∣∣∣∣rT2
n,F(β)

∣∣∣∣
≤ 1
n · (n− 1)

n∑
i=1

∑
j,i

∣∣∣τ̂2(Vi ,Vj ,β)
∣∣∣ ·1 {
−2bn ≤ τ2F(Vi ,Vj ,β) < 0

}
+

1
n · (n− 1)

n∑
i=1

∑
j,i

∣∣∣τ̂2(Vi ,Vj ,β)
∣∣∣ ·1 {∣∣∣τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)

∣∣∣ ≥ bn}
≤ 1
n · (n− 1)

n∑
i=1

∑
j,i

(∣∣∣τ2(Vi ,Vj ,β)
∣∣∣+

∣∣∣τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)
∣∣∣) ·1 {

−2bn ≤ τ2F(Vi ,Vj ,β) < 0
}

+
1

n · (n− 1)

n∑
i=1

∑
j,i

∣∣∣τ̂2(Vi ,Vj ,β)
∣∣∣ ·1 {∣∣∣τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)

∣∣∣ ≥ bn}
Therefore,∣∣∣∣rT2

n,F(β)
∣∣∣∣

≤

2bn + sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣
×

1
n · (n− 1)

n∑
i=1

∑
j,i

1

{
−2bn ≤ τ2F(Vi ,Vj ,β) < 0

}

+ sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)
∣∣∣× 1
n · (n− 1)

n∑
i=1

∑
j,i

1

{∣∣∣τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)
∣∣∣ ≥ bn}

From here and the results in (A-24) and (A-25), uniformly over F , we have

sup
β∈Θ

∣∣∣∣rT2
n,F(β)

∣∣∣∣ ≤ (
2bn + op

( 1
n1/4+ϵ/2

))
× sup
β∈Θ

∣∣∣∣∣∣∣∣ 1
n · (n− 1)

n∑
i=1

∑
j,i

1

{
−2bn ≤ τ2F(Vi ,Vj ,β) < 0

}∣∣∣∣∣∣∣∣
+Op(1)× sup

β∈Θ

∣∣∣∣∣∣∣∣ 1
n · (n− 1)

n∑
i=1

∑
j,i

1

{∣∣∣τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)
∣∣∣ ≥ bn}

∣∣∣∣∣∣∣∣
(A-27)

Where ϵ > 0 is the constant described in Assumption 4. Let us analyze each term on the right

hand side of (A-27). In what follows, let V1,V2 be independent draws from the distribution F. For

a given β ∈Θ and b > 0, let

g2F(V1,V2,β,b) ≡ 1
2

(
1 {−2b ≤ τ2F(V1,V2,β) < 0}+1 {−2b ≤ τ2F(V2,V1,β) < 0}

)
.
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g2F(V1,V2,β,b) is symmetric in V1,V2 by construction. Note that

1
n · (n− 1)

n∑
i=1

∑
j,i

1

{
−2b ≤ τ2F(Vi ,Vj ,β) < 0

}
=

(
2
n

)−1 ∑
i<j

g2F(Vi ,Vj ,β,b) ≡ Sg2,n(β,b).

We will focus on the properties of the U-process
{
S
g
2,n(β,b) : β ∈Θ, 0 < b ≤ c0

2

}
, where c0 is the con-

stant described in Assumption 3. We will proceed by analyzing the Hoeffding decomposition (see

Serfling (1980, pages 177-178) or Sherman (1994, equations (6)-(7))) of Sg2,n(β,b). Let

µ
g
2F(β,b) ≡ EF [1 {−2b ≤ τ2F(V1,V2,β) < 0}] ,

Note that µg2F(β,b) = EF [g2F(V1,V2,β,b)] by symmetry. Let

g̃2F(V1,V2,β,b) ≡ g2F(V1,V2,β,b)−µg2F(β,b),

m̃1,F(V1,β,b) ≡ EF [g̃2F(V1,V2,β,b)|V1] ,

m̃2,F(V1,V2,β,b) ≡ g̃2F(V1,V2,β,b)− m̃1,F(V1,β,b)− m̃1,F(V2,β,b),

The Hoeffding decomposition of Sg2,n(β,b) (see Serfling (1980, pages 177-178) or Sherman (1994,

equations (6)-(7))) is given by,

S
g
2,n(β,b) = µg2F(β,b) +

2
n

n∑
i=1

m̃1,F(Vi ,β,b) +
(
n
2

)−1 ∑
i<j

m̃2,F(Vi ,Vj ,β,b). (A-28)

Let us analyze the second and third terms on the right-hand side of (A-28). By the properties of VC

classes of sets described, e.g, in Pakes and Pollard (1989, Lemma 2.5), the conditions described

in Assumption 3 imply that, for each F ∈ F , the following class of sets is a VC class, with VC

dimension uniformly bounded over F by a finite constant,

D
τ2
2,F ≡

{
(v1,v2) ∈RLv ×RLv : − c ≤ τ2F(v1,v2,β) < 0 for some 0 < c ≤ c0 and β ∈Θ

}
,

where the constant c0 is as described in Assumption 3. From here, the result in Pakes and Pollard

(1989, p. 1033) implies that there exist constants (A,V ) such that, for each F ∈ F , the class of

indicator functions,

MF ≡
{
m(v1,v2) = 1 {−c ≤ τ2F(v1,v2,β) < 0} for some 0 < c ≤ c0 and β ∈Θ

}
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is Euclidean (A,V ) for the constant envelope 1. From here and Sherman (1994, Lemma 5), the

conditions for Result A1 are satisfied and, from there, we obtain,

sup
β∈Θ

0<b≤ c02

∣∣∣1
n

∑n
i=1 m̃1,F(Vi ,β,b)

∣∣∣ =Op
(

1
n1/2

)

sup
β∈Θ

0<b≤ c02

∣∣∣∣∣∣(n2)−1∑
i<j
m̃2,F(Vi ,Vj ,β,b)

∣∣∣∣∣∣ =Op
(

1
n

)


uniformly over F . (A-29)

Combining (A-29) and (A-28), we have

S
g
2,n(β,b) = µg2F(β,b) + ξgn(β,b), where sup

β∈Θ
0<b≤ c02

∣∣∣ξgn(β,b)
∣∣∣ =Op

( 1
n1/2

)
, uniformly over F .

Next, recall that, from Assumption 5, there exists b0 > 0 and m <∞ such that,

sup
β∈Θ

∣∣∣µg2F(β,b)
∣∣∣ ≤m · b ∀ 0 < b ≤ b0, ∀ F ∈ F .

Next note that there exists n0 such that bn <
(
c0
2

)
∧ b0 for all n > n0. Therefore, for all n > n0,

sup
β∈Θ

∣∣∣∣∣∣∣∣ 1
n · (n− 1)

n∑
i=1

∑
j,i

1

{
−2bn ≤ τ2F(Vi ,Vj ,β) < 0

}∣∣∣∣∣∣∣∣ ≤m · bn + sup
β∈Θ

0<b≤ c02

∣∣∣ξgn(β,b)
∣∣∣ =O(bn) +Op

( 1
n1/2

)

= bn ×
(
O(1) + op

(
1

bn ·n1/2

))
= bn ×

(
O(1) + op(1)

)
=Op(bn), uniformly over F .

Thus, uniformly over F , we have

(
2bn + op

( 1
n1/4+ϵ/2

))
× sup
β∈Θ

∣∣∣∣∣∣∣∣ 1
n · (n− 1)

n∑
i=1

∑
j,i

1

{
−2bn ≤ τ2F(Vi ,Vj ,β) < 0

}∣∣∣∣∣∣∣∣ =
(
2bn + op

( 1
n1/4+ϵ/2

))
×Op(bn)

=Op
(
b2
n

)
+ op

(
bn

n1/4+ϵ/2

)
= op

( 1
n1/2+ϵ

)
,
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where ϵ > 0 is the constant described in Assumption 4 Going back to (A-27), this result implies

that, uniformly over F ,

sup
β∈Θ

∣∣∣∣rT2
n,F(β)

∣∣∣∣ ≤ (
2bn + op

( 1
n1/4+ϵ/2

))
× sup
β∈Θ

∣∣∣∣∣∣∣∣ 1
n · (n− 1)

n∑
i=1

∑
j,i

1

{
−2bn ≤ τ2F(Vi ,Vj ,β) < 0

}∣∣∣∣∣∣∣∣
+Op(1)× sup

β∈Θ

∣∣∣∣∣∣∣∣ 1
n · (n− 1)

n∑
i=1

∑
j,i

1

{∣∣∣τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)
∣∣∣ ≥ bn}

∣∣∣∣∣∣∣∣
=Op(1)× sup

β∈Θ

∣∣∣∣∣∣∣∣ 1
n · (n− 1)

n∑
i=1

∑
j,i

1

{∣∣∣τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)
∣∣∣ ≥ bn}

∣∣∣∣∣∣∣∣+ op
( 1
n1/2+ϵ

)
(A-30)

where ϵ > 0 is the constant described in Assumption 4. Take any C > 0 and any ∆ > 0. We have,

PF

sup
β∈Θ

∣∣∣∣∣∣∣∣ 1
n · (n− 1)

n∑
i=1

∑
j,i

1

{∣∣∣τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)
∣∣∣ ≥ bn}

∣∣∣∣∣∣∣∣ > C

n∆


≤ PF

 sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣ > bn


Since the bandwidth sequence bn satisfies n1/2 · hrn · bn −→ ∞ by Assumption 4, the result we ob-

tained in equation (A-12) yields,

sup
F∈F

PF

sup
β∈Θ

∣∣∣∣∣∣∣∣ 1
n · (n− 1)

n∑
i=1

∑
j,i

1

{∣∣∣τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)
∣∣∣ ≥ bn}

∣∣∣∣∣∣∣∣ > C

n∆

 −→ 0,

for any C > 0 and ∆ > 0. In particular, this holds for ∆ = 1/2 + ϵ, with ϵ > 0 being the the constant

described in Assumption 4. Therefore, under Assumptions 2, 3 and 4,

sup
β∈Θ

∣∣∣∣∣∣∣∣ 1
n · (n− 1)

n∑
i=1

∑
j,i

1

{∣∣∣τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)
∣∣∣ ≥ bn}

∣∣∣∣∣∣∣∣ = op
( 1
n1/2+ϵ

)
, uniformly over F .

(A-31)

Plugging (A-31) into (A-30), we obtain that, under Assumptions 2, 3, 4 and 5,

sup
β∈Θ

∣∣∣∣rT2
n,F(β)

∣∣∣∣ = op
( 1
n1/2+ϵ

)
, uniformly over F .
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Where ϵ > 0 is the constant described in Assumption 4. Since we defined rT2
n,F(β) ≡ T̂2(β) − T̃2(β),

with T̃2(β) ≡ 1
n·(n−1)

∑n
i=1

∑
j,i τ̂2(Vi ,Vj ,β) ·1

{
τ2F(Vi ,Vj ,β) ≥ 0

}
, we have that, under Assumptions 2,

3, 4 and 5,

T̂2(β) = T̃2(β) + rT2
n,F(β), where sup

β∈Θ

∣∣∣∣rT2
n,F(β)

∣∣∣∣ = op
( 1
n1/2+ϵ

)
, uniformly over F .

Where ϵ > 0 denotes the constant described in Assumption 4. Our next step is to analyze the

asymptotic properties of T̃2(β).

A3.4.1 Asymptotic properties of T̃2(β)T̃2(β)T̃2(β)

Denote (A)+ ≡max {A,0}. We have,

T̃2(β) ≡ 1
n · (n− 1)

n∑
i=1

∑
j,i

τ̂2(Vi ,Vj ,β) ·1
{
τ2F(Vi ,Vj ,β) ≥ 0

}
=

1
n · (n− 1)

n∑
i=1

∑
j,i

(
τ2F(Vi ,Vj ,β)

)
+

+
1

n · (n− 1)

n∑
i=1

∑
j,i

(
τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)

)
·1

{
τ2F(Vi ,Vj ,β) ≥ 0

}
For a pair v ≡ (x2,w1,w1), ṽ ≡ (x̃2, w̃1), denote,

I2F(v, ṽ,β) ≡ 1 {g1U (w̃1,β1) ≤ g1L(w1,β1)} ·1 {τ2F(v, ṽ,β) ≥ 0} ·φ2(v) ·φ2(ṽ). (A-32)

And, for a given v, ṽ ∈RLV ×RLV and β ∈Θ, let

δτ2
a,F(v, ṽ,β) ≡ (R2F(v)− (x′2β2 − x̃′2β2)Q2F(v)) · I2F(v, ṽ,β),

δτ2
b,F(v, ṽ,β) ≡ (R2F(ṽ)− (x̃′2β2 − x′2β2)Q2F(ṽ)) · I2F(v, ṽ,β),

δτ2
c,F(v, ṽ,β) ≡Q2F(ṽ) · I2F(v, ṽ,β),

δτ2
d,F(v, ṽ,β) ≡Q2F(v) · I2F(v, ṽ,β).

And let ϕQ2
F (u, ũ,h) and ϕR2

F (y2,u, ũ,h) be as defined in (A-22). As we defined previously, let us

group all the observable covariates in the model as Z ≡ (Y1,Y2,V ). For given (z, z̃, z̈) ∈ RLv+2 ×
R
Lv+2 ×RLv+2, β ∈Θ and h > 0, let

ϕτ2
F (z, z̃, z̈,β,h) ≡ δτ2

a,F(v, ṽ,β)ϕQ2
F (ÿ1, v̈, ṽ,h)− δτ2

b,F(v, ṽ,β)ϕQ2
F (ÿ1, v̈,v,h)

+ δτ2
c,F(v, ṽ,β)ϕR2

F (ÿ2, ÿ1, v̈,v,h)− δτ2
d,F(v, ṽ,β)ϕR2

F (ÿ2, ÿ1, v̈, ṽ,h)
(A-33)
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Note by inspection of the definitions in (A-22) that,

EF
[
ϕQ2
F (Y1,V ,v,h)

]
= 0, and EF

[
ϕR2
F (Y2,Y1,V ,v,h)

]
= 0 ∀ v ∈RLv , h > 0. (A-34)

Recall that we have defined µ2F(v) ≡ EF[Y2|V = v,Y1 = 1]. By the smoothness conditions in As-

sumption 2 and the kernel properties in Assumption 4, an Mth−order approximation implies that

there exists a finite B such that

ϕQ2
F (Y1,V ,v,hn) =Y1φ2(V )Γ (V ,v,hn)− hrvn ·φ2(v)fV ,1(v) +BQ2

n,F(v),

ϕR2
F (Y2,Y1,V ,v,hn) =Y2Y1φ2(V )Γ (V ,v,hn)− hrvn ·µ2F(v) ·φ2(v)fV ,1(v) +BR2

n,F(v),

where sup
v∈V

∣∣∣∣BQ2
n,F(v)

∣∣∣∣ ≤ B · hrv+M
n , sup

v∈V

∣∣∣∣BR2
n,F(v)

∣∣∣∣ ≤ B · hrv+M
n ∀ F ∈ F .

(A-35)

From (A-23), we have

T̃2(β) =
1

n · (n− 1)

n∑
i=1

∑
j,i

(
τ2F(Vi ,Vj ,β)

)
+

+
1

h
rv
n
· 1
n2 · (n− 1)

n∑
i=1

∑
j,i

n∑
k=1

ϕτ2
F (Zi ,Zj ,Zk ,β,hn) + ξ T̃2

a,n(β),

where sup
β∈Θ

∣∣∣∣∣ξ T̃2
a,n(β)

∣∣∣∣∣ = op
( 1
n1/2+ϵ

)
, uniformly over F .

(A-36)

Where ϵ > 0 denotes the constant described in Assumption 4. Let

Ua,n(β,h) ≡ 1
n · (n− 1) · (n− 2)

n∑
i=1

∑
j,i

∑
k,i,j

ϕτ2
F (Zi ,Zj ,Zk ,β,h),

Ub,n(β,h) ≡ 1
n · (n− 1)

n∑
i=1

∑
j,i

(
ϕτ2
F (Zi ,Zj ,Zi ,β,h) +ϕτ2

F (Zi ,Zj ,Zj ,β,h)
)

Then, (A-36) can be re-expressed as,

T̃2(β) =
1

n · (n− 1)

n∑
i=1

∑
j,i

(
τ2F(Vi ,Vj ,β)

)
+

+
(n− 2)
n
· 1

h
rv
n
·Ua,n(β,hn) +

1

n · hrvn
·Ub,n(β,hn) + ξ T̃2

a,n(β),

where sup
β∈Θ

∣∣∣∣∣ξ T̃2
a,n(β)

∣∣∣∣∣ = op
( 1
n1/2+ϵ

)
, uniformly over F .

(A-37)

Where ϵ > 0 is the constant described in Assumption 4. Recall from Assumption 3 that the class

of sets

C ≡
{
(w1,w1) ∈RdU ×RdL : g1U (w1,β1) ≤ g1L(w1,β1) for some β1 ∈Θ

}
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is a VC class with VC dimension V C , and that the following is a VC class of sets for each F, with

VC dimension uniformly bounded over F by a finite constant V D ,

D
τ2
1,F ≡

{
(v1,v2) ∈RLv ×RLv : τ2F(v1,v2,β) ≥ 0 for some β ∈Θ

}
Going back to the definition of I2F in equation (A-32), these VC properties imply, by the results in

Pakes and Pollard (1989, p. 1033) (the result that classes of indicator functions over VC classes of

sets are Euclidean (A,V ), with (A,V ) depending only on the VC-dimension of the underlying class

of sets), and Pakes and Pollard (1989, Lemma 2.14) (the product of Euclidean classes of functions

is also a Euclidean class) that there exist constants (A,V ) such that, for each F ∈ F , the class of

indicator functions

I2,F ≡ {m(v, ṽ) = I2F(v, ṽ,β) : β ∈Θ} , (A-38)

is Euclidean (A,V ) for the constant envelope 1. From here, let ϕτ2
F be as defined in (A-33) and

consider the class of functions,

H2,F ≡
{
m(z1, z2, z3) = ϕτ2

F (z1, z2, z3,β,h) : β ∈Θ, h > 0
}
. (A-39)

By the conditions in Assumptions 2, 3 and 4 (the bounded properties of the functionals involved,

the bounded-variation properties of the weight function φ2(·) and the kernel K(·), and the VC

property of the classes of sets involved, which led to the Euclidean property of the class of func-

tions described in equation (A-38)), by Nolan and Pollard (1987, Lemma 22) and Pakes and Pollard

(1989, Lemma 2.14), there exist constants (A,V ) such that H1,F is Euclidean (A,V ) for all F ∈ F ,

for an envelope of the form H1 =D1 +D2 · |Y2|, where D1 and D2 are constant for all F. Since there

exists a finite constant D4 such that EF[|Y2|4] ≤ D4 for all F ∈ F by Assumption 3, Result A1 can

be used to show that,

sup
β∈Θ
h>0

∣∣∣Ub,n(β,h)
∣∣∣ =Op(1), uniformly over F .

Therefore, using the bandwidth convergence conditions described in Assumption 4, equation

(A-37) becomes,

T̃2(β) =
1

n · (n− 1)

n∑
i=1

∑
j,i

(
τ2F(Vi ,Vj ,β)

)
+

+
(n− 2)
n
· 1

h
rv
n
·Ua,n(β,hn) + ξ T̃2

b,n(β),

where sup
β∈Θ

∣∣∣∣∣ξ T̃2
b,n(β)

∣∣∣∣∣ =Op

(
1

n · hrvn

)
+ op

( 1
n1/2+ϵ

)
= op

( 1
n1/2+ϵ

)
, uniformly over F .

(A-40)

Where ϵ > 0 is the constant described in Assumption 4. Next we focus on the Hoeffding decompo-

sition (see Serfling (1980, pages 177-178) or Sherman (1994, equations (6)-(7))) of Ua,n(β,hn). In
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what follows, let Z1,Z2,Z3 be iid draws from the distribution F. Let

ϕτ2
F (Z1,Z2,Z3,β,h) ≡ 1

3!

∑
p

ϕτ2
F (Zm1

,Zm2
,Zm3

,β,h), (A-41)

where
∑
p

denotes the sum over the 3! permutations (m1,m2,m3) of (1,2,3). By construction,

ϕτ2
F (Z1,Z2,Z3,β,h) is symmetric in (Z1,Z2,Z3), and Ua,n(β,h) can be expressed as,

Ua,n(β,h) =
(
n
3

)−1 ∑
i<j<k

ϕτ2
F (Z1,Z2,Z3,β,h).

Note from (A-34) that EF
[
ϕτ2
F (Z1,Z2,Z3,β,h)

]
= EF

[
ϕτ2
F (Z1,Z2,Z3,β,h)

]
= 0. For a given (z, z̃, z̈), let

mτ2
1F(z,β,h) ≡ EF

[
ϕτ2
F (z,Z2,Z3,β,h)

]
,

mτ2
2F(z,z′ ,β,h) ≡ EF

[
ϕτ2
F (z,z′ ,Z3,β,h)

]
−mτ2

1F(z,β,h)−mτ2
1F(z′ ,β,h),

m3F(z, z̃, z̈,β,h) ≡ ϕτ2
F (z, z̃, z̈,β,h)−mτ2

2F(z,z′ ,β,h)−mτ2
2F(z,z′′ ,β,h)−mτ2

2F(z′ , z′′ ,β,h)

−mτ2
1F(z,β,h)−mτ2

1F(z′ ,β,h)−mτ2
1F(z′′ ,β,h)

Let,

Sτ2
2,n(β,h) ≡

(
n
2

)−1 ∑
i<j

mτ2
2F(Zi ,Zj ,β,h), Sτ2

3,n(β,h) ≡
(
n
3

)−1 ∑
i<j<k

mτ2
3F(Zi ,Zj ,Zk ,β,h)

The Hoeffding decomposition of Ua,n(β,hn) (see Serfling (1980, pages 177-178) or Sherman (1994,

equations (6)-(7))) is given by,

Ua,n(β,hn) =
3
n

n∑
i=1

mτ2
1F(Zi ,β,hn) + 3 · Sτ2

2,n(β,hn) + Sτ2
3,n(β,hn) (A-42)

{
Sτ2

2,n(β,h) : β ∈Θ,h > 0
}

is a degenerate U-process of order 2 and
{
Sτ2

3,n(β,h) : β ∈Θ,h > 0
}

is a de-

generate U-process of order 3. The Euclidean properties of the class of functions H2,F defined in

(A-39) and described above yield, via Result A1,

sup
β∈Θ
h>0

∣∣∣Sτ2
2,n(β,h)

∣∣∣ =Op
(1
n

)
, and

∣∣∣Sτ2
3,n(β,h)

∣∣∣ =Op
( 1
n3/2

)
, uniformly over F .
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Therefore, combining (A-42) and (A-40), we have,

T̃2(β) =
1

n · (n− 1)

n∑
i=1

∑
j,i

(
τ2F(Vi ,Vj ,β)

)
+

+
(n− 2)
n
· 3
n

n∑
i=1

mτ2
1F(Zi ,β,hn)

h
rv
n

+ ξ T̃2
c,n(β),

where sup
β∈Θ

∣∣∣∣∣ξ T̃2
c,n(β)

∣∣∣∣∣ =Op

(
1

n · hrvn

)
+ op

( 1
n1/2+ϵ

)
= op

( 1
n1/2+ϵ

)
, uniformly over F .

(A-43)

Where ϵ > 0 denotes the constant described in Assumption 4. Let us turn our attention to

mτ2
1F(Zi ,β,hn). Recall from (A-33) that,

ϕτ2
F (Zi ,Zj ,Zk ,β,h) ≡ δτ2

a,F(Vi ,Vj ,β)ϕQ2
F (Y1k ,Vk ,Vj ,h)− δτ2

b,F(Vi ,Vj ,β)ϕQ2
F (Y1k ,Vk ,Vi ,h)

+ δτ2
c,F(Vi ,Vj ,β)ϕR2

F (Y2k ,Y1k ,Vk ,Vi ,h)− δτ2
d,F(Vi ,Vj ,β)ϕR2

F (Y2k ,Y1k ,Vk ,Vj ,h)

where ϕQ2
F and ϕR2

F are as described in (A-22) and δτ2
a,F , δτ2

b,F , δτ2
c,F and δτ2

d,F are as described in

(A3.4.1). Note from (A-22) that,

EF
[
ϕQ2
F (Y1k ,Vk ,Vj ,h)|Zi ,Zj

]
= EF

[
ϕQ2
F (Y1k ,Vk ,Vi ,h)|Zi ,Zj

]
= 0,

EF
[
ϕR2
F (Y2k ,Y1k ,Vk ,Vi ,h)|Zi ,Zj

]
= EF

[
ϕR2
F (Y2k ,Y1k ,Vk ,Vj ,h)|Zi ,Zj

]
= 0.

Thus, from the definition of ϕτ2
F in (A-41), we have

mτ2
1F(Zi ,β,h) ≡ EF

[
ϕτ2
F (Zi ,Zj ,Zk ,β,h)

]
=

1
3!

(
EF

[
ϕτ2
F (Zj ,Zk ,Zi ,β,h)

∣∣∣Zi]+EF
[
ϕτ2
F (Zk ,Zj ,Zi ,β,h)

∣∣∣Zi])
(A-44)

As we defined in equation (29) prior to Assumption 2, for a given v ≡ (x2,w1,w1), let

ητ2
a,F(v,β) ≡ EF

[
(R2F(V )− (X ′2β2 − x′2β2)Q2F(V ))1 {g1U (w1,β1) ≤ g1L(W1,β1)}1 {τ2F(V ,v,β) ≥ 0}φ2(V )

]
,

ητ2
b,F(v,β) ≡ EF

[
(R2F(V )− (X ′2β2 − x′2β2)Q2F(V ))1 {g1U (W1,β1) ≤ g1L(w1,β1)}1 {τ2F(v,V ,β) ≥ 0}φ2(V )

]
,

ητ2
c,F(v,β) ≡ EF [Q2F(V )1 {g1U (W1,β1) ≤ g1L(w1,β1)}1 {τ2F(v,V ,β) ≥ 0}φ2(V )] ,

ητ2
d,F(v,β) ≡ EF [Q2F(V )1 {g1U (w1,β1) ≤ g1L(W1,β1)}1 {τ2F(V ,v,β) ≥ 0}φ2(V )]

Using iterated expectations, we have

EF
[
ϕτ2
F (Z1,Z2,Z3,β,hn)

∣∣∣Z3

]
=

EF
[
ητ2
a,F(V2,β)φ2(V2)ϕQ2

F (Y13,V3,V2,h)
∣∣∣Z3

]
−EF

[
ητ2
b,F(V1,β)φ2(V1)ϕQ2

F (Y13,V3,V1,h)
∣∣∣Z3

]
+EF

[
ητ2
c,F(V1,β)φ2(V1)ϕR2

F (Y23,Y13,V3,V1,h)
∣∣∣Z3

]
−EF

[
ητ2
d,F(V2,β)φ2(V2)ϕR2

F (Y23,Y13,V3,V2,h)
∣∣∣Z3

]
(A-45)
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We will analyze each of the terms on the right-hand side of (A-45). Using the result in (A-35), we

have

EF
[
ητ2
a,F(V2,β)φ2(V2)ϕQ2

F (Y13,V3,V2,hn)
∣∣∣Z3

]
=

EF
[
ητ2
a,F(V2,β)φ2(V2)Γ (V3,V2,hn)

∣∣∣V3

]
Y13φ2(V3)− hrvn ·EF

[
ητ2
a,F(V ,β)φ2(V )2fV ,1(V )

]
+EF

[
ητ2
a,F(V ,β)φ2(V )BQ2

n,F(V )
]
.

By the result shown in (A-35) and the boundedness conditions described in Assumption 2, there

exists a finite constant Da such that

sup
v∈RLv

β∈Θ

∣∣∣∣ητ2
a,F(v,β)φ2(v)BQ2

n,F(v)
∣∣∣∣ ≤Da · h

rv+M
n ∀ F ∈ F .

Next, by the smoothness conditions in Assumption 2 and the kernel properties in Assumption 4,

an Mth−order approximation implies that there exists a finite Ba such that,

EF
[
ητ2
a,F(V2,β)φ2(V2)Γ (V3,V2,hn)

∣∣∣V3

]
Y13φ2(V3) = hrvn · η

τ2
a,F(V3,β)φ2(V3)2Y13fV (V3) +Ban,F(V3,β)Y13φ2(V3),

where sup
v∈RLv

β∈Θ

∣∣∣Ban,F(v,β)φ2(v)
∣∣∣ ≤ Ba · hrV +M

n ∀ F ∈ F .

Combining these results, we obtain that, under Assumptions 2, 3 and 4, there exists a finite con-

stant C such that,

EF
[
ητ2
a,F(V2,β)φ2(V2)ϕQ2

F (Y13,V3,V2,hn)
∣∣∣Z3

]
=

h
rv
n ·

(
ητ2
a,F(V3,β)Y13fV (V3)φ2(V3)2 −EF

[
ητ2
a,F(V ,β)fV ,1(V )φ2(V )2

])
+ ξa,n(Y13,V3,β),

where sup
v∈RLv

β∈Θ

∣∣∣ξa,n(Y13,v,β)
∣∣∣ ≤ C · hrv+M

n ∀ F ∈ F .

Note by iterated expectations that EF
[
ητ2
a,F(V ,β)fV ,1(V )φ2(V )2

]
= EF

[
ητ2
a,F(V ,β)Y1fV (V )φ2(V )2

]
. There-

fore, the previous result becomes,

EF
[
ητ2
a,F(V2,β)φ2(V2)ϕQ2

F (Y13,V3,V2,hn)
∣∣∣Z3

]
=

h
rv
n ·

(
ητ2
a,F(V3,β)Y13fV (V3)φ2(V3)2 −EF

[
ητ2
a,F(V ,β)Y1fV (V )φ2(V )2

])
+ ξa,n(Y13,V3,β),

where sup
v∈RLv

β∈Θ

∣∣∣ξa,n(Y13,v,β)
∣∣∣ ≤ C · hrv+M

n ∀ F ∈ F .
(A-46)
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Analogous steps can be used to show that, under our assumptions,

EF
[
ητ2
b,F(V1,β)φ2(V1)ϕQ2

F (Y13,V3,V1,hn)
∣∣∣Z3

]
=

h
rv
n ·

(
ητ2
b,F(V3,β)Y13fV (V3)φ2(V3)2 −EF

[
ητ2
b,F(V ,β)Y1fV (V )φ2(V )2

])
+ ξb,n(Y13,V3,β),

where sup
v∈RLv

β∈Θ

∣∣∣ξb,n(Y13,v,β)
∣∣∣ ≤ C · hrv+M

n ∀ F ∈ F .

Next, using again the result in (A-35), we have

EF
[
ητ2
c,F(V1,β)φ2(V1)ϕR2

F (Y23,Y13,V3,V1,hn)
∣∣∣Z3

]
=

EF
[
ητ2
c,F(V1,β)φ2(V1)Γ (V3,V1,hn)

∣∣∣V3

]
Y23Y13φ2(V3)− hrvn ·EF

[
ητ2
c,F(V ,β)φ2(V )2µ2F(V )fV ,1(V )

]
+EF

[
ητ2
c,F(V ,β)φ2(V )BR2

n,F(V )
]
.

By the result shown in (A-35) and the boundedness conditions described in Assumption 2, there

exists a finite constant Dc such that

sup
v∈RLv

β∈Θ

∣∣∣∣ητ2
c,F(v,β)φ2(v)BR2

n,F(v)
∣∣∣∣ ≤Dc · h

rv+M
n ∀ F ∈ F .

Next, by the smoothness conditions in Assumption 2 and the kernel properties in Assumption 4,

an Mth−order approximation implies that there exists a finite Bc such that,

EF
[
ητ2
c,F(V1,β)φ2(V1)Γ (V3,V1,hn)

∣∣∣V3

]
Y23Y13φ2(V3) = hrvn · η

τ2
c,F(V3,β)Y23Y13fV (V3)φ2(V3)2

+Y23Y13B
c
n,F(V3,β)φ2(V3), where sup

v∈RLv

β∈Θ

∣∣∣Bcn,F(v,β)φ2(v)
∣∣∣ ≤ Bc · hrV +M

n ∀ F ∈ F .

By iterated expectations, EF
[
ητ2
c,F(V ,β)φ2(V )2µ2F(V )fV ,1(V )

]
= EF

[
ητ2
c,F(V ,β)φ2(V )2Y2Y1fV (V )

]
. Com-

bining the previous results, we obtain that, under Assumptions 2, 3 and 4, there exists a finite

constant C such that,

EF
[
ητ2
c,F(V1,β)φ2(V1)ϕR2

F (Y23,Y13,V3,V1,hn)
∣∣∣Z3

]
=

h
rv
n ·

(
ητ2
c,F(V3,β)Y23Y13fV (V3)φ2(V3)2 −EF

[
ητ2
c,F(V ,β)Y2Y1fV (V )φ2(V )2

])
+ ξc,n(Y23,Y13,V3,β),

where sup
v∈RLv

β∈Θ

∣∣∣ξc,n(Y23,Y13,v,β)
∣∣∣ ≤ C · hrv+M

n · |Y23| ∀ F ∈ F
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Analogous steps can be used to show that, under our assumptions,

EF
[
ητ2
d,F(V2,β)φ2(V2)ϕR2

F (Y23,Y13,V3,V2,h)
∣∣∣Z3

]
=

h
rv
n ·

(
ητ2
d,F(V3,β)Y23Y13fV (V3)φ2(V3)2 −EF

[
ητ2
d,F(V ,β)Y2Y1fV (V )φ2(V )2

])
+ ξd,n(Y23,Y13,V3,β),

where sup
v∈RLv

β∈Θ

∣∣∣ξd,n(Y23,Y13,v,β)
∣∣∣ ≤ C · hrv+M

n · |Y23| ∀ F ∈ F

(A-47)

Let

HT2
2F(Zi ,β) ≡

((
ητ2
a,F(Vi ,β)− ητ2

b,F(Vi ,β)
)
·Y1i +

(
ητ2
c,F(Vi ,β)− ητ2

d,F(Vi ,β)
)
·Y2iY1i

)
· fV (Vi) ·φ2(Vi)

2

−EF
[((
ητ2
a,F(V ,β)− ητ2

b,F(V ,β)
)
·Y1 +

(
ητ2
c,F(V ,β)− ητ2

d,F(V ,β)
)
·Y2Y1

)
· fV (V ) ·φ2(V )2

]
.

(A-48)

Note that EF
[
HT2

2F(Z,β)
]

= 0. Combining the results in (A-46)-(A-47), we have that, under Assump-

tions 2, 3 and 4, there exists a finite constant C such that,

EF
[
ϕτ2
F (Zj ,Zk ,Zi ,β,h)

∣∣∣Zi] = EF
[
ϕτ2
F (Zk ,Zj ,Zi ,β,h)

∣∣∣Zi] = hrv+M
n ·HT2

2F(Zi ,β) + ξe,n(Zi ,β),

where sup
β∈Θ

∣∣∣ξe,n(Zi ,β)
∣∣∣ ≤ C · hrv+M

n · |Y2i | ∀ F ∈ F

Plugging this result in to (A-44), we obtain,

1

h
rv
n
·mτ2

1F(Zi ,β,h) =
1
3!

(
EF

[
ϕτ2
F (Zj ,Zk ,Zi ,β,h)

∣∣∣Zi]+EF
[
ϕτ2
F (Zk ,Zj ,Zi ,β,h)

∣∣∣Zi])
=

2
3!
HT2

2F(Zi ,β) + ξf ,n(Zi ,β)

=
1
3
HT2

2F(Zi ,β) + ξf ,n(Zi ,β),

where sup
β∈Θ

∣∣∣ξf ,n(Zi ,β)
∣∣∣ ≤ C · hMn · |Y2i | ∀ F ∈ F .

(A-49)

By Assumption 3, there exists a finite constantD4 such that EF[|Y2|4] ≤D4 for all F ∈ F . Therefore,

using a Chebyshev inequality argument we have 1
n

∑n
i=1 |Y2i | =Op(1), uniformly over F , and from

the above results, we have

sup
β∈Θ

1
n

n∑
i=1

∣∣∣ξe,n(Zi ,β)
∣∣∣ =Op

(
h
rv+M
n

)
, uniformly over F .
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From here, plugging (A-49) into (A-43), we obtain

T̃2(β) =
1

n · (n− 1)

n∑
i=1

∑
j,i

(
τ2F(Vi ,Vj ,β)

)
+

+
(n− 2)
n
· 1
n

n∑
i=1

HT2
2F(Zi ,β) + ξ T̃2

d,n(β),

where sup
β∈Θ

∣∣∣∣∣ξ T̃2
d,n(β)

∣∣∣∣∣ =Op
(
h
rv+M
n

)
+ op

( 1
n1/2+ϵ

)
= op

( 1
n1/2+ϵ

)
, uniformly over F .

(A-50)

Where ϵ > 0 is the constant described in Assumption 4. Consider the class of functions,

H3,F ≡
{
m(z) =HT2

2F(z,β) : β ∈Θ
}
.

By Assumptions 2 and 3, there exist finite constants A4 and B4 such that, for all β,β′ ∈Θ,∣∣∣∣HT2
2F(z,β)−HT2

2F(z,β′)
∣∣∣∣ ≤ (

A4 +B4 · |y2|
)
·
∥∥∥β − β′∥∥∥ ∀ y2,v, ∀ F ∈ F .

From here, Pakes and Pollard (1989, Lemma 2.13) yields that there exist constants (A,V ) such

that, for each F ∈ F , the class of functions H3,F is Euclidean (A,V ) for the envelope H3(z) =∣∣∣∣HT2
2F(z,β0)

∣∣∣∣ +M3 ·
(
A4 +B4 · |y2|

)
, where β0 is an arbitrary point of Θ and M3 ≡ 2

√
k supβ

∥∥∥β − β0

∥∥∥
(recall that k ≡ dim(β)). By Assumptions 2 and 3, there exists a finite constant D3 such that

EF
[
H3(Z)4

]
≤ D3 for all F ∈ F . Thus, the conditions in Result A1 are satisfied and from there we

obtain,

sup
β∈Θ

∣∣∣∣∣∣∣1n
n∑
i=1

HT2
2F(Zi ,β)

∣∣∣∣∣∣∣ =Op
( 1
n1/2

)
, uniformly over F .

Plugging this result into (A-50), we obtain,

T̃2(β) =
1

n · (n− 1)

n∑
i=1

∑
j,i

(
τ2F(Vi ,Vj ,β)

)
+

+
1
n

n∑
i=1

HT2
2F(Zi ,β) + ξ T̃2

e,n(β),

where ξ T̃2
e,n(β) ≡ −

(2
n

)
· 1
n

n∑
i=1

HT2
2F(Zi ,β) + ξ T̃2

d,n(β), and

sup
β∈Θ

∣∣∣∣∣ξ T̃2
e,n(β)

∣∣∣∣∣ =Op
( 1
n3/2

)
+ op

( 1
n1/2+ϵ

)
= op

( 1
n1/2+ϵ

)
, uniformly over F ,

(A-51)

where ϵ > 0 is the constant described in Assumption 4. We move on to the last step and focus on
1

n·(n−1)
∑n
i=1

∑
j,i

(
τ2F(Vi ,Vj ,β)

)
+

and its Hoeffding decomposition. Let V1,V2 be iid draws from F

and recall that we defined

T2F(β) ≡ EF
[
(τ2F(V1,V2,β))+

]
.
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Let

HT2
1F(V1,β) ≡ 1

2
·
(
EF

[
(τ2F(V1,V2,β))+

∣∣∣V1

]
+EF

[
(τ2F(V2,V1,β))+

∣∣∣V1

])
−T2F(β) (A-52)

and note that EF
[
HT2

1F(V ,β)
]

= 0. Let

g̃T2
F (V1,V2,β) ≡

(1
2
·
(
(τ2F(V1,V2,β))+ + (τ2F(V2,V1,β))+

)
−T2F(β)

)
−HT2

1F(V1,β)−HT2
1F(V2,β),

ST2
2,n(β) ≡

(
n
2

)−1 ∑
i<j

g̃T2
F (Vi ,Vj ,β).

(A-53)

The Hoeffding decomposition of 1
n·(n−1)

∑n
i=1

∑
j,i

(
τ2F(Vi ,Vj ,β)

)
+

yields,

1
n · (n− 1)

n∑
i=1

∑
j,i

(
τ2F(Vi ,Vj ,β)

)
+

= T2F(β) +
2
n

n∑
i=1

HT2
1F(Vi ,β) + ST2

2,n(β) ≡
(
n
2

)−1 ∑
i<j

g̃T2
F (Vi ,Vj ,β).

(A-54)

We proceed by focusing on the degenerate U-process
{
ST2

2,n(β) : β ∈Θ
}
. Fix any finite M and con-

sider the class of functions,

H M
4 ≡

{
m(x2, x̃2) = α1 + (x2 − x̃2)′α2 : ∥(α1,α

′
2)′∥ ≤M

}
.

By Pakes and Pollard (1989, Example 2.9), there exist (A,V ) such that H4 is a Euclidean (A,V )

class of functions for envelope H(x2, x̃2) ≡M · (1∨ ∥x2 − x̃2∥). Now let

H4,F ≡{
m(v, ṽ) =

(
R2F(v)Q2F(ṽ)−R2F(ṽ)Q2F(v)− (x′2β2 − x̃′2β2)Q2F(v)Q2F(ṽ)

)
·φ2(v)φ2(ṽ) : β2 ∈Θ

}
.

Assumptions 2 and 3 imply that there existsM <∞ such that H4,F ⊆H M
4 for all F ∈ F . Therefore,

there exist constants (A,V ) such that H4,F is Euclidean (A,V ) for all F ∈ F . Next, recall from

Assumption 3 that the class of sets

C ≡
{
(w1,w1) ∈RdU ×RdL : g1U (w1,β1) ≤ g1L(w1,β1) for some β1 ∈Θ

}
is a VC class with VC dimension V C , and that the following is a VC class of sets for each F, with

VC dimension uniformly bounded over F by a finite constant V D ,

D
τ2
1,F ≡

{
(v1,v2) ∈RLv ×RLv : τ2F(v1,v2,β) ≥ 0 for some β ∈Θ

}
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These VC properties imply, by the results in Pakes and Pollard (1989, p. 1033) (the result that

classes of indicator functions over VC classes of sets are Euclidean (A,V ), with (A,V ) depending

only on the VC-dimension of the underlying class of sets), and Pakes and Pollard (1989, Lemma

2.14) (the product of Euclidean classes of functions is also a Euclidean class) that there exist con-

stants (A
′
,V
′
) such that, for each F ∈ F , the class of indicator functions

I4,F ≡
{
m(v, ṽ) = 1 {g1U (w̃1,β1) ≤ g1L(w1,β1)} ·1 {τ2F(v, ṽ,β) ≥ 0}

}
,

is Euclidean (A
′
,V
′
) for the constant envelope 1. Recall that

τ2F(v, ṽ,β) =(
(R2F(v)Q2F(ṽ)−R2F(ṽ)Q2F(v))− (x′2β2 − x̃′2β2)Q2F(v)Q2F(ṽ)

)
·1 {g1U (w̃1,β1) ≤ g1L(w1,β1)}

·φ2(v)φ2(ṽ).

and (τ2F(v, ṽ,β))+ ≡ τ2F(v, ṽ,β) ·1 {τ2F(v, ṽ,β) ≥ 0}. Using the Euclidean properties of the classes of

functions D
τ2
1,F and H4,F described above, applying Pakes and Pollard (1989, Lemma 2.14), there

exist constants (A2,V 2) such that, for each F ∈ F , the class of functions

G
τ2
F ≡

{
m(v, ṽ) = (τ2F(v, ṽ,β))+ : β ∈Θ

}
is Euclidean (A2,V 2) for an envelope of the form G(v1,v2) = C1 +C2 ·

∥∥∥x2 − x′2
∥∥∥ ·φ(v)φ(ṽ), where C1

and C2 are finite constants. From the conditions in Assumption 2, there exists a finite constant D

such that,

sup
x2,x̃2∈V×V
β2∈Θ

∣∣∣x′2β2 − x̃′2β2

∣∣∣ ≤D
Therefore, trivially there exists a constant µ4 such that EF

[
G(V1,V2)4

]
≤ µ4 ∀ F ∈ F , and the con-

ditions for Result A1 are satisfied, and from there we have that the degenerate U-process ST2
2,n(·)

defined in (A-53) satisfies,

sup
β∈Θ

∣∣∣∣ST2
2,n(β)

∣∣∣∣ =Op
(1
n

)
= op

( 1
n1/2+ϵ

)
, uniformly over F , (A-55)

where ϵ > 0 is the constant described in Assumption 4. Let HT2
2F(Zi ,β) be as defined in (A-48), and

denote

ψT2
F (Zi ,β) ≡ 2 ·HT2

1F(Vi ,β) +HT2
2F(Zi ,β). (A-56)
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Note that EF
[
ψT2
F (Z,β)

]
= 0. Plugging the result in (A-55) into (A-54) and (A-51), we obtain the

linear representation result for T̂2(β) given in part (A) of Lemma 1,

T̂2(β) = T2F(β) +
1
n

n∑
i=1

ψT2
F (Zi ,β) + ξT2

n (β), where sup
β∈Θ

∣∣∣∣ξT2
n (β)

∣∣∣∣ = op
( 1
n1/2+ϵ

)
, uniformly over F ,

where ϵ > 0 is the constant described in Assumption 4. This concludes the proof of part (A) of

Lemma 1. Part (B) is proved following analogous steps. Let

ητ1
a,F(w1,β1) ≡ EF [R1F(W1)1 {g1U (w1,β1) ≤ g1L(W1,β1)}1 {τ1F(W1,w1,β) ≥ 0}φ1(W1)] ,

ητ1
b,F(w1,β1) ≡ EF [R1F(W1)1 {g1U (W1,β1) ≤ g1L(w1,β1)}1 {τ1F(w1,W1,β) ≥ 0}φ1(W1)] ,

ητ1
c,F(w1,β1) ≡ EF [Q1F(W1)1 {g1U (W1,β1) ≤ g1L(w1,β1)}1 {τ1F(w1,W1,β) ≥ 0}φ1(W1)] ,

ητ1
d,F(w1,β1) ≡ EF [Q1F(W1)1 {g1U (w1,β1) ≤ g1L(W1,β1)}1 {τ1F(W1,w1,β) ≥ 0}φ1(W1)]

and,

HT1
1F(W1,β1) ≡ 1

2
·
(
EF

[
(τ1F(W1,W2,β1))+

∣∣∣W1

]
+EF

[
(τ1F(W2,W1,β1))+

∣∣∣W1

])
−T1F(β1),

HT1
2F(Zi ,β1) ≡

((
ητ1
a,F(W1i ,β1)− ητ1

b,F(W1i ,β1)
)

+
(
ητ1
c,F(W1i ,β1)− ητ1

d,F(W1i ,β1)
)
·Y1i

)
· fW1

(W1i) ·φ1(W1i)
2

−EF
[((
ητ1
a,F(W1,β1)− ητ1

b,F(W1,β1)
)

+
(
ητ1
c,F(W1,β1)− ητ1

d,F(W1,β1)
)
·Y1

)
· fW1

(W1) ·φ1(W1)2
]
,

ψT1
F (Zi ,β1) ≡ 2 ·HT1

1F(W1i ,β1) +HT1
2F(Zi ,β1).

(A-57)

Using parallel steps to the proof of part (A), we can show that,

T̂1(β1) = T1F(β1) +
1
n

n∑
i=1

ψT1
F (Zi ,β1) + ξT1

n (β1), where

sup
β1∈Θ

∣∣∣∣ξT1
n (β1)

∣∣∣∣ = op
( 1
n1/2+ϵ

)
, uniformly over F .

where ϵ > 0 is the constant described in Assumption 4. This is the result in part (B) of Lemma

1. Part (C) follows immediately from (A) and (B). This completes the proof of Lemma 1. ■

A4 Estimation of σ 2
F (β)σ 2
F (β)σ 2
F (β)

In this section we study the asymptotic properties of the estimator for σ2
F (β) ≡ EF[ψTF (Z,β)2] we

described in Section 3.9.1 of the paper. Our construction uses the structure of the influence func-

tion ψTF (z,β) in Lemma 1.
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A4.1 Estimation of the influence functionψTF (z,β)ψTF (z,β)ψTF (z,β)

We use sample analog estimators of the components described in the structure of the influence

functionψTF (z,β) in Lemma 1. We will describe separately how we estimatedψT2
F (z,β) andψT1

F (z,β1).

A4.1.1 Estimation ofψT2
F (z,β)ψT2
F (z,β)ψT2
F (z,β)

We construct our estimators using sample analogs. Based on the structure described in (A-52), for

a given (v,β), we estimate HT2
1F(v,β) as,

ĤT2
1 (v,β) ≡ 1

2
· 1
n

n∑
j=1

[
τ̂2(v,Vj ,β)1

{
τ̂2(v,Vj ,β) ≥ −bn

}
+ τ̂2(Vj ,v,β)1

{
τ̂2(Vj ,v,β) ≥ −bn

}]
− T̂2(β).

And, based on the structure described in (A-48), for a given z ≡ (y1, y2,v), we estimate HT2
2F(z,β) as,

ĤT2
2 (z,β) ≡

((
η̂τ2
a (v,β)− η̂τ2

b (v,β)
)
· y1 +

(
η̂τ2
c (v,β)− η̂τ2

d (v,β)
)
· y2y1

)
· f̂V (v) ·φ2(v)2

− 1
n

n∑
j=1

[((
η̂τ2
a (Vj ,β)− η̂τ2

b (Vj ,β)
)
·Y1j +

(
η̂τ2
c (Vj ,β)− η̂τ2

d (Vj ,β)
)
·Y2jY1j

)
· f̂V (Vj ) ·φ2(Vj )

2
]
.

(A-58)

From here, using the definition in (A-56), for a given z ≡ (y1, y2,v), we estimate ψT2
F (z,β) as

ψ̂T2(z,β) ≡ 2 · ĤT2
1 (v,β) + ĤT2

2 (z,β) (A-59)

Let us analyze ĤT2
1 (v,β) first. First, by the results in (A-17) and (A-18), we have

sup
v∈RLV

β∈Θ

∣∣∣∣∣∣∣∣ĤT2
1 (v,β)−

1
2
· 1
n

n∑
j=1

[(
τ2F(v,Vj ,β)

)
+

+
(
τ2F(Vj ,v,β)

)
+

]
−T2F(β)


∣∣∣∣∣∣∣∣ = op(1),

uniformly over F .

As we have pointed out previously (see equation A-16), by the conditions in Assumption 2, there

exists a finite constant τ2 such that sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ2F(v, ṽ,β)
∣∣∣ ≤ τ2 ∀ F ∈ F . By a Chebyshev inequal-

ity argument, this implies

sup
v∈RLV

β∈Θ

∣∣∣∣∣∣1n
n∑
j=1

[(
τ2F(v,Vj ,β)

)
+

+
(
τ2F(Vj ,v,β)

)
+

]
−EF

[
(τ2F(v,V ,β))+ + (τ2F(V ,v,β))+

]∣∣∣∣∣∣ = op(1),

uniformly over F .
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Combining both previous results, we obtain

sup
v∈RLV

β∈Θ

∣∣∣∣ĤT2
1 (v,β)−HT2

1F(v,β)
∣∣∣∣ = op(1), uniformly over F .

(A-60)

Next, we analyze ĤT2
2 (z,β). We begin by analyzing the estimators used in (A-58). Using the defi-

nitions in (29), we construct the estimators in on the right hand side of (A-58) as,

η̂τ2
a (v,β) ≡ 1

n

n∑
j=1

(
R̂2(Vj )−

(
X ′2jβ2 − x′2β2

)
Q̂2(Vj )

)
1

{
g1U (w1,β1) ≤ g1L(W1j ,β1)

}
φ2(Vj )

·1
{
τ̂2(Vj ,v,β) ≥ −bn

}
,

η̂τ2
b (v,β) ≡ 1

n

n∑
j=1

(
R̂2(Vj )−

(
X ′2jβ2 − x′2β2

)
Q̂2(Vj )

)
1

{
g1U (W1j ,β1) ≤ g1L(w1,β1)

}
φ2(Vj )

·1
{
τ̂2(v,Vj ,β) ≥ −bn

}
,

η̂τ2
c (v,β) ≡ 1

n

n∑
j=1

Q̂2(Vj )1
{
g1U (W1j ,β1) ≤ g1L(w1,β1)

}
φ2(Vj )1

{
τ̂2(v,Vj ,β) ≥ −bn

}
,

η̂τ2
d (v,β) ≡ 1

n

n∑
j=1

Q̂2(Vj )1
{
g1U (w1,β1) ≤ g1L(W1j ,β1)

}
φ2(Vj )1

{
τ̂2(Vj ,v,β) ≥ −bn

}
.

(A-61)

Let
ϕη

τ2
a (Zi ,Zj ,v,β,h) ≡

(
Y2i −

(
X ′2jβ2 − x′2β2

))
Y1iΓ (Vi ,Vj ,h)φ2(Vi)φ2(Vj )

·1
{
g1U (w1,β1) ≤ g1L(W1j ,β1)

}
,

ϕη
τ2
b (Zi ,Zj ,v,β,h) ≡

(
Y2i −

(
X ′2jβ2 − x′2β2

))
Y1iΓ (Vi ,Vj ,h)φ2(Vi)φ2(Vj )

·1
{
g1U (W1j ,β1) ≤ g1L(w1,β1)

}
,

ϕη
τ2
c (Zi ,Zj ,w1,β1,h) ≡ 1

{
g1U (W1j ,β1) ≤ g1L(w1,β1)

}
Y1iΓ (Vi ,Vj ,h)φ2(Vi)φ2(Vj ),

ϕη
τ2
d (Zi ,Zj ,w1,β1,h) ≡ 1

{
g1U (w1,β1) ≤ g1L(W1j ,β1)

}
Y1iΓ (Vi ,Vj ,h)φ2(Vi)φ2(Vj ),
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From the constructions of R̂2 and Q̂2 (see (27)), our estimators in (A-61) are,

η̂τ2
a (v,β) =

1
hrn
· 1
n(n− 1)

n∑
j=1

∑
i,j

ϕη
τ2
a (Zi ,Zj ,v,β,hn)1

{
τ̂2(Vj ,v,β) ≥ −bn

}
,

η̂τ2
b (v,β) =

1
hrn
· 1
n(n− 1)

n∑
j=1

∑
i,j

ϕη
τ2
b (Zi ,Zj ,v,β,hn)1

{
τ̂2(v,Vj ,β) ≥ −bn

}
,

η̂τ2
c (v,β) =

1
hrn
· 1
n(n− 1)

n∑
j=1

∑
i,j

ϕη
τ2
c (Zi ,Zj ,w1,β1,hn)1

{
τ̂2(v,Vj ,β) ≥ −bn

}
,

η̂τ2
d (v,β) =

1
hrn
· 1
n(n− 1)

n∑
j=1

∑
i,j

ϕη
τ2
d (Zi ,Zj ,w1,β1,hn)1

{
τ̂2(Vj ,v,β) ≥ −bn

}
.

(A-62)

If Assumptions 1-5 hold, we have

sup
v∈V
β∈Θ

∣∣∣η̂τ2
a (v,β)− ητ2

a,F(v,β)
∣∣∣ = op(1) sup

v∈V
β∈Θ

∣∣∣η̂τ2
b (v,β)− ητ2

a,F(v,β)
∣∣∣ = op(1)

sup
v∈V
β∈Θ

∣∣∣η̂τ2
c (v,β)− ητ2

a,F(v,β)
∣∣∣ = op(1) sup

v∈V
β∈Θ

∣∣∣η̂τ2
d (v,β)− ητ2

a,F(v,β)
∣∣∣ = op(1)


uniformly over F .

(A-63)

We will show the above result for η̂τ2
a (v,β). The proof for the remaining estimators in (A-63)

follows analogous steps. Our first step is to express,

η̂τ2
a (v,β) =

1
hrn
· 1
n(n− 1)

n∑
j=1

∑
i,j

ϕη
τ2
a (Zi ,Zj ,v,β,hn)1

{
τ2F(Vj ,v,β) ≥ 0

}
+ ξ

η
τ2
a
n (v,β), where

ξ
η
τ2
a
n (v,β) ≡ 1

hrn
· 1
n(n− 1)

n∑
j=1

∑
i,j

ϕη
τ2
a (Zi ,Zj ,v,β,hn)

(
1

{
τ̂2(Vj ,v,β) ≥ −bn

}
−1

{
τ2F(Vj ,v,β) ≥ 0

})
(A-64)

We will first show that sup
v∈V
β∈Θ

|ξη
τ2
a
n (v,β)| = op(1), uniformly over F . Note first that, as we pointed out

in equations (A-15) and (A-26), we have∣∣∣∣1 {
τ̂2(Vj ,v,β) ≥ −bn

}
−1

{
τ2F(Vj ,v,β) ≥ 0

}∣∣∣∣
≤ 1

{∣∣∣τ̂2(Vj ,v,β)− τ2F(Vj ,v,β)
∣∣∣ ≥ bn}+1

{
−2bn ≤ τ2F(Vj ,v,β) < 0

}
.

Next, recall from Assumption 2 that, there exists a finite constantD such that,
∣∣∣x′2β2

∣∣∣ ≤D ∀ (x2,β2) ∈
V ×Θ. Combined with the bounded properties of the weight function φ2(·) and the kernel K(·),
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Assumption 2 implies,

∣∣∣ξητ2an (v,β)
∣∣∣ ≤  1

hrn
· 1
n

n∑
j=1

(
1

{∣∣∣τ̂2(Vj ,v,β)− τ2F(Vj ,v,β)
∣∣∣ ≥ bn}+1

{
−2bn ≤ τ2F(Vj ,v,β) < 0

})
×φ2

K

 1
n− 1

∑
i,j

|Y2i |+ 2D


(A-65)

By Assumption 3, there exists D4 <∞ such that EF[|Y2|4] ≤ D4 for all F ∈ F . Therefore, a Cheby-

shev inequality argument yields,

1
n− 1

∑
i,j

|Y2i | =Op(1), uniformly over F . (A-66)

Take any δ > 0, note that

PF

sup
v∈V
β∈Θ

∣∣∣∣∣∣∣∣ 1
hrn
· 1
n

n∑
j=1

1

{∣∣∣τ̂2(Vj ,v,β)− τ2F(Vj ,v,β)
∣∣∣ ≥ bn}

∣∣∣∣∣∣∣∣ > δ
 ≤ PF

 sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣ > bn


From equation (A-12),

sup
F∈F

PF

 sup
v,ṽ∈RLV ×RLV

β∈Θ

∣∣∣τ̂2(v, ṽ,β)− τ2F(v, ṽ,β)
∣∣∣ > bn

 −→ 0.

Therefore,

1
hrn
· 1
n

n∑
j=1

1

{∣∣∣τ̂2(Vj ,v,β)− τ2F(Vj ,v,β)
∣∣∣ ≥ bn} = op(1), uniformly over F . (A-67)

Next, for a given (v,β) and c > 0, let

m
η
τ2
a

F (v,β,c) ≡ 1
n

n∑
j=1

(
1

{
−c ≤ τ2F(Vj ,v,β) < 0

}
−EF

[
1

{
−c ≤ τ2F(Vj ,v,β) < 0

}])
.

Note that,

1
hrn
· 1
n

n∑
j=1

1

{
−2bn ≤ τ2F(Vj ,v,β) < 0

}
=

1
hrn
·mη

τ2
a

F (v,β,2bn)+
1
hrn
EF [1 {−2bn ≤ τ2F(V ,v,β) < 0}] . (A-68)
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By the properties of VC classes of sets described, e.g, in Pakes and Pollard (1989, Lemma 2.5), the

conditions described in Assumption 3 imply that, for each F ∈ F , the following class of sets is a

VC class, with VC dimension uniformly bounded over F by a finite constant,

C
τ2
2,F ≡

{
v ∈RLv : − c ≤ τ2F(v,u,β) < 0 for some 0 < c ≤ c0, u ∈ V , and β ∈Θ

}
,

where the constant c0 is as described in Assumption 3. From here, the result in Pakes and Pollard

(1989, p. 1033) implies that there exist constants (A,V ) such that, for each F ∈ F , the class of

indicator functions,

HF ≡
{
m(u) = 1 {−c ≤ τ2F(v,u,β) < 0} for some 0 < c ≤ c0, u ∈ V and β ∈Θ

}
is Euclidean (A,V ) for the constant envelope 1. From here and Sherman (1994, Lemma 5), the

conditions for Result A1 are satisfied and, from there, we obtain,

sup
β∈Θ
v∈V

0<c≤c0

∣∣∣∣∣∣∣1n
n∑
i=1

m
η
τ2
a

F (v,β,c)

∣∣∣∣∣∣∣ =Op
( 1
n1/2

)
, uniformly over F .

For n large enough, we have 2bn ≤ c0. Therefore, by the above result and the condition in part (ii)

of Assumption 5, equation (A-68) yields,

1
hrn
· sup
v∈V
β∈Θ

1
n

n∑
j=1

1

{
−2bn ≤ τ2F(Vj ,v,β) < 0

}
≤Op

(
1

hrn ·n1/2

)
+ 2m · bn

hrn
= op(1), uniformly over F

(A-69)

where m is the constant described in Assumption 5. The last line follows from the bandwidth

convergence conditions in Assumption 4, which require hrn · n1/2 → ∞ and bn
hrn
→ 0. Combining

(A-65), (A-66), (A-67), and (A-69), we have

sup
v∈V
β∈Θ

∣∣∣ξητ2an (v,β)
∣∣∣ = op(1), uniformly over F .

Plugging this into (A-64), we obtain,

η̂τ2
a (v,β) =

1
hrn
· 1
n(n− 1)

n∑
j=1

∑
i,j

ϕη
τ2
a (Zi ,Zj ,v,β,hn)1

{
τ2F(Vj ,v,β) ≥ 0

}
+ ξ

η
τ2
a
n (v,β),

where sup
v∈V
β∈Θ

∣∣∣ξητ2an (v,β)
∣∣∣ = op(1), uniformly over F .

(A-70)
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Next, let

U
η
τ2
a

n,F (v,β,h) ≡

1
n(n− 1)

n∑
j=1

∑
i,j

(
ϕη

τ2
a (Zi ,Zj ,v,β,h)1

{
τ2F(Vj ,v,β) ≥ 0

}
−EF

[
ϕη

τ2
a (Zi ,Zj ,v,β,h)1

{
τ2F(Vj ,v,β) ≥ 0

}])
.

We can rewrite (A-70) as,

η̂τ2
a (v,β) =

1
hrn
·Uη

τ2
a

n,F (v,β,hn) +
1
hrn
·EF

[
ϕη

τ2
a (Zi ,Zj ,v,β,hn)1

{
τ2F(Vj ,v,β) ≥ 0

}]
+ ξ

η
τ2
a
n (v,β) (A-71)

where, in the above expectation, Zi ,Zj are two independent draws from F. We will analyze

U
η
τ2
a

n,F (v,β,hn) first. Define the class of functions,

H
η
τ2
a

F ≡
{
m(z1, z2) = ϕη

τ2
a (z1, z2,u,β,h)1 {τ2F(v2,u,β) ≥ 0} for some u ∈ V , β ∈Θ, h > 0

}
Invoking arguments and results from empirical process theory we have used previously, the

smoothness, regularity and manageability conditions in Assumptions 2 and 3, and the bounded-

variation properties of the kernel described in Assumption 2 imply, by Pakes and Pollard (1989,

Lemma 2.14), that there exist constants (A2,V 2) such that, for each F ∈ F , the class of functions

H
η
τ2
a

F is Euclidean (A2,V 2) for an envelope G2(z1, z2) such that there exists a constant C2 <∞ for

which EF[G2(Z1,Z2)4] ≤ C2 for all F ∈ F . Thus, the conditions in Result A1 are satisfied and from

there we obtain,

sup
β∈Θ
v∈V

∣∣∣∣∣Uη
τ2
a

n,F (v,β,hn)
∣∣∣∣∣ =Op

( 1
n1/2

)
, uniformly over F (A-72)

Next, using an Mth−order approximation, the smoothness conditions in Assumption 2, and the

bias-reducing properties of the kernel described in Assumption 4 imply that there exists a con-

stant B
η
τ2
a <∞ such that,

1
hrn
·EF

[
ϕη

τ2
a (Zi ,Zj ,v,β,hn)1

{
τ2F(Vj ,v,β) ≥ 0

}]
= ητ2

a,F(v,β) +B
η
τ2
a
n (v,β)︸    ︷︷    ︸

bias

,

where sup
β∈Θ
v∈V

∣∣∣Bητ2an (v,β)
∣∣∣ ≤ Bητ2a · hMn ∀ F ∈ F

(A-73)
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Plugging (A-72) and (A-73) into (A-71), we obtain

sup
β∈Θ
v∈V

∣∣∣η̂τ2
a (v,β)− ητ2

a,F(v,β)
∣∣∣ ≤ 1

hrn
· sup
β∈Θ
v∈V

∣∣∣∣∣Uη
τ2
a

n,F (v,β,hn)
∣∣∣∣∣+ sup

β∈Θ
v∈V

∣∣∣Bητ2an (v,β)
∣∣∣

=Op

(
1

hrn ·n1/2

)
+O

(
hMn

)
= op(1), uniformly over F .

which proves the claim in (A-63) for η̂τ2
a (v,β). Using our assumptions, proving the claim in (A-63)

for η̂τ2
b (v,β), η̂τ2

c (v,β) and η̂τ2
d (v,β) follows analogous steps.

Let us continue with f̂V (v), which is also used in (A-58). As we have detailed before, for a given

v, we have

f̂V (v) ≡ 1
hrn
· 1
n

n∑
i=1

Γ (Vi ,v,hn).

A result we have used previously is that, by Nolan and Pollard (1987, Lemma 22) (or Pakes and

Pollard (1989, Example 10)), the bounded variation nature of our kernel implies that the class of

functions
{
m(v) = k

(
v−u
h

)
for some u ∈R, h > 0

}
is Euclidean (Ak ,Vk) for the constant envelope k

(neither (Ak ,Vk), nor k depend on F). From here and Sherman (1994, Lemma 5), the following

empirical process satisfies the conditions of Result A1,

ν
fV
n (v) ≡ 1

n

n∑
i=1

(Γ (Vi ,v,hn)−EF [Γ (Vi ,v,hn)]) ,

and we have, sup
v∈RLV

∣∣∣∣νfVn (v)
∣∣∣∣ = Op

(
1
n1/2

)
, uniformly over F . Next, using an Mth−order approxima-

tion, the smoothness conditions in Assumption 2, and the bias-reducing properties of the kernel

described in Assumption 4 imply that there exists a constant B
fv <∞ such that,

1
hrn
·EF [Γ (Vi ,v,hn)] = fV (v) +BfVn (v)︸︷︷︸

bias

,

where sup
v∈V

∣∣∣∣BfVn (v)
∣∣∣∣ ≤ Bfv · hMn ∀ F ∈ F

Combining these results, we have

sup
v∈V

∣∣∣∣f̂V (v)− fV (v)
∣∣∣∣ ≤ 1

hrn
· sup
v∈V

∣∣∣∣νfVn (v)
∣∣∣∣+ sup

v∈V

∣∣∣∣BfVn (v)
∣∣∣∣

=Op

(
1

hrn ·n1/2

)
+O

(
hMn

)
= op(1), uniformly over F .

(A-74)
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Plugging in the results in (A-63) and (A-74) into (A-58), for any y1, y2, we have18

sup
β∈Θ
v∈RLV

∣∣∣∣∣∣ĤT2
2 (z,β)−

((ητ2
a,F(v,β)− ητ2

b,F(v,β)
)
· y1 +

(
ητ2
c,F(v,β)− ητ2

d,F(v,β)
)
· y2y1

)
· fV (v) ·φ2(v)2

− 1
n

n∑
j=1

[((
ητ2
a,F(Vj ,β)− ητ2

b,F(Vj ,β)
)
·Y1j +

(
ητ2
c,F(Vj ,β)− ητ2

d,F(Vj ,β)
)
·Y2jY1j

)
· fV (Vj ) ·φ2(Vj )

2
]

∣∣∣∣∣∣ = op(1),

uniformly over F .
(A-75)

By the conditions of Assumption 2, there exists a µτ2
4 such that,

sup
β∈Θ

EF

[∣∣∣∣∣((ητ2
a,F(V ,β)− ητ2

b,F(V ,β)
)
·Y1 +

(
ητ2
c,F(V ,β)− ητ2

d,F(V ,β)
)
·Y2Y1

)
· fV (V ) ·φ2(V )2

∣∣∣∣∣4] ≤ µτ2
4

∀ F ∈ F .

From here, a Chebyshev inequality argument yields,

sup
β∈Θ

∣∣∣∣∣∣1n
n∑
j=1

[((
ητ2
a,F(Vj ,β)− ητ2

b,F(Vj ,β)
)
·Y1j +

(
ητ2
c,F(Vj ,β)− ητ2

d,F(Vj ,β)
)
·Y2jY1j

)
· fV (Vj ) ·φ2(Vj )

2
]

−EF
[((
ητ2
a,F(V ,β)− ητ2

b,F(V ,β)
)
·Y1 +

(
ητ2
c,F(V ,β)− ητ2

d,F(V ,β)
)
·Y2Y1

)
· fV (V ) ·φ2(V )2

]
= op(1),

uniformly over F .

Plugging in this result into (A-75), we have that for any y1, y2,

sup
β∈Θ
v∈RLV

∣∣∣∣ĤT2
2 (z,β)−HT2

2F(z,β)
∣∣∣∣ = op(1), uniformly over F .

(A-76)

Combining (A-60) and (A-76) with the definition of ψ̂T2(z,β) in (A-59), for any y1, y2, under As-

sumptions 1-5, we have

sup
β∈Θ
v∈RLV

∣∣∣∣ψ̂T2(z,β)−ψT2
F (z,β)

∣∣∣∣ = op(1), uniformly over F (A-77)

18Note that the presence of the weight function φ2(v), which is zero for all v < V , implies that the results in (A-63)
and (A-74), which hold uniformly over v ∈ V , immediately produce the result in (A-75), which holds uniformly over
v ∈RLV (since any v < V is trimmed away by φ2(·)).
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A4.1.2 Estimation ofψT1
F (z,β1)ψT1
F (z,β1)ψT1
F (z,β1)

As in our estimation of ψT2
F (z,β), we proceed using sample analogs based on the definition of

ψT1
F (z,β1). Based on the structure described in (A-57), for a given (w1,β1), we estimate HT1

1F(w1,β1)
as,

ĤT1
1 (w1,β1) ≡1

2
· 1
n

n∑
j=1

[
τ̂1(w1,W1j ,β1)1

{
τ̂1(w1,W1j ,β1) ≥ −bn

}
+ τ̂1(W1j ,w1,β1)1

{
τ̂1(W1j ,w1,β1) ≥ −bn

}]
− T̂1(β1).

And, for a given z ≡ (y1, y2,w1), we estimate HT1
2F(z,β1) as,

ĤT1
2 (z,β1) ≡

((
η̂τ1
a (w1,β1)− η̂τ1

b (w1,β1)
)

+
(
η̂τ1
c (w1,β1)− η̂τ1

d (w1,β1)
)
· y1

)
· f̂W1

(w1) ·φ1(w1)2

− 1
n

n∑
j=1

[((
η̂τ1
a (W1j ,β1)− η̂τ1

b (W1j ,β1)
)

+
(
η̂τ1
c (W1j ,β1)− η̂τ1

d (W1j ,β1)
)
·Y1j

)
· f̂W1

(W1j ) ·φ1(W1j )
2
]

(A-78)

From here, using the definition in (A-57), for a given z, we estimate ψT1
F (z,β1) as

ψ̂T1(z,β1) ≡ 2 · ĤT1
1 (w1,β1) + ĤT1

2 (z,β1)

Using the definitions in (30), we construct the estimators on the right hand side of (A-78) as,

η̂τ1
a (w1,β1) ≡ 1

n

n∑
j=1

R̂1(W1j )1
{
g1U (w1,β1) ≤ g1L(W1j ,β1)

}
1

{
τ̂1(W1j ,w1,β) ≥ −bn

}
φ1(W1j ),

η̂τ1
b (w1,β1) ≡ 1

n

n∑
j=1

R̂1(W1j )1
{
g1U (W1j ,β1) ≤ g1L(w1,β1)

}
1

{
τ̂1(w1,W1j ,β) ≥ −bn

}
φ1(W1j ),

ητ1
c,F(w1,β1) ≡ 1

n

n∑
j=1

Q̂1(W1j )1
{
g1U (W1j ,β1) ≤ g1L(w1,β1)

}
1

{
τ̂1(w1,W1j ,β) ≥ −bn

}
φ1(W1j ),

ητ1
d,F(w1,β1) ≡ 1

n

n∑
j=1

Q̂1(W1j )1
{
g1U (w1,β1) ≤ g1L(W1j ,β1)

}
1

{
τ̂1(W1j ,w1,β) ≥ −bn

}
φ1(W1j )

(A-79)

Let

ϕη
τ1
a (Zi ,Zj ,w1,β1,h) ≡ 1

{
g1U (w1,β1) ≤ g1L(W1j ,β1)

}
Y1iΓ (W1i ,W1j ,h)φ1(W1i)φ1(W1j ),

ϕη
τ1
b (Zi ,Zj ,w1,β1,h) ≡ 1

{
g1U (W1j ,β1) ≤ g1L(w1,β1)

}
Y1iΓ (W1i ,W1j ,h)φ1(W1i)φ1(W1j ),

ϕη
τ1
c (Zi ,Zj ,w1,β1,h) ≡ 1

{
g1U (W1j ,β1) ≤ g1L(w1,β1)

}
Γ (W1i ,W1j ,h)φ1(W1i)φ1(W1j ),

ϕη
τ1
d (Zi ,Zj ,w1,β1,h) ≡ 1

{
g1U (w1,β1) ≤ g1L(W1j ,β1)

}
Γ (W1i ,W1j ,h)φ1(W1i)φ1(W1j ).
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From the constructions of R̂1 and Q̂1 (see (27)), our estimators in (A-79) are,

η̂τ1
a (w1,β1) =

1

hℓn
· 1
n(n− 1)

n∑
j=1

∑
i,j

ϕη
τ1
a (Zi ,Zj ,w1,β1,hn)1

{
τ̂1(W1j ,w1,β1) ≥ −bn

}
,

η̂τ1
b (w1,β1) =

1

hℓn
· 1
n(n− 1)

n∑
j=1

∑
i,j

ϕη
τ1
b (Zi ,Zj ,w1,β1,hn)1

{
τ̂1(w1,W1j ,β1) ≥ −bn

}
,

η̂τ1
c (w1,β1) =

1

hℓn
· 1
n(n− 1)

n∑
j=1

∑
i,j

ϕη
τ1
c (Zi ,Zj ,w1,β1,hn)1

{
τ̂1(w1,W1j ,β1) ≥ −bn

}
,

η̂τ1
d (w1,β1) =

1

hℓn
· 1
n(n− 1)

n∑
j=1

∑
i,j

ϕη
τ1
d (Zi ,Zj ,w1,β1,hn)1

{
τ̂1(W1j ,w1,β1) ≥ −bn

}
.

The above expressions are equivalent to those in (A-62). From here, using analogous arguments

to those we used in the steps from equation (A-60) to the final result in equation (A-77), we can

show that, for any y1, under Assumptions 1-5, we have

sup
β1∈Θ
v∈RLV

∣∣∣∣ψ̂T1(z,β1)−ψT1
F (z,β1)

∣∣∣∣ = op(1), uniformly over F (A-80)

A4.2 Estimation ofψTF (z,β)ψTF (z,β)ψTF (z,β)

The influence function ψTF (z,β) is defined in Lemma 1 as ψTF (z,β) ≡ ψT2
F (z,β) +ψT1

F (z,β1)). Accord-

ingly, we estimate it as ψ̂T (z,β) ≡ ψ̂T2(z,β) + ψ̂T1(z,β1)). From the results in (A-77) and (A-80), for

any y1, y2, we have

sup
β∈Θ
v∈RLV

∣∣∣ψ̂T (z,β)−ψTF (z,β)
∣∣∣ = op(1), uniformly over F (A-81)

A4.3 Our estimator for σ2
F (β)σ2
F (β)σ2
F (β)

We estimate σ2
F (β) ≡ EF[ψTF (Z,β)2] as

σ̂2(β) ≡ 1
n

n∑
i=1

ψ̂T (Zi ,β)2

Recall that Y1i ∈ {0,1} and also recall that, by Assumption 3, there exists a finite constant D4 such

that EF[|Y2|4] ≤ D4 for all F ∈ F . Combining this with the result in (A-81), we obtain that, under

Assumptions 1-5,

sup
β∈Θ

∣∣∣σ̂2(β)− σ2
F (β)

∣∣∣ = op(1), uniformly over F .
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This proves the claim in equation (40) in the paper. ■

A5 Conditions under which we can let κn→ 0κn→ 0κn→ 0

Assumption 6 allows for σ2
F (β) (the relevant measure of the contact sets in our problem) to become

arbitrarily close to zero over (Θ × F ) \ΛΘ,F . If we strengthen Assumption 6 to assume now that

σ2
F (β) is bounded away from zero uniformly over (Θ×F )\ΛΘ,F , we can replace our regularization

parameter κ with a positive sequence that vanishes asymptotically.

A5.1 A stronger version of Assumption 6

Suppose we replace Assumption 6 with the following stronger restriction.

Assumption 6’ (A stronger version of Assumption 6) There exist a B <∞ and C > 0 such that,

EF[|ψTF (Zi ,β)|3] ≤ B, and σ2
F (β) ≥ C ∀ (β,F) ∈ (Θ ×F ) \ΛΘ,F ■

The Berry-Esseen condition produced by Assumption 6, and the results in Theorem 1 still hold

under the stronger restrictions of Assumption 6’, but we now also have the following result. Take

any positive sequence κn → 0 such that κn · nϵ → ∞, with ϵ > 0 being the constant described in

Assumption 4. Note from (35) that,

sup
(β,F)∈Θ×F

∣∣∣∣∣∣ n1/2 · ξTn (β)
(σF(β)∨κn)

∣∣∣∣∣∣ = op

(
1

κn ·nϵ

)
= op(1). (A-82)

If Assumption 6’ holds, then for n large enough we have (σF(β)∨ κn) = σF(β) ∀ (β,F) ∈ (Θ × F ) \
ΛΘ,F . Thus, if we replace the constant regularization parameter κ > 0 with a sequence κn → 0

such that κn ·nϵ→∞ and define now,

tn(β) ≡
√
n · T̂ (β)

(σF(β)∨κn)
.

If we replace Assumption 6 with Assumption 6’, the results in equation (36) are strengthened to

the following,
(i) lim

n→∞
sup

(β,F)∈ΛΘ,F

PF (tn(β) > z1−α) = 0,

(ii) lim
n→∞

sup
(β,F)∈ΛΘ,F \ΛΘ,F

∣∣∣∣PF (tn(β) > z1−α)−α
∣∣∣∣ = 0.

(36’)

Thus, the test based on tn(β) would no longer be conservative if (β,F) are such that σF(β) < κ

when κ is a constant regularization parameter instead of a sequence vanishing to zero. All the
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remaining results regarding the construction of our confidence set remain valid.
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