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Abstract
This document includes the step-by-step proofs of Result 1 and Lemma 1 in the paper,
along with additional results and extensions referenced throughout the paper, such as
the description of our estimator for the variance of our test-statistic and its asymptotic
properties. Every section in this document has the format AX.X and every equation
has the format (A-XX). Any section or equation that we reference here which does not
have this format refers to a section or an equation in the paper.

A1 Proof of Result 1

The statements in Result 1 are a summary of the results described in equations (10), (11), (12), (13)
and (14) in the text. We will show here that these equations follow from the restrictions (R1), (R2),
(R3) and (R4). In what follows, (V;, V;) represent to independent draws from F. We begin with
equation (10). By restriction (R1), for any ; € ©, there exists d < d such that [d,d] C Supp(X{;p1)N
Supp(X{,p1)- From here, it follows that Pp(X 1U]/31 < X{;;B1) > 0 for all B; € ©. Next, also by
(R2), for any pair ; # B, in O, there exist ¢ < ¢ such that [¢,c] C Supp(X{; p11X]; 1, X{yp1) N
Supp(X] ;11X B1, X, ;P1)- Thus, from (R1) for any B, # B in ©, there exist ¢ < € such that, for
any € >0, if we let 0 <&’ <e AC—c, then Pp(X],,f < X{Ujﬁl <X{pr+¢€ 1U]ﬁ1 < Xleﬁl) > 0.
Since ¢’ < ¢, the event X{,,; < X{U].ﬁl < X{;;p1 + ¢ implies X[, < X{Ujﬁl < X{;;p1 +¢. Since
€ > 0 was arbitrary, The above yields PF(X{Liﬁl < XjyiBr < X{pp1+¢€ ,X{Ujﬁl < X{Liﬁl) >0
VY B1,p1 € O: 1 # p1, ¥V e > 0. Therefore, equation (10) follows from the restrictions in (R1).
We move on to proving equation (11). Take any f; € ©: f; # f19. By (R1) and part (i) of
(R2), 3 0> 0 such that Pp(X{ ;1 < X{p;81, X{1;B10 < Xjy ;P10 HE(X{y;P10) > He(X{p;10) +0) >
0. Let € = 0/3. By part (ii) of (R2), Pp(X U]ﬂl < XiiB1, X{iBio < X{Ujﬁlo , Hr(X 1Ujﬁ10) >
Hp(X{1:Pr0» mir(Wii < Hp(X{p;B10) + €, pap(Wij) > He(X{yy;B10 —€) > 0. Thus, PF(.”lF(Wli) <
p1r(Wij), X U]-[SI < X{Liﬁl) > 0. Since By # 19 was an arbitrary element in O, this immediately
implies Pr(p1p(Wii) < pr(Whj), X{;B1 < X{1;81) > 0¥ By € ©: By # pyo. Therefore, equation
(11) follows from restrictions (R1) and (R2).

1LDepartment of Economics, Pennsylvania State University, University Park, PA 16802, United States. Email:
aaradill@psu.edu



We move on to equation (12). Fix ¢ > 0. By the Lipschitz restriction in part (i) of (R3),
30>0:|u—-u'|<d = |Ap(u)— Ap(u’)| < €/3, and y restriction (R1) (and equation 10), we have
Pe(X{;;Pro—0< X{U]ﬁlo < X{;;B10) > 0. Next, by part (ii) of (R3), we also have Pr(Ap(X];;B10) —
€/3 < Ep[Ap(Xy;r10)lVi] < Ap(Xip;B10) s Ar(X{yB10) < Ep[Ap(Xy;B10)lVj] < Ap(X{y;pro) + €/3) >
0. Since € > 0 was arbitrary, it follows from here that, if restrictions (R1) and (R3) hold, we
have Pp(|Ep[Ar(X];B0)lVi] - Er[AR(X{;B0lVj]| < &, X{yiBro < X{,;B10) >0 Ve >0. This proves
the second part of equation (12). Now we prove the first part. By restriction (R1) and part
(i) of (R3) (strict monotonicity), there exists ¢ > 0 such that PF(X{Uj/Sm < Xi.B1 ,X{Ujﬁlo >
X{Po s /\F(X{Ujﬁlo) < Ap(X{;;B10) —€) > 0. Take any B; € © : B; # B19. Combining the pre-
vious result with part (ii) of (R3), this means that there exists ¢ > 0 such that PF(X{Uj[j’lo <

XipiB1 s X{yiBro > XipiPro, Ae(X{y;Bi0) < Ap(XipiPr0) — €, EF[Ap(X{;B10)lVj] < Ap(X{y;Bi0) +
/3, Ep[Ap(X{;Br0)IVi] > /\F(X{Llﬁlo) €/3) > 0. Thus, Pr(Ep[Ar( X1,/510)|V] > Ep[Ap(X{;B10)lV}]
1U]/31 < X{Llﬁl) > 0. Since 81 # 1o was an arbitrary element in ©, it follows that if restrictions
(Rl) and (R3) hold, Pe(Er[Ae(X{;B0)IVi] > ER[Ap(X{;B0)IV;], X{ i1 < X 1) >0V B €©: py =
B1o- This shows the first part of equation (12) and concludes the proof that both parts of this
equation hold.

We move on to proving equation (13). Take any f; € ©. From restriction (R1) and equation
(10), Pe(X] b < X{;;P1) > 0, and from restriction (R4), for this f; and any ¢ = 0, PF(Xéjéz >
XziélelU]ﬁl < X{;;$1) > 0 and PF(Xéjéz < Xéi62|X{Ujﬁ1 < X{;;B1) > 0. Combined, this implies
that, if restrictions (R1) and (R4) hold, Py(X; 102> X300, X{ i1 < X{;;p1) > 0 and P(X; 107 <
X307, X{U]./il < X{Lzﬁl) >0V B €0,V 6, #0. This proves equation (13). Finally, we move on
to proving equation (14). Recall first that, for any f,, we have p,p(V) - X}, = Ep[Ap(X] B10)IV] +

X3(B20—P2)- For any (B1, B2) # (B1o, B2o), there are two possible cases: (i) B2 # oo or (ii) B2 = f2o and
B1 # P1o- Let us begin with case (i). Take any (81, 82) € O such that §, # ;9. Combining restrictions
(R1) (equation (10)), and (R3) (equation (12)) with restriction (R4), there exists ¢ > 0 such that
Pe(IER[AR(X; Bro)lVil=Ep[Ap(X{;Bro)lVill < €, X5 (Bao—B2) > X5 (Bao—P2)+e€ , X[y i1 < Xip;B1) > 0
and, therefore, Pr(Ep[Ar(X{;B10)|Vi] + X3;(B20 — B2) > Ep[Ap(X;Pr0)lVi] + X5:(Bao = B2) » Xy ;B <

X{;;B1) > 0. Now, consider case (ii) and take any (f;,29) where p; € © and p1 # P1o- From the
first part of equation (12), we immediately have PF(EF[/\F( 1iBo)Vi] > Ep[Ap(X] /30 IVil, X{ ujb1 <

1Lzﬂ1) > 0. Combined, cases (i) and (ii) yield that, if restrictions (R1), (R3) and (R4) hold, then
Pe(Ep[Ap(X];B10)lVil + X5;(Bao = B2) > Ep[Ar(X{;B10)IVj] + X3 (Bao = B2) » X{yy;B1 < X{1;B1) > 0 for
any (B1, B2) # (B1o, f20)- From here, since ppp(V) = X382 = EF[Ar(X] f10)IV]+ X;(B20 — B2), we have
that, if restrictions (R1), (R3) and (R4) hold, then Pr(pr(V;) — X3; 82 > por(V) —Xé]-ﬁQ , X] uibr <

X{;;B1) > 0 for any (B1,B2) € O : (B1,B2) # (P10, P20)- This is exactly the claim in equation (14).
Therefore, we have shown that this equation follows from restrictions (R1), (R3) and (R4). This
concludes the proof that the results described in equations (10), (11), (12), (13) and (14) in the text
follow from restrictions (R1), (R2), (R3) and (R4). Since the statements in Result 1 are a summary



of the results in these equations, this concludes the proof of Result 1 m

Al1.1 Without an exclusion restriction between X, and Wj, the result in (13) cannot
hold

The exclusion restriction in (R4) is a necessary condition for (13) to hold. The key is the following

claim.

Claim 2 Suppose X, = Wy. Then, for any B € ©, there exists a 6, such that 6,X, = —p1 X1 — B X1u-

Proof: Split our regressors in X; as X; = (X{,... ,XII,XPH, . ,Xf‘ ), where (X{,...,X]") are interval-

1 d
data observed, and (XIlJr ,...,X,') are exactly observed (we can have r; = dj, so all regressors are

interval-data observed). Recall that W) = X, U X1, 50 we can express,

<1 <7 1
Wy = (XL, XX X X x,

Take any f; € © and express it accordingly as 1 = (1,... 81, ;‘H,..., fl). Let

_ 1 mno,1 r ri+1 d
02=—=(Bire- By B B2 By 20 By)

Suppose X, = Wj. Then,

n L5 d,
- —{
6, Xp = - Zﬁfﬁf + Zﬁfxl + Z 2B7X{ [=—pi X1 - B X1y, ™
=1 =1 y—
Thus, if X, = Wy, for any ; € ©, there exists a 9, such that 65X,; = -1 X1uyi — f1 X11i < 281 X1Li»
and 5§X2] = _ﬁiXIUj _/))iXILj > _2ﬁ{X1Uj' Thus, having ﬁiXIU] < ﬁ{XILi 1mphes 5’2X2] > OEXZZ'
(since (%Xz]' > _zﬁ{XIUj 2> —Zﬁixlu > (C)éXZZ'), SO Pp(XéjCSz < Xéiéz ) X{Ujlgl < X{Liﬂl) = 0 for this
particular &,. Also, letting 6, = —5,, we have PF(Xéjgz > Xéigz , X] uibi < X{Liﬁl) = 0. Thus, the
condition in (13) cannot hold if X, = W;. This explains the exclusion restriction in part (i) of (13).

A2 Some alternative versions of our bivariate sample selection model

The bivariate sample selection model described in Section 3.1, which served as the foundation
of the results in the paper, can be modified in various ways. Here we discuss two modifica-
tions/extensions. The first one describes the case where we have unobserved covariates in both
the selection and outcome equations, with bounds that depend on observables (as in the main case
we studied in the paper). The second modification discusses the truncated-data case, where our

data consists only of observations where Y;; > 0. In each case we discuss the pairwise functional



inequalities that result, which are the equivalent versions of the inequalities in (17) in the general
model we studied in Section 3.1 of the main text. Once we describe these pairwise inequalities,

inference would be carried out by modifying the procedure we proposed in Section 3 accordingly.

A2.1 A bivariate sample selection model with unobserved covariates in the selection
and outcome equations

Suppose now that at least a subset of components of X, in the outcome equation are also unob-

served, but that we have interval data for these covariates, so that

X31B20 < X320 < X3yB20  W.p.1. (A-1)

where (X,;,X,y) are observable. We assume that the bounds in equation (19) remain valid for
the selection-equation control function. Group W, = (X, U X,y), and V = (W, W,). Suppose we
have a random sample (Y};, Y5;, V;)!_; generated by F. Maintain the restrictions Assumption 1,
modifying part (i) to the restriction, (e1,¢&;) 1 (X1, X5, V). As before, let ppp(V) = Ep[Y,|V, Y =1].
We now have,

Har(V) = Ep[X5B20lV ]+ Ep [Ar(g1(X1, Bro)lV].

Since Ap(:) is nonincreasing and Hp(-) is nondecreasing, we now have

X51B20 + Ar (810 (Wi, Bro)) < par(V) < X55B20 + A (€1(Wi, B10)),
HE(g12.(W1, B10)) < pir(Wh) < He(g1u (Wi, Bro))-

Again, without further restrictions, the above bounds are sharp for the functionals involved. For
a given p = (B1,B2), let

m2(V;ﬁ)E(

my(V, ) = (—gzL(W2:ﬁ2)]

—gzu(Wzyﬁz))
g1iu(Wy, B1)

gi.(W1, B1)

Let (V;, V;) be independent draws from F. Since Ap(-) is nonincreasing and HE(-) is nondecreasing,

the model produces the following two functional inequalities,

(H2r (Vi) = pap (V) 1{m1(V, o) < ma(Vi, o)} <O w.p.1.

(A-2)
(H1r(Waj) = pir(Wh)) - T{g1u (Wi, Bro) < @1L(Wai Bro)} <O wip.1.

(A-2) is a modified version of the pairwise inequalities in (17). While the second inequality (cor-
responding to the selection equation) is identical, the outcome-equation inequality is modified.
Inference would then take place by replacing (17) with (A-2) in the construction of the statistic

described in Section 3.



A2.2 A bivariate sample selection model with truncated data

Suppose we have a truncated sample generated by the bivariate sample selection model described
in Section 3.1. As we did there, group V = (X, W;) € RIv. Suppose our truncated sample is
(Y2, V;)iL,, where Y5; = Y], and Y], > 0 for all i. By the truncated nature of our data, the second
inequality (corresponding to the selection equation) in (17) is no longer useful, since Y;; = 1 for all
i. However, the first inequality in (17) is still valid and can be used for inference. The modification
of the inferential procedure described in Section 3 is straightforward, as it would simply require

dropping the selection-equation inequality from the construction of our statistic.

A3 Proof of Lemmal

We will focus for brevity on proving part (A) of Lemma 1. The proof of part (B) follows parallel
and analogous steps, so we will just summarize it towards the end. Part (C) follows immediately
from (A) and (B). We begin by presenting a maximal inequality result that will be useful through-

out various steps of our proofs.

A3.1 A useful maximal inequality result

Let us begin by presenting once again the definition of Euclidean classes of functions. What
follows is taken from Nolan and Pollard (1987, Definition 8), Pakes and Pollard (1989, Definition
2.7), and Sherman (1994, Definition 3).

Definition: Euclidean classes of functions

Let 7 be a space and d be a pseudometric defined on 7. For each ¢ > 0, define the packing
number D(¢e,d, T ) to be the largest number D for which there exist points my,...,mp in 7 such that
d(m;, m;) > e for each i # j. Packing numbers are a measure of how big 7 is with respect to d. Let
% be a class of functions defined on a set Sé. We say that G is an envelope for & is supy [g(:)| < G(-).
Let u be a measure on Sé and denote uh = Ih(zl,...,zk)dpt(zl,...,zk). We say that the class of
functions ¢ is Euclidean (A, V) for the envelope G if, for any measure p such that uG? < co, we
have D(¢,d,,9) < Ae™V ¥ 0 < e <1, where, for g;,9, € 9, d,(81,82) = (,ngl —g2|2/;4G2)1/2. The

constants A and V must not depend on y. m

The name “Euclidean” is owed to the fact that Ae~" is the generic expression of packing numbers
for any bounded subset of the Euclidean space R" . Examples of Euclidean classes of functions can
be found, in Pollard (1984), Nolan and Pollard (1987), Pakes and Pollard (1989), Pollard (1990),
Sherman (1994) and Andrews (1994). Notable examples found in many econometric models in-

clude the following.



(i) (Pakes and Pollard (1989, Lemma 2.13)) Let & = {g(-,t): t € T} be a class of functions on
2 indexed by a bounded subset T of R?. If there exists an a > 0 and a ¢(-) > 0 such that
lg(x, ) —g(x,t")| < p(x)-|[t —t'||* for x € Z" and t,t’ € T. Then ¢ is Euclidean for the envelope
G =|g(- to)|+ M¢(-), where ty € T is an arbitrary point and M = (?A/EsupT It —tol)?.

(ii) (Nolan and Pollard (1987, Lemma 22), Pakes and Pollard (1989, Example 10)) Let A(-) be
a real-valued function of bounded variation on R. The class ¢ of all functions on R? of
the form x — A(a’x + B), with @ ranging over R? and f ranging over R is Euclidean for the

constant envelope G = sup|A|.

(iii) (Pakes and Pollard (1989, p. 1033)) Classes of indicator functions over VC classes of sets are

Euclidean for the constant envelope 1.

(iv) Type I, II and III classes of functions described in Andrews (1994) are special cases of Eu-

clidean classes.

From the above examples, it follows from Assumptions 2 and 3 (compactness of © and the restric-
tion that E[||X4]|] < C4 for all F € F), that the class of functions

4, = {m(x,) = x5, for some B, € O}

is Euclidean. Pointwise algebraic operations such as products, linear combinations, minima and
maxima allow us to combine Euclidean classes and preserve the Euclidean property (see Pakes
and Pollard (1989, Lemma 2.14)). Empirical processes and U-processes produced by Euclidean
classes of functions satisfy the Pollard’s entropy condition (see Andrews (1994, Definition 4.2)) and
manageability (see Pollard (1990, Definition 7.9), Andrews (1994, Equation A.1)).

A3.1.1 A maximal inequality for degenerate U-processes

The following result is taken from Sherman (1994), who obtained maximal inequalities for degen-
erate U-Processes. Let Zy,...,Z, be i.i.d observations from a distribution F on a set S;. Let k be a
positive integer and ¢ a class of real-valued functions on Sk=8,9---®5, (k factors). For each
g€¥9, define
Urg =)' ) &(ZienZi),
23

where (n)y =n(n-1)---(n—k+1) and } ; denotes the sum over the (1), distinct integers {iy,..., i}

from the set {1,...,n}. Ukg is a U-statistic of order k and the collection {Ufg: ¢ € ¥4} is called a



U-process of order k, indexed by ¥. If every g € ¢ is such that

Eplg(si,..r8i-1,Z,Si41,--,56)] =0, i=1,...k

Ep[8(Z1, s Zi)Z1 =51, Zi1 =521, Zi41=Si41 - Zk =5 |=0

then ¢ is called an F—-degenerate class of functions on Sé and (Ukg: g € 9} is a degenerate U-process

of order k.

Result A1 (Sherman (1994, Corollary 4A)) Let & be a class of F—degenerate functions on Sk k>1.
Suppose ¢ is Euclidean (A, V') for an envelope G such that Ep [G(Zl, .. .,Zk)4p] < oo for a positive integer

p. Then,

172 —
=M,

p
£ (s oot | < -0z 2
where Y is a constant that depends only on p, A, V and Ep [G(Zl,..,,Zk)z]. By a Chebyshev inequality,
this implies that for each € > 0,

M

M
&P (72 e)

Pr (sup 'nk/zU,’jg| > e) < and therefore Pp (sup |Uffg| > e) <
9 £4
From the last result, we also have
sup |Ukg|=0 —~) =
L g A WY &

We will invoke Result A1 at various points throughout our proofs.

A3.1.2 VC classes of sets and Assumption 3

VC classes of sets are defined, e.g, in Pakes and Pollard (1989, Definition 2.2) and Kosorok (2008,
Section 9.1.1). Verifiable criteria that suffice for a class of sets to have the VC property can be
found, e.g, in Pollard (1984, Section II.4), Dudley (1984, Section 9), or Kosorok (2008, Section
9.1.1). An example commonly encountered in econometric models (Pakes and Pollard (1989,
Lemma 2.4) is the class of sets of the form {g > t} or {g > t}, with ¢ € 4 and t € R, where ¥
is a finite dimensional vector space of real-valued functions. This class encompasses economet-
ric models where the parameters of interest enter through linear indices. Combining VC classes
of sets through a finite number of Boolean operations (e.g, unions, intersections and/or comple-
ments) preserves the VC property (Pakes and Pollard (1989, Lemma 2.5)). Assumption 3 implies

that the following is a VC class of sets for each F, with VC dimension uniformly bounded over F



by a finite constant V p,
D = {(Vlrvz) e RM xR : 1yp(vy,v5,p) 2 0 for some B e @]

And, by VC-preserving properties of Boolean operations described, e.g, in Pakes and Pollard
(1989, Lemma 2.5), Assumption 3 implies that, for each F € F, the following class of sets is also a

VC class, with VC dimension uniformly bounded over F by a finite constant,
Q;ZF = {(vl,vz) eRlvxRlv: —c< Tor(v1,v2,8) <0 for some 0 <c<cpand € @}.

Indicator functions for these classes of sets are relevant in our problem. The VC properties in
Assumption 3 will lead us to invoke the maximal inequality properties in Result A1 since indicator
functions over VC classes of sets are Euclidean classes of functions (Pakes and Pollard (1989, p.
1033)).

A3.2 Asymptotic properties of Q, and R,

Note: In all the results that follow, € > 0 denotes the constant described in Assumption 4 of the
paper.

Recall that, as described in equation (27) in the paper, for a given v = (v¢,v%), we defined,

‘/iC —_ ’UC B r V}’f’ll - v% _ ‘/iC _ vc J ;
/c( ) ):]_[K(h—) F(Vi,V,hn):/C( - )'ﬂ{Vi o)

and, from here,

1
n-hj,

1
n-hj,

Ro(v)= —= ) VoViia(VOT (Vv ), Q)= — ) Yiiho(VT(Vy, )
i=1 i=1

We proceed next to characterize the asymptotic properties of R,(v) and Q> (v) under our assump-
tions. Let A(-) be a real-valued function of bounded variation on R. By Nolan and Pollard (1987,
Lemma 22) (or Pakes and Pollard (1989, Example 10)), the class ¢ of all functions on R? of the
form x — A(a’x + B), with a ranging over RY and p ranging over R is Euclidean for the constant
envelope G = sup|A|. Therefore, since our kernel is a function of bounded variation, the class of
functions {m(v) = k(%) for some u € R, h > 0} is Euclidean (Ag, Vi) for the constant envelope k
(neither (Ag, V), nor k depend on F). From here and Sherman (1994, Lemma 5), the following



empirical processes v,?z(~) and v52(~) defined as follows, satisfy the conditions of Result A1,
1
{v%(v,h) == o (VIT (Vi v, h) = Ex [Yipa(VIE(V, 0, )]) s v € REY o> o},
(A-3)

{v,lfz(v,h) = % (Yo, Y1;02(V)L(V;,v,h) —Ep[Y2Y19o(V)I[(V,v,h)]) : v e R, h> 0}

for the constant envelope ¢ -K, and the envelope |Y5|- ¢ - K, respectively. From here, Result A1 and
the condition that E[|Y,|*] < D, for all F € F (Assumption 3) imply that there exists a finite M
such that, for each € > 0,

M M
P| sup |vn 2(v,h)| >¢e|<—75—, and Pp| sup |v,§2(v,h)| >el<—7— VFeF (A-4)
veRMw n € veRlw n €
h>0 h>0

and therefore,

uniformly over F (A-5)

V%mmF041

1
sup vgz(v,h)’ = Op( and sup m),

1/2 )'
veRM n veRM
h>0 h>0

We have,

— 1 1
Qz(v)—sz(V):—rv'VJ?Q(V»hn)"‘B%F(”)' where BanF(”)

h : ne
— 1
Ry(v) = Rpp(v) = v (v,hy)+ B, k(v), where Bﬁ,ZF(V) e (R2F(V) —Ep[V2Y192(V)I(V,v, hn)])’
n n
(A-6)

The smoothness conditions in Assumption 2 and the kernel properties in Assumption 4 an M*"—order

(Qar(v) = Ep[Yiha(V)T(V, v, 1)),

=
)
—_

=

approximation implies that there exists a finite B such that

sup|B%;(v)' <B-hM, and sup BSZF(v)| <B-lM VFerF (A-7)
vey ’ vey ’
From (A-6) and (A-7) we have,
sup|Q(v) - Qar (v)] < i -sup |vii* (v, hy) |+ B- )
e . ~ VFeF (A-8)
sup|R2(v) —RzF(V)l < ;7 -sup vy 2 (v, h,)|+B- M

vey vey



From (A-5) and (A-8), and the bandwidth convergence restrictions in Assumption 4, we have

sup|0a(v) ~ Qar(v)] = Op (ks )+ B! = 0y (k)

vey

sup|Ry(v) = Ryp(v)| = O, ( h;y_.ln—l/z ) +B-yl =0, ( i )

vey

uniformly over F

(A-9)

Where € > 0 denotes the constant described in Assumption 4. Take any sequence ¢, > 0 such that

n'/2 . hy e, — oo. Given the bandwidth convergence restrictions in Assumption 4, there exists
ny > 0 such that n'/2 . hy' .e —B-nl/2. h;”+M > 0, for all n > ny, and from the results in (A-4) and

(A_8)/
= M
Pr SUP|Q2(V)— Q2F(V)| > | S
ey nl2.h, -, —B-nl/2-hy
VFeF,¥Vn>ng
) M
PF (Svlég |R2('l}) - RZF(V)| > gi’l) < n1/2~h;”~£n—§~n1/z~h;”+M

Therefore, under the conditions in Assumptions 2 and 4, we have

sup Pr (SUP |Q2(v) - Qur(v)| > fn) —0
FeF vey v£n>oznl/2'h;v'€n_>oo

sup Pr (sup |§2(v) —Rzp(v)| > en) —0
FeF vey

A3.3 Asymptotic properties of 7(v,7, B)

We have defined,

0, v, p) =

((R2()Q2(@) - Ry@)Qa(v)) - (x5 B2 — %3 B2) Q2 (v)Q2()) - 1 {810 (@1, B1) < g1 (wy, By))

“$2(v)2(v),

Tr(v,V, B) =

(A-10)

((Rop(v)Qar (@) = Rop () Qar (v)) = (x5 B2 = %3 B2) Qor (v) Qar (@) ) - 1 {g1u/(@1, B1) < g11(w1, B1))

P2(v)P2(v),

10



Therefore,

T,V B)~ (v, 7, B) =
((R2F<v>—<x;ﬁz —%5B2) Qor(v)) - (Q2(@) - Qor (@) - (Rap(P) + (2 — X B2) Qar (7))
(Q2(v) - Qar(v))
+ Qor (@) (Ry(v) — Rop(v)) = Qo (v) - (R‘2<m—RzF<m))~ L{g1u (@1, B1) < &1 (wr, f1)} 2 (v)a(P)
+Ean(v,7,B),
(A-11)
where

Ean(v,7,p) = ((z’z}(v) ~Rop(v)) - (Q2(9) - Qo (@) — (Ro(®) — Ror () - (Qa(v) - Qar (v)
— (xpB2 = F5B2) - (Q2(v) - Qar(v)) - (Q2(P) - Qﬂm))- 1{g1u(@1, 1) < g10(wi, f1)} P2(v)P2(?)

From the conditions in Assumption 2, there exists a finite constant D such that

sup  max{|Rop(v)], Qar(v)l, [¥3B2~X5pal} <2D ¥ Fe F.
v,7eRLV xRV
pe©

Therefore, there exists 52 such that, for each F € F,

sup  [%(,7,B)— 12p(v,7,8)| <Dy | sup|Q2(v) - Qur(v)| + sup|Ro(v) — Rop(v)]
v, 7RV xRLV vey vey
pcO

2
+sup|62<v>—Q2F<v>|xsu5|E2<v>—Rzp<v>|+(sup|<§2<v>—sz<v>|) ]

vey vey

Therefore, there exists a finite constant C, such that, for any b > 0

Pe|  sup  [B(,7B)-Tar(v,7, )| > b spp(sup|@<v>—QzF<v>| >Ez-(bAb“2))
v, 7RIV xRLV veV
peO

+Pp(sup|1’€2(v)—R2F(v)| >62'(b/\b1/2)) VFeF
vey

11



Fix b > 0. From the previous result, equation (A-10) implies that, under Assumptions 2, 3 and 4,

there exist constants M, B and Ez and ng such that, for n > n,

2M
PF Sup Tf\z(%aﬁ)—’le-"(v;aﬁ) >b < p— — VFEJ:
v, 7R xREV | | nt/2. .y Cy- (b A b1/2) _B.nl2. M
pe©

In particular, take any sequence b,, > 0 such that b, — 0 and n'/?- K - b, —> co. The previous
result implies that, under Assumptions 2, 3 and 4, for any such sequence, we have,

sup Pr sup |%\2(v,’12ﬁ)—sz(v,'IZﬁ)| >b,|— 0. (A-12)
FeF v,0eRLV xRV
peO

Note that (A-12) immediately implies,

sup |’T\2(v,’17,/3)—rzp(v,'17,/5)| =0,(1), uniformly over F, (A-13)
v,7eRLV xREV
peO
and
sup ]l{|7c\2(v,'17,/3)—121:(v,?7,ﬂ)| > bn}: 0p(1), uniformly over F. (A-14)
v, 7eRIV xRV
pcO

Next, note that

|1, 7, B) > ~b,} - L{tor (v, 7, B) > 0}

2

=1{’T\2(V;~:ﬁ) = _bn ’ = an < sz(v,17,/3) < 0} +1 {7[\2(7}1:‘}:/3) = _bn ’ sz(v,iﬁ) < _2bn} (A 15)

+1{t,(v,v, B) < =b, , Top(v, v, B) = 0}

<1{-2b, < T¢(v,7, B) < 0} + L{|T2(v, 7, ) — 7o (v, 7, B)| > b}

And, by the conditions in Assumption 2, there exists a finite constant T, such that
sup  |nr(v,7,8)|<T, Y FelF. (A-16)
v,7eRLV xRV

pcO©
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We have

70,7, 8) - L{a(v,V, B) = =b,} = (12p(v, ¥, B)),
+ 12p (v, 7, B) - (L{T2(v, 7, B) = —by} - 1{12r (v, 7, B) > 0})
+(02(v,V, B) = 12p(v, 7, ) - 1{T2(v,V, B) = =Dy}

From here, using the results in (A-15) and (A-16),

sup %, 7,8) LG (v,7,B) > —b,} — (126(v, 7, B)), |
v, 7eRLV xRLV
pcO

<7 sup  L[B@p)- r(v,7,8)] > by)
v,0eRV xRV
pcO

0,(1) uniformly over F, by (A-14)

+  sup  (lp@, 7 B)- 1{-2b, S Top(v,7,8) < 0})+  sup  [B(v,7, ) - T (v, 7, B)|
v, 7RIV xRLV v, 7RV xRV

[£=C) pe©

<2b, — 0 for all F, by construction 0,(1) uniformly over F, by (A-13)

Therefore,

sup (v, 7, B)- 112 (v, ¥, B) 2 by} - (12r (v, 7, B)),| = 0,(1), uniformly over . (A-17)

v,7eRLV xRV
pe©

And from the definition of 7/:2(ﬁ) in equation (28), the result in (A-17) immediately implies,

sup |T5() - Toe(B)| = 0,(1), uniformly over F. (A-18)
pcO©

Let us go back to (A-11). Plugging in (A-6) into (A-11), we have,

(v, V,B)~ (v, 7, B) =

[(Rar0) = (532~ F32) Qur(0) - 3 - v )
~(Rar@) + (332 ~F3$2) Qar (@) 5 ¥i (0, ) (A-19)

+Qor(v)- hir V2 (0, ) = Qap(v) - hl—r @ )| 1 gy, B1) £ gir(wi, f1)} P2(v)P2(V)

+Ean(v,7,B)+ &, (v, 7, B),

13



where

5;;<v,%zﬁ>z[(Rmv)—(x;ﬁz—?ca/sz>Q2F<v>)-BQz @)
(R2F(~)+(x2ﬁ2_X2ﬁZ)Q2F(~)) By (V)
+sz(’v‘)~Bn, (v) — Qap(v ] gy (wy, B1) < g1(wi, B1)} 2(v) P2 (V)

By the conditions in Assumption 2 and the result in (A-7), there exist finite constants D, and B
such that,

BS}(v)| +sup

vey

sup |5bn (v,v /5)| SEZ-(sup Ban:(v)|) <2-D, -E-hﬁ’f

v,eRV xRLV veY
peO
1

R .M _
:B3'hn —0(m) VFeF
(A-20)
where the last equality follows from Assumption 4, and € > 0 is the constant described there.
Next we turn our attention to &;2(v,7, ). By the conditions in Assumption 2, there exists a finite

constant D such that,

2
sup  |&a5(v,7,B) < 2-5up|Qa(v) - Qup(v)| x sup|Ry(v) — Rop(v)| + D - (SUP|Qz(v) - szw)l) :
v, 7eRLV xRLV vey vey vey

pc©

for all F € . And from here, the result in (A-9) yields,

_ G 1 .
_ sup | ;}(v,v,ﬂ” = [OP(W)] =0, (W)’ uniformly over F. (A-21)
v, 7RIV xRV
pe©

Where € > 0 denotes the constant described in Assumption 4. For a given y, € R, y; € {0,1} and
w, e R xR and h > 0, let

O (1, u, T, 1) = ) - do(u) - T(w, T h) = Ep [Yy do(V) - T(V, T, h)],
PR (V2,91 1, T, 1) = 9y - 91 - (1) - T(u, T, h) — Eg [Ya Y1 o (V) - T(V, T, h)],
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and for a given v,v € RV x RV and pe0O,let

Cor (v, 7, B) = (Rop(v) = (x5 B2 = X3 B2) Qo (v)) - 1{g1u (W1, B1) < 811 (w1, B1)} h2(v) 2 (V),
CZ,ZF(V:’V;ﬁ) = (Rop(V) + (X382 = X382) Qor (V) - g1 (W1, B1) < gir(wi, f1)} P2(v) P2 (D),
Cor(v,7,B) = Qap(9) - L{gru (@1, B1) < g11(wi, f1)} h2(v) P2 (V),
C;}(%iﬁ) = Qor(v)- L{giu(wi, 1) < gir(wi, 1)} P2(v)Pa(V),

and

CR (Yo, Y1, V0,3, B,h) = (0,7, g (Y1, V, 0 1) = (0,7, B2 (Y, V, v, h)
+ 0@, T, B (Yo, Y1, V0, 1) = Ca p (0,7, f) 20 (Y, Y1, V, 5 h)

Note that EF[CI?(YZ, Y1, V,v,7,8,h)] = 0forall (v,7, 8, h). Plugging in (A-20) and (A-21) into (A-19),
and using the definitions of v,?z(-) and v,lfz(-) given in (A-3), we have

L _ 1 1y _ _
TZ(v’ v, ﬁ) - TZF(V’ V,ﬁ) = hrv : ; Z’C;Z(YZI() Ylkl Vk: v,v, ﬁ; hn) + 51?(7/, vrﬁ)r
n k=1
N 1 . (A-23)
where sup |5n (v, v,ﬁ)| =0p (m), uniformly over F

v,veRV xRV
[£=C)

Where € > 0 denotes the constant described in Assumption 4. Let
T ~ T ~ T ~ T ~ T ~
aFZ (v; v, ﬁ) = (Ca,zp (v; v, ﬁ)l CbIZF(v’ v, ﬁ)) CC,ZF (V, v, /5)’ Cd’ZF (v’ v, ﬁ)) ‘
By the conditions in Assumption 2, there exists a finite constant M, such that

sup ||a;2(v,17,/5)||SM2 VY FeF.
v,7eRLV xRLV
pcO

Consider the class of functions,
A g ={m( _ Q2 Th Q; h R, h Ry Th:
1LF={m(©y2,91,v) = a1@p” (¥, v, 1, 1) + axpp” (v1,v,u,h) + as@p™ (v2,91,v, 4, h) + ag@p™ (v2, 91, v, 4, h) -

u,i € RLV XRLV » /3 €O,h>0, “(0(1,6!2,0(3,&4)“ SMZ}

By Nolan and Pollard (1987, Lemma 22) (or Pakes and Pollard (1989, Example 10)), and Pakes
and Pollard (1989, Lemma 2.14) and the bounded-variation properties of the weight function ¢5(-)
and the kernel K(-), there exist constants (A, V) such that J# r is Euclidean (A, V) for all F € F, for
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an envelope of the form H; = C; +C, - |Y,|, where C; and C, are constant for all F. Now define,
Y p= {m(y2,y1,v) = C?(yz,yl,v,u,'u‘,ﬁ,h) cu,me Rl xR, pe®,h> 0}.

Note that &) p C 4 . Therefore, there exist constants (A, V) such that ¢  is Euclidean (A, V) for
all F € F, for an envelope of the form H; = C; + C; - |Y;|, where C; and C, are constant for all F.

Define the empirical process v,>(-) given by,
— o el L
{ (u,1, B, h) = ZC YZi,Yli,\/i,u,u,[a’,h).u,ueRVXRV,ﬁGG,h>O}.

v2(-) satisfies the conditions of Result Al. Since there exists a finite constant D, such that
Er[|Y5|*] < Dy for all F € F by Assumption 3, Result Al implies that there exists a constant M
such that, for each ¢ > 0,

Pr sup |v,fz(u,’uv,/3,h)| >el<
u,IERMY xRV
p€O,h>0

Therefore,

— 1 .
sup |v,fz(u, u, B, h)| =0, (W) uniformly over F.
u,TeRLV xRV n
p€O,h>0

From here, (A-23) yields,

sup  [B(0,7,)~r(,7,B)| = O ( )+ P
v,7eRV xRV | | P h;” .nl/2 P\ p1/2+e

peo (A-24)

1 .
=0, (W) uniformly over F.

Where € > 0 is the constant described in Assumption 4. By the conditions in Assumption 2, there

exists a finite constant T, such that

sup 'szvvﬁ)| T, YFelF.
v, 7eRLV xRV
pcO
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From here and (A-24), we obtain,

sup  |[%(v,7,8)|=0,(1) uniformly over F. (A-25)
v,9eRLV xRV
pc©

The results in (A-12), (A-23), (A-24) and (A-25) summarize the relevant asymptotic properties of
T,(v, v, B) for our problem.

A3.4 Asymptotic properties of 'T'z(ﬂ)

Recall that,
BB = T 3 Y BV V) 1 (B(Vi V) b

11]¢1

Let

L= e 12212 Vi, Vi, B)- L{wap(Vi, Vj, B) 2 0.

i=1 j=i

Note that 7:;([3) takes ﬁ(ﬁ) and replaces the indicator function 11{ 2(Vi, Vi, B) = b } with the indi-
cator function 1 {TZF(VI', Vi,B) = 0}. Our first step is to analyze @(ﬁ) - 7'2(ﬁ) Denote,

i B) =T - TalB) = o= XXTZ Vi, Vi, B)- [ {n(vi,vj,ﬂ)z—bn}—n{r2F<ww>zo}].

11]¢1

Thus,

T R g VA LT AN S IR AR |

i=1 j=i

As we pointed out in (A-15), we have

'ﬂ{%}(\@,\/j,ﬁ)z—bn}—ﬂ{rzp(\/i,vj,/g)zo}’
=1{To(V;, V), B) = ~by s 2b, < Tap(Vi, V) < O+ L{Ta(V3, Vi, B) = ~by , T (Vi, Vi, B) < ~2D,)
+1{@(Vi, Vj, B) < by, Tap(V;, Vj, B) 2 0}

<1{-2b, < Top(Vi, Vj, ) < O} + 1{[T2(Vi, Vj, B) = 7o (Vi, Vi, B)| > B}
(A-26)
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From here, we have,

7

w(ﬁ)\

n-(n-1) ZZ|T2 Vi, Vi, B IL{ 2by TZP(Vi,Vj,ﬂ)<0}

11]¢z

o Y Y [V VB Vi Vi) - e Vi Vi) 2 )

11]::1

n=1) ZZ(|T2 Vi, Vi, B) +|T2 i Vi B T2F(Vifvjr/3))|)'ﬂ{_2bn§’521~"( ir ]/5)<0}

11]::1

+—n : sz Vi, Vi, B)| - 1{[@(Vi, Vi, B) ~ 126 (Vi, Vi, B)| 2 b}
i=1 j=i

Therefore,
7,
Tn,zF(ﬁ)|
1 n
<|2b,+ sup [ B)- kv, 7, B)| x—lz’Zﬂ{_zbnsfﬁ(Vi, erﬁ)<0}
v,7eRLV xRV n-(n—-1) i
peO

+ sup  [B@7 ) x — 122 {[©2(vi, v, B) =tk (Vi Vj, )] 2 b}
v, 7eRLV xRV 11 i=1 j=i
pcO

From here and the results in (A-24) and (A-25), uniformly over F, we have

n-(n- 122 —2b, < ToF VZ,V],ﬁ)<0}

i=1 j=i

7 1
] (20,00 ) <supl

pcO©
(A-27)

+0,(1) xsup
pcO

o Y Vi Vi V) 2

i=1 j=i

Where € > 0 is the constant described in Assumption 4. Let us analyze each term on the right
hand side of (A-27). In what follows, let V;, V, be independent draws from the distribution F. For
agiven f€® and b >0, let

&2r(V1, Vo, B,b) = %(ﬂ {=2b < 1op(V1, Vo, B) < O} + 1{=2b < 15p(V, V1, B) < 0})'
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2r(V1, V, B, b) is symmetric in Vy, V, by construction. Note that

n -1
—n.<i_1)ZZH{—2Z’ST2P<WW/5><O}:(i) ) 8ar(Vi, Vi, B,b) = S5,,(Bb)

i=1 j=i i<j

We will focus on the properties of the U-process {Sin(ﬁ, b): f€©,0<b< %0}, where ¢ is the con-
stant described in Assumption 3. We will proceed by analyzing the Hoeffding decomposition (see
Serfling (1980, pages 177-178) or Sherman (1994, equations (6)-(7))) of Sin(ﬁ,b). Let

#35(B,b) = Ep[1{-2b < 15(V3, Vo, B) < 0}],
Note that y%F(ﬁ,b) = Er[gor(V1, V2, B,b)] by symmetry. Let
Sr(V1, Vo, B,0) = 25 (Vi Vo, B b) — 15 (B, 1),

my p(Vi, B, b) = Ep[g2r(V1, Vo, B, b) V1],
my p(Vi, Vo, B,b) = ©op(V1, Vo, B, b) — 1y p(Vy, B, b) — my ;(V2, B, b),

The Hoeffding decomposition of Sin(ﬁ,b) (see Serfling (1980, pages 177-178) or Sherman (1994,
equations (6)-(7))) is given by,

S5 .(B,b) = 5 (B, b) + me Vi,B,b)+ ( ) Zmzp Vi, Vi, B,b). (A-28)
Z<]

Let us analyze the second and third terms on the right-hand side of (A-28). By the properties of VC
classes of sets described, e.g, in Pakes and Pollard (1989, Lemma 2.5), the conditions described
in Assumption 3 imply that, for each F € F, the following class of sets is a VC class, with VC
dimension uniformly bounded over F by a finite constant,

92721; = {(vl,vz) eRlvxRlv: —c< Tor(v1,v2,8) <0 for some 0 <c<cpand g € @},

where the constant ¢y is as described in Assumption 3. From here, the result in Pakes and Pollard
(1989, p. 1033) implies that there exist constants (A, V) such that, for each F € F, the class of

indicator functions,

My = {m(vl,vz) =1{-c <1yp(v1,v,, ) <0} forsomeO0<c<cyandpe @}
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is Euclidean (A, V) for the constant envelope 1. From here and Sherman (1994, Lemma 5), the

conditions for Result A1l are satisfied and, from there, we obtain,

sup |L X7 i p(Vi, B,b)| = Op ()

pc©
0<b< P
uniformly over F. (A-29)
sup |(5)7 it p(Vi, V]-,/s,b)‘ =0,(%)
pcO© i<j
0<b< 2

Combining (A-29) and (A-28), we have

1 .
Sin(/j, b) = V§F(ﬁ,b) + é,gz([j’,b), where Zuep |€§(ﬂ;b)| =0, (m), uniformly over F.
[S

0<b§%°

Next, recall that, from Assumption 5, there exists by > 0 and 7 < oo such that,

?EW§WJﬂsmb VO<b<by, YFeF.
€

Next note that there exists 1 such that b,, < (%0) A by for all n > ng. Therefore, for all n > ny,

sup |- 5 12:2: ~2b, < Tp(V;, Vj, ) < 0

<#-by+ sup |E5(Bb)] = (%HOAQL)

pe© i=1 j=i pe® nl/z
0<bsc7°
=b O !
=b, x (1)+op Y
= by x (O(1) +0p(1))

= Op(b,), uniformly over F.

Thus, uniformly over F, we have

1 1
(200 ) s oy 2 2t s Ve ¥y < 0] = (201 0p (7 ) <Ot

pcO n-

b
=Op(b)+0 (nl/4ie/2)

_ 1
= O\ e )
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where € > 0 is the constant described in Assumption 4 Going back to (A-27), this result implies

that, uniformly over F,

n

751618 | | (an+op(m))xﬁug . lzl Z]l{ 2b,, TZF(Vi,Vj,[j’)<O}

E3]

+0,(1) xsup |——— — ZZ |T2 (Vi, Vi, B) = T2p(Vi, Vj, B)| 2 by }

n-
pe© i=1 j=i

= Op(1) xsup —122 |T2 (Vi, Vj, B) = Tap(Vi, Vi, B)| = by, } +o (n1/12+e)

i=1 j=i
(A-30)

where € > 0 is the constant described in Assumption 4. Take any C >0 and any A > 0. We have,

Pr|sup|————— PP ZZ {|T2 Vi, Vi, B) TzF(Vz;V]fﬂ)’>b} nCA]

peo i=1 j#i

<Pe| sup [B@7p)-T2r(v,7 )| > by
v, 7RIV xRV
pc©

Since the bandwidth sequence b, satisfies n'/? - 1’ - b,, — oo by Assumption 4, the result we ob-

tained in equation (A-12) yields,

n
sup Pr|sup ; Z]l{rf\z(Vi;ijﬁ)—TZF(Vi'Vj'ﬁ)l Zb”} > n%]_ﬂ)’

rer  |peo [n-(n=1) &= =

for any C >0 and A > 0. In particular, this holds for A = 1/2 + ¢, with € > 0 being the the constant

described in Assumption 4. Therefore, under Assumptions 2, 3 and 4,

SR =) n-(n—1) ZZ {|Tz ir ] TzF(Vilerﬁ)|an} =0p(#), uniformlyover]—".

(A-31)
Plugging (A-31) into (A-30), we obtain that, under Assumptions 2, 3, 4 and 5,

1
5o rr?F(ﬁ)|:0p(m), uniformlyover F.
€
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Where € > 0 is the constant described in Assumption 4. Since we defined rnT’ZF(/i) = ﬁ(ﬁ) - T’z(/j’),
with %(ﬁ) = m Y Y2V, Vi B)- 1 {TZF(Vi’ Vi,B) = O], we have that, under Assumptions 2,
3,4 and 5,

1
ranF(/g)| =0p (m) uniformly over F.

T(B) = To(B) + 1, x(B), where

pcO©
Where € > 0 denotes the constant described in Assumption 4. Our next step is to analyze the

asymptotic properties of To(f).

A3.4.1 Asymptotic properties of T‘z(ﬁ)

Denote (A), = max{A,0}. We have,

L) = 1ZZT2 Vi Vi, B)- L{war(V;, V. B) 2 0f

i=1 j=i

1) ZZ ToF szV]'ﬁ

11]7:1

.= 1ZZ (Vi Vi B) = T2 (Viy Vi ) - 1{m2r (Vi V3, ) 2 0f

i=1 j=i

For a pair v = (x, wy, wq), v = (X, w;), denote,

Lr(v,v,8) = 1{giu(wy, f1) < gir(wi, 1)} - L{top(v, v, B) 2 0} - ¢ (v) - P2 (V). (A-32)

And, for a given v,v € R x R and peO,let

8,6 (v, 7, B) = (Ryp (v) = (x5 B2 = %5 82) Qo (v) - Top (v, 7, B),
83%(v, 7, B) = (Rop (7) — (%32 — XB2) Qar (@) - Tof (v, 7, B),
5:%(v,7, B) = Qur () - Lop (v, B),
6, (v, 7, B) = Qo (v) - Ip(v, 7, B).

And let @;*(u,1,h) and (pll_fz(yz,u,if,h) be as defined in (A-22). As we defined previously, let us
group all the observable covariates in the model as Z = (Y, Y,,V). For given (z,Z,%) € e Rbv*? x
REv+2 x RL*2, Be®and h>0,let

PP T B 1) = 0,5(0, 7, B)pg” (51,9,7, 1) - 8, (v, 7, B (51,9, v, h)

(5] g RZ .. - s Ty ~ R2 s . o~ (A_33)
+ 6C,F(v’ v, ﬁ)(PP (})21 v,v,v, h) - 6d,F(v’ v, /J))(PP (yz,yl, v,7, ]’l)
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Note by inspection of the definitions in (A-22) that,
Ep[of* (Y, V,0,h)|=0, and Er[@f* (Y, Y, V,0,l)]=0 YveRM, h>o. (A-34)

Recall that we have defined p,p(v) = Ep[Y,|V = v,Y; = 1]. By the smoothness conditions in As-
sumption 2 and the kernel properties in Assumption 4, an M*"—order approximation implies that

there exists a finite B such that

P (Y1, V.0, ,) =Y1 2 (VIT(V, 0, k) = h - §5(0) fir1 (v) + Bar(v),
PR (Y2, Y1, V.0, 1) = Yo Yy go(VID(V, 0, 1) = Y - pop(v) - 2(0) fir 1 (v) + By (v),
ng:(v)| <B-WrM B (v )| <B-W™M VFeF
(A-35)

where

vey vey

From (A-23), we have

LB = T ZZ ©r(Vi, V. B)), n” ZZZ%? 23, Zio By ) + E24(B)

i=1 j=i i=1 j=i k=1
1
where /Sﬁlelg éa’%(ﬁ)‘ = op(m), uniformly over F.
(A-36)
Where € > 0 denotes the constant described in Assumption 4. Let
Uanl ) = ooy =) ZZZ@F (ZirZj, Zio 1),
i=1 j#i k#i,j
Uy (B, h) = ZZ (23 Zj, Zis B 1) + 9P (20 2, 25, B, )
i=1 j=i
Then, (A-36) can be re-expressed as,
%) ZZ WV Vio), + Co 2 U (Ba) + Ui )+ E5(B)
7, 1
where 731615 EﬂTfn(lB)’ = op(m), uniformly over F.
(A-37)

Where € > 0 is the constant described in Assumption 4. Recall from Assumption 3 that the class
of sets
¢ = {(wlzwl) e R xR™ : gy(wy, B1) < 81wy, B1) for some By € 6}
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is a VC class with VC dimension VC, and that the following is a VC class of sets for each F, with
VC dimension uniformly bounded over F by a finite constant Vp,

917} = {(vl,vz) eRlv xRl : Tr(v1,v2, ) > 0 for some f € @}

Going back to the definition of I, in equation (A-32), these VC properties imply, by the results in
Pakes and Pollard (1989, p. 1033) (the result that classes of indicator functions over VC classes of
sets are Euclidean (4, V), with (A, V) depending only on the VC-dimension of the underlying class
of sets), and Pakes and Pollard (1989, Lemma 2.14) (the product of Euclidean classes of functions
is also a Euclidean class) that there exist constants (A, V) such that, for each F € F, the class of
indicator functions

S r={m(v,v) =Lrr(v,v, ) : p€O}, (A-38)

is Euclidean (A, V) for the constant envelope 1. From here, let (p;_f2 be as defined in (A-33) and
consider the class of functions,

My p ={m(z1,22,23) = 91 (21,22, 23, B, 1) : pEO, 11> 0} (A-39)

By the conditions in Assumptions 2, 3 and 4 (the bounded properties of the functionals involved,
the bounded-variation properties of the weight function ¢,(-) and the kernel K(:), and the VC
property of the classes of sets involved, which led to the Euclidean property of the class of func-
tions described in equation (A-38)), by Nolan and Pollard (1987, Lemma 22) and Pakes and Pollard
(1989, Lemma 2.14), there exist constants (Z,V) such that /7] r is Euclidean (Z,V) forall F e F,
for an envelope of the form H; = Dy + D, -|Y;|, where D; and D, are constant for all F. Since there
exists a finite constant D4 such that E¢[|Y,|*] < Dy for all F € F by Assumption 3, Result Al can
be used to show that,

sup |Ub,n(ﬂ,h)| = Opy(1), uniformly over F.
peO
h>0
Therefore, using the bandwidth convergence conditions described in Assumption 4, equation

(A-37) becomes,

~ 1 d n-2) 1 7
T(p) = 1) ZZ(TzF(Vi: ijﬁ))+ 4! " ). P “Ugu(Brhn) + &4, (B
i=1 j#i " (A-40)
h 7, B 1 1 B 1 £ 1
where 7316161:)) B =0y oy +0p(n1/2+€)_0p(n1/2+€ ), uniformly over F.

Where € > 0 is the constant described in Assumption 4. Next we focus on the Hoeffding decompo-
sition (see Serfling (1980, pages 177-178) or Sherman (1994, equations (6)-(7))) of U, ,(B,h,). In
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what follows, let Z;,Z,,Z5 be iid draws from the distribution F. Let

— 1
PF (202225, B 0) = 57 ) 07 Zonys Zonys Zonys B 1), (A-41)
p

where } denotes the sum over the 3! permutations (my,m;,,m3) of (1,2,3). By construction,

p
6?(21,22,23, B,h) is symmetric in (Zy,Z;,Z3), and U, ,(B, h) can be expressed as,

Uan(B,h) = ( ) Y PF(Z1,22,23,B ).

i<j<k

Note from (A-34) that Ef [6;2(21,22,23,,6,}1)] —Er [(pIEZ(Zl,ZZ,Z3,ﬁ,h)] = 0. For a given (z,Z,%), let

mix(z,,h) = Ep [@F (2,22, Z3,,h),
sz(ZZ B, h) = EF[‘PF z,2,73,B, h] m =z, B, h) - m?F(z',[)’,h),
msp(2,2,%,B,h) = (2,32, B, h) — my(z,2, B, h) - myx(z,2”, B, h) — m(z,2”, B, h)
~mip(z, B, ) = mip(2, B, h) = mip(", B, )
Let,

2 (Bh) = ( ) Zm;; Zi,Zj,B.h), Si.(B ( ) Zm (Zi,Zj, Zk, B, h)

i<j i<j<k
The Hoeffding decomposition of U, ,(, h,) (see Serfling (1980, pages 177-178) or Sherman (1994,
equations (6)-(7))) is given by,

n

Uas(Bhn) = > ) 53 (Zo ) + 3+ S5, (B ) + 538, (A-42)

i=1

{S;fn(ﬁ,h) :peO,h> 0} is a degenerate U-process of order 2 and {S;fn(/},h) :peEB,h> 0} is a de-
generate U-process of order 3. The Euclidean properties of the class of functions /%,  defined in
(A-39) and described above yield, via Result A1,

1 1 )
;161}@) |52Tfn(/3, h)| = Op(;), and |S3Tfn(ﬁ,h)| = Op(m), uniformly over F.

h>0
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Therefore, combining (A-42) and (A-40), we have,

38~ mip(Zi i) 7
)=t ZZ Vi), + T2 2y RSB (B,
i=1 j=zi i=1 n (A-43)
h Zp)|=0,(— N A iformly over F
where 752({)) Een(B)=Op P +0p(n1/2+€)—0p(n1/2+6), uniformly over F.

Where € > 0 denotes the constant described in Assumption 4. Let us turn our attention to
mlF(ZZ,/ﬂ h,). Recall from (A-33) that,

(P?(Zi’Z Zk,ﬂ h) aF(VZI V]fﬁ)(PF (Y1k; Vkl V' h)_éTz (VZI leﬁ)(sz(Ylkf Vk; Vllh)
+b§2F(‘/Zl ‘/]’ﬁ)(PF (sz, Y]kl th ‘/l’ h) dF(‘/l’ V];ﬁ)(PF (YZk; Ylk: Vk; V', h)

* and (pfj22 are as described in (A-22) and 6;}, 572

Q
where ¢@p bE”

(A3.4.1). Note from (A-22) that,

6:,213 and b;fF are as described in
E 0] 2(Y Vi, Vi,h|Z;,Z;| = E ) 2(Y Vi, Vi, WZ;,Z;1=0
F F ( 1k» Vkr» Vijr )l 17 4] F F ( 1k» Vi Vis )l ir &g ’

R R
Er |98 (Yo, Yiio Vi Vi, )| Zi, Z3| = Ex [ @5 (Yo, Yak, Vi Vi 1123, 2| = 0.

Thus, from the definition of @? in (A-41), we have

M Zi 1) = Ee [07(20, 2, Zk,ﬁ,h)]:%(EF (07 (2 21,20, B. W) 23 + Ex [Q;Z(zk,zj,zi,ﬁ,hﬂzi])

(A-44)
As we defined in equation (29) prior to Assumption 2, for a given v = (x,, wy,wy), let
Hap (0, B) = EF [(Rop(V) = (X382 = x382) Qap (V) L{g1u (w, B1) < 810.(Wy, 1)} L{t2r(V, v, B) = 0} (V)]
Myp (s B) = Er [(Rop(V) = (X382 = x5 82) Qop (V) L{g10(Wi, B1) < &ar(wy, 1)} L{ap (v, V, B) = 0} po(V)],
e (v, B) = Ep[Qap(V)1{g10(Wi, B1) < g1(wy, Bi)} L {map(v, V, B) = 0} pa(V)],
(v, B) = Er [Qap(V)1{g1u (wi, B1) < g1(Wi, 1)} 1 {tap(V, v, B) 2 0} o (V)]

Using iterated expectations, we have

Ep [(P?(Zl,zz,zs,ﬁ»hn)’zs] =
Ep [n;%(Vz,ﬁ)¢z(Vz)qofz(Y13, V3, Vo, h)|Zs] —Ep [ﬂpr(leﬁ)f{bz(Vl)@?2(1/13; V3, Vi, h)|Z3]

R R
+Ep [W:,ZF(Vlrﬁ)¢2(V1 )’ (Y3, Y13, V3, Vi, h)|23] —Er [W;fp(vzy B)P2(Va)pp? (Yas, Y13, V3, Vs, h)|Zs]
(A-45)
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We will analyze each of the terms on the right-hand side of (A-45). Using the result in (A-35), we
have

Er [W;ZF(szﬁ)%(Vz)%gz(Ylsf Vs, VZ’hn)|Z3] =
Er [W;?(szﬁ)%(vz)r(‘/& Va, hn)|V3] Yi3¢2(V3) =y - Ep [W;ZF(Vrﬁ)%(V)zfv,l(V)]
+Ep (125 (V, B)pa(V)Bir(V)].

By the result shown in (A-35) and the boundedness conditions described in Assumption 2, there
exists a finite constant D, such that

sup |15 (v, B)p2(v)BLx(v)| <D, -hy™ vV Fe F.
veRLv

pecO©

Next, by the smoothness conditions in Assumption 2 and the kernel properties in Assumption 4,

an M'"—order approximation implies that there exists a finite B, such that,

Er [125 (Vo B2 (VoI (Va, Va, )|V | Yis o (V3) = iy 133 (Va, B)a(V3)* Yia fi (Va) + B (Vs B)Yi3ha( V),
where  sup |BZ’F(v,ﬁ)¢2(v)| Sgu-h;VJrM VFeF.

veRl
pcO©

Combining these results, we obtain that, under Assumptions 2, 3 and 4, there exists a finite con-
stant C such that,

Er [ (Va, Y2 (Vo) p i (Y3, Vs, Vo, )| 23] =

(1 (VB (Va)ha(Va)? = Ei [0V, B) o (Vo V)2]  an(Yia, Vo, B,

+M

where sup |éa,n(Y13,v,/3)| <C-hy VFeF.

veRlw
pcO

Note by iterated expectations that Ep [q;}(V, B)fva (V)¢2(V)2] =Ep [anfF(V, /3)Y1fV(V)qb2(V)2], There-
fore, the previous result becomes,

Ep [ﬂ;ﬁ:(vzlﬁ)(Pz(Vz)(sz(Yly Vs, Vo, hy)| 23] =

hyt (un(V3, VY13 fy (Va)pa(Va)® = Er [ (V. B) Vi fy (V) o(V ])+<fa,n(Y13;V3'/3’):

(A-46)
ry+M

where sup |£M (Y13,v, /5)| <C-hy

veRM
pcO

VFelF.
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Analogous steps can be used to show that, under our assumptions,

Ep [ﬂ;fp(vp/5)¢2(V1)§0§2(Y13: Vs, Vlfhn)|Z3] =

hy - (’7;2 (V3,B)Y13fy(V3)¢2(V3)* — Ep [U;ZF(V,ﬁ)YlfV(V)({)Q(V)Z])+ Eon(Yi3, V3, B),

r,+M

where sup |5bn (Y13,7v, [j’)| <C-hy VFelF.

veRL
pe®

Next, using again the result in (A-35), we have

EF[U (Vi B2 (Vi) @i (Y3, Vi3, Vs, Vi, by |Z3]=
EF[W (Vi, B)p2(V)T(V3, Vi, by, V31Y23Y13¢2(V3 — hy EP[W (V,B)p2(V ]"ZF(V)fV,l(V)]

+Ep [V, B)p2(V)B,3(V))].

By the result shown in (A-35) and the boundedness conditions described in Assumption 2, there

exists a finite constant D, such that

r,+M

sup VFelF.

veRlw
pcO

ﬂcFv’ﬁqbZ ) <D h

Next, by the smoothness conditions in Assumption 2 and the kernel properties in Assumption 4,

an M'"—order approximation implies that there exists a finite B, such that,

Er[n55:(Vi, )2 (VT (V, Vi, 1) | V3] Yos Yisa(V3) = it 173 (Va, B)Yas Y fir(Va)ha(V3)?
+ V23138, £(V3, B)pa(V3), where  sup |BS o(v, B)a(v) |SBc'h2V+M VFeF.

veRl
pcO©

By iterated expectations, Ef [HZZF(V,ﬁ)¢2(v)2y2F(V)fV’l ] Er [17 (V,B)pa(V) YzYlfV(V)]. Com-
bining the previous results, we obtain that, under Assumptions 2, 3 and 4, there exists a finite

constant C such that,

Ep [UZZF(VD,B)%(VO(P?Z(Y%; Yi3, V3, V3, hn)'Z?)] =

it '(’7:,21:(‘/3;/3 Y23 Y13 fy (Va)ba(Va)? = Ex [n75(V, B) Yo Yy fiy (V )2])+£c,n(Y23r Y13, V3, ),
where  sup [&.,(Yas, Yi3,0,8)| < C-hyy™ || VFeF

veRMY

pcO

28



Analogous steps can be used to show that, under our assumptions,

Er[n32:(Va, b2 (V)i (Yas, Vi3, V3, Va, h) )|2s] =

- (%F(V3r/3 Va3 Y13 fy (Va)a(Va)® = Ex (V. B) Yo Y fyr (V) Z(V)2])+Ed,n(y23rY13’V3rﬁ)r

where  sup |£4,(Yas, Yi3,0,8)| < C-hy™ - |vy5| VFeF
"o
(A-47)
Let
Hﬁ(zz-,mz((nﬁ(vuﬁ) Ty (Vio B)) - Vi + (15 (Vi B) = 176 (Vis B) ) Yzmz) Fr(Vi)- da(Vi)?
= x| (125 (V, B) =13V, ) - Yo+ (V. B =2V, ﬁ))-YzY1)~fv(V)~¢z(V2
(A-48)

Note that Eg [H;i(Z, ﬁ)] = 0. Combining the results in (A-46)-(A-47), we have that, under Assump-
tions 2, 3 and 4, there exists a finite constant C such that,

Er [0 (2 2125 10| 2] = B [0 (2021, 25, 10| 21] = Wy ™ HE(Z00B) + £ Zis ),

where sup |&,,(Z;, B)| < C-my™ vyl VFerF
pe®

Plugging this result in to (A-44), we obtain,
1
e (Z 1) = B[0Pz 2020 po)| 2]+ Ee 020,25, 22,8021
i, !
2 T
= 5 H2e(Zi P)+ &0l Zis )
: - (A-49)
= 3 hp(Zi )+ EpulZi ),

where sup |¢£f,n(Zi,ﬁ)| <C-lM.|v,| VFeF.
pc©

By Assumption 3, there exists a finite constant Dy such that E¢[|Y,|*] < D, for all F € F. Therefore,
using a Chebyshev inequality argument we have % LYol = O,(1), uniformly over ¥, and from

the above results, we have

22(1; Z|‘Sen Z;,B) | = ( hyy +M), uniformly over F.

i=1
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From here, plugging (A-49) into (A-43), we obtain

T) = o 1ZZ Vi Vi), + P2 LN iz e e B),
i=1 j=i i:l (A—SO)

7, r,+M 1 1 .
&4 n(ﬁ)‘ :Op(hn )+op(m):op(m), uniformly over F.

where sup
pe®

Where € > 0 is the constant described in Assumption 4. Consider the class of functions,

Hop ={m(z) = Hya(z, ) : p€ ©).

By Assumptions 2 and 3, there exist finite constants Z4 and §4 such that, for all g,p’ €O,

|Hsz:(Z;ﬂ) ~Hy2(2,8)| < (A4 +By-1vl)- |- B V 20, VEFeF.

From here, Pakes and Pollard (1989, Lemma 2.13) yields that there exist constants (A, V) such
that, for each F € F, the class of functions .73 p is Euclidean (A, V) for the envelope Hj(z) =
'HZTIZ:(Z, ﬁ0)| +Msj- (Z4 +By- |y2|), where f is an arbitrary point of ©® and M3 = 2\/Esupﬁ ||ﬁ —ﬁ()”
(recall that k = dim(pB)). By Assumptions 2 and 3, there exists a finite constant D3 such that
Er [E3(Z)4] < Dj for all F € F. Thus, the conditions in Result A1 are satisfied and from there we

obtain,

1
=0, (m ), uniformly over F.

Plugging this result into (A-50), we obtain,

L= o) DECIATIN Z HI(Z0B) + £ )

i=1 j=i
where éen )=-— ( ) ZH (Zi, )+ Efn(ﬁ), and (A-51)
7, 1 1 1 .
sup Ezﬁq(ﬁ)’ =0 ( 373 ) +0p (m) =0, (W)’ uniformly over F,
pe® n n

where € > 0 is the constant described in Assumption 4. We move on to the last step and focus on
ﬁ " Zjii (sz(Vi, \/]-,/3))+ and its Hoeffding decomposition. Let V;,V, be iid draws from F
and recall that we defined

Tor(B) = Er [(2r(V1, Va2, B)), |-
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Let
H@(Vlfﬁ) = % : (EF [(TZF(VD V2, B)), |V1] +Ep [(sz(sz Vi, By |V1])—T2P(ﬁ) (A-52)

and note that Eg [H@(V,ﬁ)] =0. Let

&V V2B = (5 ((Cr (Vi Vau B, + (0 (Va, Vi B, ) - Tor (B)) ~ HTF (Vi ) = HE(V, ),

n (A-53)

-1
S3ulB) = (2) & (Vi Vi )

i<j

The Hoeffding decomposition of ﬁ i Z]# (TZF(V,, V],[j’)) yields,

PRCE) ZZ ToF Vquﬁ =THr(B) + ziHlffz(Vi,ﬁ)nLSZn z( ) Z~TZ Vi, Vi, B).

i=1 j=i i=1 i<j
(A-54)
We proceed by focusing on the degenerate U-process { sk “(B): pe @} Fix any finite M and con-

sider the class of functions,
M _ ~ — _
Ay = {m(xz,xz) =a1+(xp-%) ay: |(ay, a}) || < Ml,

By Pakes and Pollard (1989, Example 2.9), there exist (A, V) such that . is a Euclidean (A,V)

class of functions for envelope H(x,,%;) = M - (1 V ||x; — %5]|). Now let

Hyr =
{m(v,i‘) = (Ror (v)Qar (9) = Rop (9)Qar (v) — (x5 B2 = X5 82) Qar (v)Qar (7)) - ho(v)ha(P) : B2 € @}-

Assumptions 2 and 3 imply that there exists M < co such that 7 p C %ﬂﬁ for all F € F. Therefore,
there exist constants (A, V) such that 4 is Euclidean (A, V) for all F e F. Next, recall from

Assumption 3 that the class of sets
¢ = {(wlzwl) e R xR™ : gy (wy, 1) < g1(wy, B1) for some By € 6}

is a VC class with VC dimension Vc, and that the following is a VC class of sets for each F, with

VC dimension uniformly bounded over F by a finite constant Vp,

91”1? = {(vl,vz) e Rl xR : Tyr(v1,v2,B) =2 0 for some 8 € @}
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These VC properties imply, by the results in Pakes and Pollard (1989, p. 1033) (the result that
classes of indicator functions over VC classes of sets are Euclidean (A, V), with (4, V) depending
only on the VC-dimension of the underlying class of sets), and Pakes and Pollard (1989, Lemma
2.14) (the product of Euclidean classes of functions is also a Euclidean class) that there exist con-
stants (Z/, V,) such that, for each F € F, the class of indicator functions

Sy = {mw, ) = g (@1, B1) < 1w, pr)) - 1{ear(v,7.6) > 0],
is Euclidean (Z,,V/) for the constant envelope 1. Recall that

Tr(v, v, B) =
((Rap (v)Qar (@) = Rop () Qar (v)) = (x50 = %3 B2) Q2F(V)Q2F(7)) gy (wi, B1) < gi(wy, 1)}
< P2(v) P2 (V).

and (12r(v, 7, B)), = T2r(v, 7, B) - L{12p(v, v, B) > 0}. Using the Euclidean properties of the classes of
functions .@FF and 7, p described above, applying Pakes and Pollard (1989, Lemma 2.14), there

exist constants (A,, V,) such that, for each F € F, the class of functions

97 = {m(v,9) = (1p(v,7,§)), : p €O}

is Euclidean (A,, V,) for an envelope of the form G(v;,v,) = C, +C,- ||x2 - xé” -p(v)p(v), where C,
and C, are finite constants. From the conditions in Assumption 2, there exists a finite constant D
such that,
sup |, - T <D
X2,X,€VXV
B.€©
Therefore, trivially there exists a constant 7, such that Ep [G(Vl, V2)4] <y, VY FeF,and the con-

ditions for Result A1l are satisfied, and from there we have that the degenerate U-process ngn(-)
defined in (A-53) satisfies,

sup
pcO

7 1 1 )
Sz’zn(ﬁ)l =0, (Z) =0p (m), uniformly over F, (A-55)

where € > 0 is the constant described in Assumption 4. Let H;%(Zi,/i’) be as defined in (A-48), and

denote
VP (Zi,B) =2 H2(Vi, B) + Hy2(Z4, B). (A-56)

32



Note that Eg [z,bFTz(Z,ﬁ)] = 0. Plugging the result in (A-55) into (A-54) and (A-51), we obtain the

linear representation result for T;(ﬁ) given in part (A) of Lemma 1,

T,(B) = Toe (B Zzp (Zi,B) + Ex*(B), where sup
pe©

7, 1 :
5n2(ﬁ)| =0, (m), uniformly over F,

where € > 0 is the constant described in Assumption 4. This concludes the proof of part (A) of

Lemma 1. Part (B) is proved following analogous steps. Let

Mo r (Wi, B1) = Ex [Rip(W1) {81y (wr, B1) < g1r(Wh, B} L {tip(Wi, wy, ) > 0}y (Wh)],
My (W1, B1) = Ep [Rip(W1) 1 {g1u (Wy, B1) < g1r(wy, f1)} L{Tip(wy, Wi, B) 2 OFy (Wh)],
e (Wi, Br) = Ep [Qur(Wi)1{g (Wi, B1) < gir(wi, B1)} L{typ(wy, Wy, B) = 0}y (W1)],
na'e (w1, B1) = Ep [Que(W)1{g1u(w1, B1) < 10 (Wh, B} L {1 p(Wy, wy, B) = 0}y (Wy)]

and,

Wllﬁl

% (EF[ 1 (W, Wa, B1)) Wi |+ Ep [ (11 (W, Wi, B1)) |W1]) Tir (1),
Hzllf(zi:ﬁl E( ; (Wi, B1) = 11, le’/gl))+(ﬂle(Wlirﬁl)_W;}F(Wlifﬁl))'Yli)'fwl(wli)'q')l(wli)z
—Ep

[( My (Wi, B1) W;,lp(Wllﬁl))Jr(’7:11;(W1;151)—’7;,1p(wpﬂ1))'Yl)'fwl(Wl)'¢1(W1)2 ,
IF

T T
Y (Zi 1) = 2 HiE(Whi, B1) + HoH(Zi, Br)-
(A-57)
Using parallel steps to the proof of part (A), we can show that,

Ti(B1) = Tip(Br) + Zz,bF (Zi,B1)+En'(B1),  where

sup

1
P 5;171(ﬁ1)| =0p (W)’ uniformly over F.
i€

where € > 0 is the constant described in Assumption 4. This is the result in part (B) of Lemma

1. Part (C) follows immediately from (A) and (B). This completes the proof of Lemma 1. m

A4 Estimation of o (ﬂ)

In this section we study the asymptotic properties of the estimator for o(f) = EF[IPIZ'(Z,ﬁ)Z] we
described in Section 3.9.1 of the paper. Our construction uses the structure of the influence func-
tion ¢Z (z,f) in Lemma 1.
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A4.1 Estimation of the influence function i (z, f)

We use sample analog estimators of the components described in the structure of the influence
function ybg(z, p)in Lemma 1. We will describe separately how we estimated 1,[)17;2 (z,B) and gb? (2, B1)-
A4.1.1 Estimation of 1[)17;2(2,[5)

We construct our estimators using sample analogs. Based on the structure described in (A-52), for

a given (v, §), we estimate HlTIZ:(v,ﬁ) as,

APw ) =5+ ) [B0. V0G0 V)5 2 b+ BV 0 )L [V 0.8) 2 b )] - To(p)

j=1

And, based on the structure described in (A-48), for a given z = (y;,v;,v), we estimate Hg;(z, B) as

(2, B) = (7 (0. ) =Ty (0. B)) 91 + (7 (0. B) =75 (0. B)) - 291 ) o () h2(v)?
_%Z[((T/]iz(vj’ﬁ)_ﬁz(v]’ﬁ))Y1]+(T/I\CT2(V];/3)_7/7\;Z(V] ﬁ ) Y2]Y1]) fV V)Z )
j=1

(A-58)

From here, using the definition in (A-56), for a given z = (y1,,,v), we estimate l,D?(Z,ﬁ) as

PP (z,8)=2-H (v, )+ H, (2. B) (A-59)

Let us analyze I:I\ITZ(V,[)’) first. First, by the results in (A-17) and (A-18), we have

sup |H2(v, /5)—[l 1Z[(r2F<v,V~,/s>)++(m<vj,v,/3>)] T%(/s)‘ 0p(1),
veRLV i=1
pe©

uniformly over F.

As we have pointed out previously (see equation A-16), by the conditions in Assumption 2, there

exists a finite constant T, such that sup |TZF(U,'17, /3)| <T, VY F € F. By a Chebyshev inequal-
v, 7eRLV xRLV
peO
ity argument, this implies

n

1 Z[(T2F(v, ],ﬁ)) (TQF(V]',V,ﬂ))J - EF[(TzF(V; V,B)), + (t2r(V, V’ﬁ))+]

=1

sup
veRLV
pcO

=0,(1),

uniformly over F.
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Combining both previous results, we obtain

sup ‘ﬁlﬂ(v,ﬁ) HlTé(v,ﬁ) =0,(1), uniformly over F.
veRLV (A-60)

pe©

Next, we analyze I/-I\sz(z,ﬁ) We begin by analyzing the estimators used in (A-58). Using the defi-
nitions in (29), we construct the estimators in on the right hand side of (A-58) as,

n

s (v, p) = %Z(E(vn — (X382 = ¥3B2) Qa(V))) {10 (w1, B1) < 10 (Wi, 1)} (V)

j=1

: ]1{7[\2(\6,1/,/3) 2 _bn}l

n

@B =) (RalV)) (X338 x62) Qal V) 1 {er (Wi, ) < i, 1)} (V)
j=1
(A-61)

1T, V;, ) = ~b,,
e (v, B) ——ZQz {giu(Waj, 1) < gir(w, B} 2(V)1{@(w, Vj, B) 2 =b,},

i (B ZQZ {glu wl:ﬁl)<g1L(W1]xﬁl)}¢2( )1 {Q(Vj,v,ﬂ)z—bn}.

Let
P (Zi,Zjyv, B 1) = (Yai = (X582 = x52)) YuiL (Vi, Vi, )2 (Vi) (V)

]l{glU(wlrﬁl) < glL(lerﬁl)}l
O (23, Zj,v, B,10) = (Yai = (X582 = 132 )) VoiT(Vi, Vi 1) (Vi) a( V)
g (Wij,B1) < 1wy, 1)},
O (Zi, Zjwy, i h) = Hgu(Wij, B1) < gir(wi, B0} YiiT (Vi Vi, o (Vi)a(V)),
@";2(21',2]»“/1:/31,}1) = ]l{glU(wllﬂl) < glL(le’ﬁl)} Y1,L(Vi, Vi, )2 (Vi) (V).
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From the constructions of f{\z and 62 (see (27)), our estimators in (A-61) are,

e _L.
77a (vlﬁ) - h11:1

DTV}, B) 2 =by,

ir ];

J L izj
a;«v,ﬁ):hi,. ]
" =g (A-62)
ﬁ?(v,ﬁ)w%' 2z wn L (@0, Vi p) 2 b,
] 1 i#j
(. B) = hl v Zjwr, B ) L{E(Vj v, 8) 2 <bu}.
J L izj

If Assumptions 1-5 hold, we have

sup [7a> (v, B) — 1, (v, )| = 0,(1)  sup [7,>(v, B) — 11,2(v, B)| = 0p(1)

vey vey

pe© ped )
_, - _ . uniformly over F.
sup |17c (v,ﬂ)—na’F(v,ﬂ)| =0,(1) sup|17d (v, B) _Wa,F(Vfﬂ)| =0,(1)
vey vey
peo© pe®

(A-63)
We will show the above result for 2 (v,B). The proof for the remaining estimators in (A-63)

follows analogous steps. Our first step is to express,

()
(0, ) = 57 - i Zj,0, B i) L{Top(Vj, v, B) 2 0+ & (v, ), where
" ] 1 i#j
2 1
(v p) = 0 Zj v, B, ) (1{Ta(V), v, B) = =by} = 1{rap(V}, 0, 8) > 0})
] 1 i#j
(A-64)
™
We will first show that sup|&," (v, B)| = 0,(1), uniformly over F. Note first that, as we pointed out
veV
peO

in equations (A-15) and (A-26), we have

|17V, v, 8) = ~by}— 1{rar (V. ) 2 0|
< 1{|@(\G,v,ﬁ) - TzF(Vj,v,/;’)| > bn} + ]l{—an < (Vi v, B) < o}'

Next, recall from Assumption 2 that, there exists a finite constant D such that, | <DV (x5,8,) €

V x ©. Combined with the bounded properties of the weight function ¢,(-) and the kernel K(-),
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Assumption 2 implies,

€1 (v, )| < [hi o%Z(n{|’f2<vj,v,/3>—12p<vj,v,ﬁ>| > b, |+ 1{~2b, < 7o (V},v, ) < 0})
n j:1
(A-65)

R, S 1 —
X¢ K mZ|Y21|+2D

i#]

By Assumption 3, there exists D4 < co such that E¢[|Y5|*] < Dy for all F € F. Therefore, a Cheby-
shev inequality argument yields,

1
n-—1

Z|Yzi| = O0y(1), uniformly over F. (A-66)

i#]
Take any 6 > 0, note that

n

1 1 — — —
Pe|sup| - U[B(Vj,v,p) = eV, p) 2 b} > 6 [<Pe|  sup  [B(v.3,B) = tap(v, 7. p)| > by
h;, n ~ mL L
vey =1 v, 7eR*V xRV
pe® pecO®

From equation (A-12),

sup Pr sup |’T\2(v,’17,ﬁ)—72p(v,'17,/3)| >b,|— 0.
FeF v,7eRLV xRV
pcO©
Therefore,
1 1w (= :
W ZIL{|T2(V]-,1/,/5) - sz(Vj,v,ﬁ)’ > bn} =0,(1), uniformly over F. (A-67)
=1

Next, for a given (v, f) and ¢ > 0, let

n

Z(]l{—c < Top(Vj,v, B) < 0} - B¢ [1{=c < 1o (V}, v, ) < 0}]).

=1

1

a®
mg' (v,p,c) = "

Note that,

n T

1 _» 1
— .= Zﬂ{—zb,1 < 1p(Vj,v, ) < 0) = E.m}l (v,ﬁ,zbn)+EEF [1{~2b, < p(V,v,B) < 0}]. (A-68)
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By the properties of VC classes of sets described, e.g, in Pakes and Pollard (1989, Lemma 2.5), the
conditions described in Assumption 3 imply that, for each F € F, the following class of sets is a

VC class, with VC dimension uniformly bounded over F by a finite constant,
%JZF E{v eRb: —c< Tor(v,u,p) <0 for some 0 <c<cy, u €V, and p e@},

where the constant ¢ is as described in Assumption 3. From here, the result in Pakes and Pollard
(1989, p. 1033) implies that there exist constants (A, V) such that, for each F € F, the class of

indicator functions,

,%’j:z{m(u): 1{-c < 1op(v,u, ) <0} forsome 0<c<cy, u eVandﬂe@}

is Euclidean (A, V) for the constant envelope 1. From here and Sherman (1994, Lemma 5), the

conditions for Result A1l are satisfied and, from there, we obtain,

1
= Op (m ), uniformly over F.

veV
0<c<cy

For n large enough, we have 2b,, < cy. Therefore, by the above result and the condition in part (ii)

of Assumption 5, equation (A-68) yields,

1 1 v 1 _ b :
W . 31611}}) Z {—an < tr(Vjv,B) < O} < OP(W) + 2 - h_g =0,(1), uniformly over F
j=1
pe©

(A-69)
where m is the constant described in Assumption 5. The last line follows from the bandwidth
convergence conditions in Assumption 4, which require 1/, - n'/2 — oo and % — 0. Combining
(A-65), (A-66), (A-67), and (A-69), we have

sup|£n v, B )' =0,(1), uniformly over F.
vey
pe©

Plugging this into (A-64), we obtain,

™
W)= " XZcp (20 Zj,v, B )1 {12 (Vv ) 2 0} + &I (v, B),
i j=1 i#j (A—70)
where sup|ég”2(v,/3)| =0y(1), uniformly over F.
1%
peo
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Next, let

Na®
U™ (v, ,h) =

1
n(n—1)

Y ) (¢ (@i Zw B {2 Vv, ) 2 0) = B0 (22, Zj,0, 81 {12 (Vi 0, ) > O]

j=1 i=#j

We can rewrite (A-70) as,

1 a2 1 T n2
o’ (v,B) = o7 - Ul (v, B, ) + o - Ee[ 0 (20, 2,0, B, ) 1 {war (V0. B) 2 O + & (v, ) (A7)

where, in the above expectation, Z;,Z; are two independent draws from F. We will analyze

7]
UZ“F (v, B, h,) first. Define the class of functions,

2 T
%”;“ = {m(zl,zz) = (p””z(zl,zQ,u,ﬁ,h)]l {top(vy,u,p) >0} forsomeueV,pe®,h> 0}

Invoking arguments and results from empirical process theory we have used previously, the
smoothness, regularity and manageability conditions in Assumptions 2 and 3, and the bounded-
variation properties of the kernel described in Assumption 2 imply, by Pakes and Pollard (1989,
Lemma 2.14), that there exist constants (A,, V) such that, for each F € F, the class of functions
%7152 is Euclidean (A5, V,) for an envelope G,(z1,2,) such that there exists a constant C, < oo for
which E¢[G,(Z1,Z,)*] < C, for all F € F. Thus, the conditions in Result A1 are satisfied and from
there we obtain,

(%) 1
;ug UZ“F (v, B, )| = Op (m), uniformly over F (A-72)
€

vey

Next, using an M'"—order approximation, the smoothness conditions in Assumption 2, and the

bias-reducing properties of the kernel described in Assumption 4 imply that there exists a con-

.
stant B < oo such that,

1 T ;2
= Ee[@" (Zi,Zj,v, B, 1) L{war (V) v, B) 2 Of| = 173 (v. B) + B (v, B)
n

—_——
where sup|BZ“ (v,ﬁ)| <B"™ .lM VvFer

pcO©

vey
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Plugging (A-72) and (A-73) into (A-71), we obtain

1 a
sup [7ia* (v, B) = 1, (v, )| < 7 sup|U (v,ﬂ hy) +sup|B’7 (v, )|
pcO n ped 5co
vey vey ey

1
=0 (h’ Y ) + O(hﬁ/[) =0y(1), uniformly over F.
which proves the claim in (A-63) for 7j,(v, §). Using our assumptions, proving the claim in (A-63)

for 77, 1, (v, B), 1c (v, B) and 7 4 (v, B) follows analogous steps.
Let us continue with fV ), which is also used in (A-58). As we have detailed before, for a given

1 1y
= E}:Pﬁgvﬂﬁ
i=1

A result we have used previously is that, by Nolan and Pollard (1987, Lemma 22) (or Pakes and

v, we have

Pollard (1989, Example 10)), the bounded variation nature of our kernel implies that the class of
functions {m(v) = k(%) for some u e R, h > 0} is Euclidean (Ay, V) for the constant envelope k
(neither (Ag, V), nor k depend on F). From here and Sherman (1994, Lemma 5), the following

empirical process satisfies the conditions of Result A1,

n

V@)= 1) (0w h) = B [0V 0],

i=1

and we have, sup
veRLV
tion, the smoothness conditions in Assumption 2, and the bias-reducing properties of the kernel

v,{v(v)‘ = Op( 11/2) uniformly over F. Next, using an M*"—order approxima-

described in Assumption 4 imply that there exists a constant B" < oo such that,

1
= Ep[L(Viyv, )] = o (0) + B (v),

bias

Bﬁwﬂgéﬁw% VFeF

where sup
veV

Combining these results, we have

v,{v( )'+sup

vey

sup[ ()~ fulv)| < 4 -sup B )

vey vey

1 (A-74)
=0, (W) + o(hﬁ’l) =0,(1), uniformly over F.
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Plugging in the results in (A-63) and (A-74) into (A-58), for any y;,v,, we have!8

sup ﬁ?(z,ﬁ)—{((ﬂ;%(v,ﬁ)—172}(1/,/3))-3/1 + (15w, B) =1, B))- yzyl) fo(v)- $o(v)?
[S
veRlV
——Z[( Vi B) =V B)) Yo+ (15 V3 B) = 1 Vi) Yoyt ) iV V’z]}‘:opu»
uniformly over F.
(A-75)
By the conditions of Assumption 2, there exists a ﬁzz such that,
T T 2 4 T
sup Ep| (1751 $) =15V, ) Yoo (V. ) -5 V20 YoYs ) SV - V] | <
S
VFeF.

From here, a Chebyshev inequality argument yields,
n

sup %Z[((wﬁ(vpm—niyvj,ﬁ))-Ylj+(n§;<vj,/3>—n§;<vj,ﬁ>)'YZJ-YU)'fv<Vj>~¢z<V]->2]
€ i=1

_EF[((%F( B - ’7bp( /3)) ( Z}(V,ﬁ)—q;fp( ) Y2Y1) fr(v )]zop(l),

uniformly over F.

Plugging in this result into (A-75), we have that for any v;,v,,

sup H *(z,B) - (z, )| =0,(1), uniformly over F.
B0 P)=thorz P =0p (A-76)

veRMV

Combining (A-60) and (A-76) with the definition of {/;Tz(z,[j’) in (A-59), for any y;,y,, under As-

sumptions 1-5, we have

;ug E/D\Tz(zlﬁ) - QDZZ(Z,/J’) =0p(1), uniformly over F (A-77)
€
veRLV

18Note that the presence of the weight function ¢,(v), which is zero for all v & V, implies that the results in (A-63)
and (A-74), which hold uniformly over v € V, immediately produce the result in (A-75), which holds uniformly over
veRLV (since any v ¢V is trimmed away by ¢;(-)).
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A4.1.2 Estimation of 1p17_.i (z,B1)

As in our estimation of 1,[)1{2(2,/3), we proceed using sample analogs based on the definition of

l[)z:l (z,B1)- Based on the structure described in (A-57), for a given (wy, f1), we estimate H@(wl,ﬁl)
as,

n

Y (wy, /51)5% %Z[ﬁ(wyle'ﬁ1)]1{/T\1(w1;W1j'ﬂ1)2—bn}+/T\1(W1jrw1,ﬁ1)]1{E(le,wllﬁl)Z—bn}]
j=1
~Ti(py)

And, for a given z = (y1,y,, wy), we estimate HzT}?(z,ﬁl) as,
57 _ (= =T =T =0 T 2
H,'(z,p1) = ((ﬂa (w, B1) =T (wr, 1)) + (7 (w, B1) — Tl (11/1x/51))'1J1)'fW1 (w1) - ¢p1(w1)

- % Z[((ﬁarl(wlj'ﬁl)_ﬁ\gl(wlj’ﬂl))+(ﬁcrl(wlj:ﬂl)_ﬁ?(wlj'ﬁl))'Ylj)'ﬁvl(wlj)'(i)l(wlj)z
=
(A-78)

From here, using the definition in (A-57), for a given z, we estimate 1/)1?1 (z,p1) as

Phi(z,By) = 2-H (wy, pr) + Hy (2. 1)

Using the definitions in (30), we construct the estimators on the right hand side of (A-78) as,

7a' (w1, B1) = %Zﬁl<wlj)]l{glU(wlilgl) < glL(le:ﬂl)}ﬂ{:f\l(wlj:wlfﬁ) > _bn}(Pl(le)r
j_
iy (w1, 1) = ZR (Wi L{g10(Wij, B1) < gilwn, fo)} 1{Ta (wi, Wi, B) = =by b1 (W),
j=1
(A-79)

WCT,IF(wl'/jl = - ZQI Wij) {glU(lelﬁ1)<glL wlxﬁl)} {T1(w1»W1j,ﬁ)Z—bn}¢1(W1j),
j=1

i p(wy, Br) == ZQI Wij) {glU(wlfﬁ1)<glL(W1]fﬁl)} {Tl(wljlwllﬁ)Z_bn}(Pl(le)
j=

Let

ol
o' (Zi, Zj,wy, pr,h) = 1igiu(wi, 1) < g1.(Whj, B

{ V2T (Wi, Waj By (Wai )b (Wa ),
(Pq’:1 (Zi,Zj, w1, B1,h) = ]l{gw(wlj,ﬁl <gi(wi, py }

{ i

{ )

le;Wl], )¢1(W11)¢1(Wl])
§1u(Wij, B1) < gir(wy, f1) | D(Wry, Wrj, h)p1 (Wh)r (W),
g1u(wi, 1) < g10(Wij, B1) T(Wry, Wj, h) 1 (Wh;) 1 (W)

Yll

Yll
al

o (Z;, Zj,wy, B, h) =1

7
' (Z;, Z;, wy, By, h) =1
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From the constructions of f{\l and 61 (see (27)), our estimators in (A-79) are,

1 1 v n _
a' (Wi, B1) = — - wn=1) ZZ(PW (Zz’:ijwlxﬁl:hn)]l{Tl(wlj; wy, f1) = _bn};

14
h" j=1 izj
1 1 v n
e ’ = : " Z';Z'r » » 1 (3 ’ 17 > - J)
1, (w1, B1) W = 1) ;:1 ;ij ¢ (Zi, Zj, w1, By hy) {Tl(wl Wi, B1) 2 bn}
1 i 7
T _ . e s — ) - _
e (wlxﬁl) hfl H(TI— 1) ]2:1 ;ij [ (ZZ,Z],wl,ﬁl,hn)]]_{Tl(wl,Wl],ﬂl) > bn}’
1 1 v 7
1 _ L n s — ) > _ .
M4 (wllﬁl) hf, n(n_ 1) Jé_l ;i]- @ (Zz;Z];wlxﬁlxhn)]]-{Tl(wlpwlfﬂl) = bn}

The above expressions are equivalent to those in (A-62). From here, using analogous arguments
to those we used in the steps from equation (A-60) to the final result in equation (A-77), we can

show that, for any y;, under Assumptions 1-5, we have

sug ',}’571 (z,B1) - l,bgl (z,B1)| = 0p(1), uniformly over F (A-80)
p1€
veRLV

A4.2 Estimation of I (z,B)

The influence function z/;l_f(z,ﬁ) is defined in Lemma 1 as gbI_Z(z,ﬁ) = ?(z,ﬁ) + yb? (z,B1)). Accord-

ingly, we estimate it as @T(z,ﬁ) =12(z,B)+ 1,’071 (z,p1)). From the results in (A-77) and (A-80), for

any vi,7,, we have

sug |$T(z,ﬁ) - gbg(z,ﬂ)| =0,(1), uniformly over F (A-81)
pe
veRLV

A4.3 Our estimator for of(ﬁ)
We estimate O’I_%(ﬁ) = Ep[gbg(Z,ﬁ)z] as

07 (Z;, )

i=1

|-

G (p) =

Recall that Yy; € {0,1} and also recall that, by Assumption 3, there exists a finite constant D4 such
that Ep[|Y,|*] < D4 for all F € F. Combining this with the result in (A-81), we obtain that, under
Assumptions 1-5,

Sug |52(ﬁ)—o§(ﬁ)| =0,(1), uniformly over F.
Be
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This proves the claim in equation (40) in the paper. m

A5 Conditions under which we can letx,, > 0

Assumption 6 allows for 0'1;3'( B) (the relevant measure of the contact sets in our problem) to become
arbitrarily close to zero over (@ x F)\ Ag, r. If we strengthen Assumption 6 to assume now that
o*lg( B) is bounded away from zero uniformly over (© x F) \K@, F, we can replace our regularization
parameter k with a positive sequence that vanishes asymptotically.

A5.1 A stronger version of Assumption 6

Suppose we replace Assumption 6 with the following stronger restriction.

Assumption 6’ (A stronger version of Assumption 6) There exist a B < co and C > 0 such that,
EpllyF (Z pP)<B, and of(f)2C V(BF)€(@©xF)\Aor m

The Berry-Esseen condition produced by Assumption 6, and the results in Theorem 1 still hold
under the stronger restrictions of Assumption 6’, but we now also have the following result. Take
any positive sequence k, — 0 such that «,, - n° — oo, with € > 0 being the constant described in
Assumption 4. Note from (35) that,

n/2. &7 (B)
(r(B) V k)

1
(B.F)eOxF zop(Kn'”e) = o) (A-82)

If Assumption 6’ holds, then for n large enough we have (0z(B) V k) = or(B) V (B, F) € (© x F) \
Ao, 5. Thus, if we replace the constant regularization parameter x > 0 with a sequence «, — 0

such that x,, - n€ — oo and define now,

_ N T(p)
~ (0(p) Vicy)

If we replace Assumption 6 with Assumption 6’, the results in equation (36) are strengthened to
the following,
() lim  sup Pp(t(B)>21-q) =0,

n—o0 -
,F)eA
(BF)ehe,r (36)
(i) Lm  sup IPp(tn(ﬁ)>zl_a)—a - 0.
" Oo(‘BrF)eAG,}'\XG,}'

Thus, the test based on t,(f) would no longer be conservative if (B, F) are such that op(f) < «

when « is a constant regularization parameter instead of a sequence vanishing to zero. All the
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remaining results regarding the construction of our confidence set remain valid.
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