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Abstract

In multiple contributions to the literature, James L. Powell and coauthors have developed
estimators for semiparametric models where sample selectivity and/or endogeneity can be
handled through a “control function”. Their methods rely on pairwise comparisons of obser-
vations which match (asymptotically) the control functions. Conditional on this matching, a
moment condition can identify the parameters of the model. However, there exist instances
where the control functions are unobserved, but we have bounds for them which depend on ob-
servable covariates. These bounds can arise directly from the nature of the data available (e.g,
with interval data), or they can be derived from an economic model. The inability to observe
the control functions precludes the matching proposed in Powell’s methods. In this paper we
show that, under certain conditions, testable implications can still be obtained through pair-
wise comparisons of observations for which the control-function bounds are disjoint. Testable
implications now take the form of pairwise functional inequalities. We propose an inferential
procedure based on these pairwise inequalities and we analyze its properties.

Keywords: Semiparametric models, control functions, sample selectivity, endogeneity, partial
identification, functional inequalities.
JEL classification: C1, C14, C31, C34.

1 Introduction

One of the many contributions of James L. Powell to econometrics has been the development

of methods to estimate nonlinear models where sample selectivity and/or endogeneity can be

handled through “control functions” or “control variables”, which are identifiable functions of

observables in the data. Building upon insights from the partially linear regression model (Robin-

son (1988)) and panel data models with fixed effects (Chamberlain (1984)), the methods proposed
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by Powell and his coauthors rely on pairwise comparisons of observations based on matching

(asymptotically) the control functions. This matching “differences out” sources of bias such as se-

lection correction terms, or other sources of endogeneity. Conditional on this matching, a pairwise

moment-equality condition is obtained, which can be used to identify and estimate the model’s

parameters. This body of work and insights can be traced back to Powell (1987) and Ahn and

Powell (1993), and has been expanded to include richer extensions and more general models, for

example, in Honoré and Powell (1994), Powell (2001), Blundell and Powell (2004), Honoré and

Powell (2005), Aradillas-López, Honoré, and Powell (2007), and Ahn, Ichimura, Powell, and Ruud

(2018).

In some instances, not all of the control variables are observable, making it impossible to im-

plement the matching in Powell’s methods. In a number of such instances, the nature of the data

observed or an auxiliary economic theory may produce bounds for these control functions which

can be expressed in terms of observable covariates. In this paper we focus on such a setting, and

we show conditions under which pairwise comparisons of observations can still produce testable

implications. In this case, pairwise comparisons are based on “matching” observations for which

the bounds for the control functions are disjoint. If the control functions enter the model in a

monotonic way, this approach yields testable implications in the form of pairwise, conditional
functional inequalities. Based on these inequalities, we present an inferential procedure and we

describe its properties. Similar to the usual pairwise-difference procedures available when all con-

trol variables are observed, our approach eliminates the need to directly estimate nonparametric

correction terms, which could be a challenging task when control variables are unobservable. Our

working example will be a semiparametric, bivariate sample selection model where some regres-

sors of the selection equation are unobserved, but bounds for the resulting control functions can

be characterized in terms of observable covariates, either through the presence of interval-data,

or through an auxiliary economic theory.

The paper proceeds as follows. Section 2 describes the bivariate sample selection model that

serves as the working example of the paper. We analyze two cases where a subset of control vari-

ables in the selection equation are unobservable. The first case is the most natural motivation for

our model, and it corresponds to the presence of interval data in the selection equation. By its

nature, interval data directly produces bounds for the unobserved regressors. The second case

shows that, in some instances, bounds for unobserved control variables can be obtained from an

economic model, and these bounds can be expressed as functions of observables. We illustrate this

in a model where unobserved beliefs (expectations) by economic agents are among the regressors

in the selection equation. We characterize bounds for the resulting control function using differ-

ent economic models of rationality. In all our examples we show that monotonicity restrictions

for some unknown functionals of the model produce pairwise functional inequalities that must be

satisfied at the true value of the parameters. Section 3 focuses on a general version of our model,
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and describes an inferential procedure where we construct a confidence set for the parameters of

the model based on the pairwise functional inequalities produced by our restrictions. Section 4

presents Monte Carlo experiments where we implement our approach on designs that involve in-

terval data. Section 5 discusses alternative scenarios to our general model where control functions

may also be partially identified. Section 6 concludes. The online appendix includes the proofs of

our results, along with additional extensions of our main model.

2 A bivariate sample selection model with censored data

The working example for this paper will be a semiparametric, bivariate sample selection model

with censored data. The model consists of a scalar outcome Y ∗2 , which is observed if and only if

Y ∗1 > 0, where Y ∗1 is a scalar latent variable. We will define

Y1 =

1 if Y ∗1 > 0

0 if Y ∗1 ≤ 0
and Y2 =

Y
∗
2 if Y ∗1 > 0

− if Y ∗1 ≤ 0

As usual, the model specifies that Y2 is observed (and is equal to Y ∗2) if and only if Y ∗1 > 0, and

otherwise it does not take on any meaningful value. For simplicity, we can code Y2 = 0 to signify

the event that Y ∗1 ≤ 0. We assume an outcome equation of the form,

Y ∗2 = X ′2β20 + ε2, (1)

where ε2 is a latent variable. We will consider different specifications of the selection equation

(describing Y ∗1), focusing on situations where some regressors in the selection equation are un-

observed. Our first example –and the most natural motivation for our model– is the case where

we have interval data in the selection equation. The second example will show that, in the ab-

sence of interval data, bounds for unobserved control variables can sometimes be obtained from

an auxiliary economic model.

2.1 A model with interval data in the selection equation

Suppose the selection equation is given by,

Y ∗1 = X ′1β10 + ε1

where ε1 is a latent variable. X1 ∈Rd1 are the regressors of the selection equation. Let us express

X1 = (X1
1 , . . . ,X

d1
1 ). We will assume that there exists at least one regressor Xℓ1 ∈ X1 that is unob-

served, but for which we have observable covariates (Xℓ1,X
ℓ
1) such that Xℓ1 ≤ X

ℓ
1 ≤ X

ℓ
1 w.p.1. That

is, we only observe interval data for at least one regressor Xℓ1 ∈ X1. For all the elements Xj1 ∈ X1
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that are observable, we will decree Xj1 = X
j
1 = X

j
1. This will allow us to present definitions in

terms of (Xℓ1,X
ℓ
1)d1
ℓ=1. Interval data is prevalent in many econometric data sets1, and it has received

attention in econometric work. A notable example is Manski and Tamer (2002), who examine

inference for the regression functions E[Y |X,U ] and E[U |X] when U is an unobserved scalar ran-

dom variable, and the econometrician observes (Y ,X,U0,U1), with U0 ≤ U ≤ U1 w.p.1. To our

knowledge, this paper is the first one to explicitly consider interval data in a multiple-equation

semiparametric setting with control functions. Denote,

β′1X1L ≡ min
ξ≡(ξ1,...,ξd1 )

(β′1ξ) : ξℓ ∈ {Xℓ1, X
ℓ
1} for ℓ = 1, . . . ,d1

β′1X1U ≡ max
ξ≡(ξ1,...,ξd1 )

(β′1ξ) : ξℓ ∈ {Xℓ1, X
ℓ
1} for ℓ = 1, . . . ,d1

If we express X1L ≡ (X1
1L, . . . ,X

d1
1L) and X1U ≡ (X1

1U , . . . ,X
d1
1U ), then for any given β1,

Xℓ1L = 1{βℓ1 ≥ 0} ·Xℓ1 +1{βℓ1 < 0} ·Xℓ1 and Xℓ1U = 1{βℓ1 ≥ 0} ·Xℓ1 +1{βℓ1 < 0} ·Xℓ1.

Note that X1L and X1U depend on (the signs of) β1, but we omit this dependence in our notation

to simplify the exposition2. By definition, we have

β′1X1L ≤ β′1X1 ≤ β′1X1U ∀ β1, w.p.1. (2)

Group X1 ≡ (X1
1, . . . ,X

d1
1 ) and X1 ≡ (X

1
1, . . . ,X

d1
1 ), and let W1 ≡ X1 ∪X1, V ≡ X2 ∪W1. We will let

F denote the underlying distribution that generated (X1,V ,ε1, ε2), and we will assume that we

observe an iid sample (Y1i ,Y2i ,Vi)
n
i=1 generated by F.

Assumption 1 (An exclusion and monotonicity restrictions)

(i) (ε1, ε2)⊥(X1,V ), and EF[ε2|ε1 > c] is well-defined, and nondecreasing in c for all c ∈R. Thus,

EF
[
ε2| ε1 > −X ′1β10 , X1,V

]
≡ λF (X ′1β10) ,

where λF(·) is a nonincreasing function.

(ii) PF(Y1 = 1|W1,X1) =HF(X ′1β10), where HF(·) is unknown but assumed to be nondecreasing. ■

1Well-known examples include surveys such as the Health and Retirement Study (HRS), which measures respon-
dents’ wealth in intervals (see Juster and Suzman (1995, page S35)). Other examples may include demand models,
where distance between consumers’ homes and candidate grocery stores is the desired regressor but we only observe
consumers’ zip code.

2Our notation can be simplified if the signs of β10 are assumed to be known ex-ante for the interval-data regressors.
However, since this knowledge is not required for our results, we focus on the general case where these signs are not
necessarily known ex-ante.
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Part (i) presupposes a type of positive stochastic relationship between ε1 and ε2 where larger real-

izations of ε1 produce larger expected values for ε2. The classic type 2 Tobit model (see Amemiya

(1985, p. 385)), where (ε1, ε2) are jointly normal with covariance σ12 ≥ 0, is a special case of As-

sumption 1. If we presupposed instead that EF[ε2|ε1 > c] is nonincreasing in c, the function λF(·)
would be nondecreasing and the methodology we will propose would be modified accordingly.

The monotonicity restriction assumed for λF(·) is stronger than what is typically assumed

in existing semiparametric versions of this model3, which rely only on the exclusion restriction

(ε1, ε2)⊥(X1,V ) that we also imposed (see, e.g, Ahn and Powell (1993)). However, those models

rely crucially on the requirement that X1 is observed. In the presence of interval data for X1, the

additional monotonicity property assumed for λF(·) will allow us to obtain testable implications

for the model. Part (i) of Assumption 1 yields

EF [Y2|X1,X2,Y1 = 1] = X ′2β20 +λF (X ′1β10) . (3)

If X1 were observable, this would be a special case of the models studied by James L. Powell and

coauthors, who have developed semiparametric methods using pairwise comparisons of observa-

tions (see Powell (1987), Ahn and Powell (1993), Honoré and Powell (1994), Powell (2001), Blun-

dell and Powell (2004), Honoré and Powell (2005), Aradillas-López, Honoré, and Powell (2007),

and Ahn, Ichimura, Powell, and Ruud (2018)). In our case, the pairwise comparisons proposed by

Powell’s methods would be based on matching4 X ′1iβ10 and X ′1jβ10. Group X ≡ X1 ∪X2, and sup-

pose we have a random sample (Y1i ,Y2i ,Xi)
n
i=1 (i.e, X1 is observable). Take any pair of observations

(Y1i ,Y2i ,Xi) and (Y1j ,Y2j ,Xj ). From (3), we have

EF
[(
Y2i −X ′2iβ20

)
−
(
Y2j −X ′2jβ20

) ∣∣∣ Y1i = Y1j = 1,X ′1iβ10 = X ′1jβ10

]
= 0 a.s. (4)

Using existing terminology, X ′1β10 is a control function that allows us to deal with the selectivity

in the outcome equation without having to parameterize or directly estimate λF(·). Estimation of

the slope coefficients5 of the model could proceed by estimating β10 in a first step, and plugging

the estimator in a second step to estimate β20, based on the pairwise moment condition (4). The

estimator would minimize a kernel-weighted U-statistic, and its asymptotic properties can be

derived from the results in Honoré and Powell (2005).

When X1 is unobserved, the matching in (3) is no longer feasible. Here is where the mono-

3In Section 5 we discuss alternative scenarios where control function parameters are partially identified and the
monotonicity restrictions for λF (·) and HF (·) can be dropped.

4If X1 is observable, we could leave the selection equation nonparametrically specified and simply base our pairwise
comparisons on matching X1 directly. Aggregating X1 into a lower-dimensional parametric index X′1β10 can still be
desirable to mitigate the curse of dimensionality. See Honoré and Powell (2005) or Aradillas-López, Honoré, and Powell
(2007) for details.

5Since λF (·) is nonparametrically specified in (3), an intercept cannot be identified in the outcome equation. This is
a general feature of partially linear models (see Robinson (1988)). Note that an intercept will be differenced out in (4).
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tonicity restriction for λF(·) in Assumption 1 becomes relevant when we have interval data. Recall

that W1 ≡ X1 ∪X1 and V ≡ X2 ∪W1. Let µ2F(V ) ≡ EF [Y2|V ,Y1 = 1]. By Assumption 1,

µ2F(V ) = X ′2β20 +EF
[
λF(X ′1β10)|V

]
. (5)

Since λF(·) is non-increasing, the bounds in (2) imply λF(X ′1Uβ10) ≤ λF(X ′1β10) ≤ λF(X ′1Lβ10) w.p.1.

Therefore,

λF(X ′1Uβ10) ≤ EF
[
λF(X ′1β10)|V

]
≤ λF(X ′1Lβ10) w.p.1. (6)

The only restriction we have imposed on λF(·) is that it is nondecreasing. Thus, without further

restrictions, the bounds described in (6) for EF[λF(X ′1β10)|V ] are sharp and cannot be improved

upon without additional assumptions. Combining (5) and (6),

λF(X ′1Uβ10) ≤ µ2F(V )−X ′2β20 ≤ λF(X ′1Lβ10) w.p.1. (7)

Since the bounds in (6) are sharp, so are those in (7). Bounds for other functionals6 could be

obtained if we impose additional (or alternative) restrictions on the joint distribution of (ε1, ε2).

For example, for any given (c1, c2) in R2, let G2|1,F(c2|c1) ≡ PF(ε2,≤ c2|ε1 > c1). Suppose we assume

that G2|1,F(·|c1) ≤ G2|1,F(·|c′1) ∀ c1 > c
′
1. This first-order stochastic dominance (FOSD) assumption is

stronger than our monotonicity restriction in part (i) of Assumption 1. Maintain the assumption

that (ε1, ε2)⊥(X1,V ) (as in part (i) of Assumption 1). Using iterated expectations and the bounds

in (2), this FOSD assumption would yield,

G2|1,F(c −X ′2β20| −X ′1Lβ10) ≤ PF(Y2 ≤ c|V ,Y1 = 1) ≤ G2|1,F(c −X ′2β20| −X ′1Uβ10) ∀ c w.p.1.

Similarly, we could obtain bounds for additional functionals if we assumed monotonicity restric-

tions about V arF[ε2|ε1 > c], etc.

Let us go back to our setup, and turn our attention to the selection equation. Let µ1F(W1) ≡
EF [Y1|W1]. From the exclusion restriction in Assumption 1, we have µ1F(W1) = EF[HF(X ′1β10)|W1].

The monotonicity properties of HF(·) and the bounds in (2) yield,

HF(X ′1Lβ10) ≤ µ1F(W1) ≤HF(X ′1Uβ10). (8)

The only restriction we have imposed on HF(·) is that it is nondecreasing. Thus, without further

restrictions, the bounds described in (8) for µ1F(W1) are sharp and cannot be improved upon

without additional assumptions. Furthermore, since Y1 is a binary random variable, µ1F(W1)

6Note, for example that, without additional restrictions, we can have EF [λF (X′1β10)|X2,X1L] ⋛
EF [λF (X′1β10)|X2,X1U ] in our model. Therefore, under our assumptions we can have EF [Y2|X2,X1L,Y1 = 1] ⋛
EF [Y2|X2,X1U ,Y1 = 1]. Thus, our assumptions do not produce any predictions (e.g, inequalities) for the relationship
between EF [Y2|X2,X1L,Y1 = 1] and EF [Y2|X2,X1U ,Y1 = 1].
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fully describes its distribution, so (8) describes sharp bounds for the only relevant functional of

Y1 conditional on observables. Note that our assumptions do not yield any prediction for the

relationship between EF[Y1|X1L] and EF[Y1|X1U ]. Without additional restrictions, we can have

EF[HF(X ′1β10)|X1L] ⋛ EF[HF(X ′1β10)|X1U ], and therefore we can have EF[Y1|X1L] ⋛ EF[Y1|X1U ], see

also footnote 6.

2.1.1 Pairwise-comparison testable implications derived from our functional inequalities

A natural way to exploit the inequalities in (7) and (8) is through pairwise comparisons across

observations. However, unlike the usual pairwise comparisons that match pairs of observations

based on the control functions when these are observable (see equation 4), our pairwise compar-

isons would now “match” pairs of observations for which the bounds in (7) and (8) are disjoint.
Recall that W1 ≡ X1 ∪X1 and V ≡ X2 ∪W1. Let (Vi ,Vj ) be independent draws from F and sup-

pose X ′1Ujβ10 ≤ X ′1Liβ10. Since λF(·) is assumed to be nonincreasing, this implies λF(X ′1Ujβ10) ≥
λF(X ′1Liβ10). From the bounds in (7), this in turn implies, µ2F(Vi)−X ′2iβ20 ≤ µ2F(Vj )−X ′2jβ20. And,

since HF(·) is assumed to be nondecreasing, the bounds in (8) yield µ1F(W1j ) ≤ µ1F(W1i). Thus,

under Assumption 1, we must have((
µ2F(Vi)−X ′2iβ20

)
−
(
µ2F(Vj )−X ′2jβ20

))
1

{
X ′1Ujβ10 ≤ X ′1Liβ10

}
≤ 0(

µ1F(W1j )−µ1F(W1i)
)
·1

{
X ′1Ujβ10 ≤ X ′1Liβ10

}
≤ 0

 w.p.1. (9)

From our previous arguments, the pairwise inequalities are derived from sharp bounds for the

functionals involved, and cannot be improved upon without additional restrictions. Note that

the characterization of our pairwise inequalities bypasses the need to estimate the nonparamet-

ric functionals λF and HF , which would require additional assumptions7 (see, e.g, Das, Newey,

and Vella (2003)). This is also an attractive feature of the pairwise-difference methods that are

available when control variables are observable.

2.1.2 Identification power of the pairwise inequalities in (9)

In this paper we will propose an inferential procedure for (β10,β20) based on the type of pairwise

inequalities described in (9). While point-identification in models with conditional moment in-

equalities may be possible (see, e.g, Khan and Tamer (2009)), our focus will be on the construction

of a confidence set (CS) for (β10,β20). Our methodology will not assume that the pairwise inequal-

ities in (9) point-identify (β10,β20), and the asymptotic properties of our CS will be valid with or

without point-identification. However, it is useful to study whether point-identification can be

7In Section 5 we advocate to estimate λF and HF when only a lower or an upper bound (but not both) is available
for our control function. When lower and upper bounds are available (the main focus of our paper), our pairwise
inequalities provide a way to do inference on the parameters of the model without having to estimate these functions.
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obtained from our pairwise inequalities, and we do so in this section. We begin by noting that

the inequalities in (9) are invariant to the presence of an intercept in β20 or β10, as well as any

re-scaling of β10 by any scalar c > 0. Accordingly, our relevant parameter space will include only

the slope coefficients in both equations, and the scale of β10 will be normalized. These transfor-

mations of the parameter space are owed to the nonparametric treatment of λF and HF , and they

would still be necessary if the control variables were observed (see footnote 5). To normalize the

scale of β1, we will assume that there exists a regressor Xℓ1 ∈ X1 whose coefficient will be fixed to

βℓ1 = ±1 for all β1 ∈ Θ. Thus, for the rest of this discussion, the parameter space Θ will include

only the slope coefficients in β2 and β1, and it will fix βℓ1 = ±1 for all β1 ∈ Θ. Given this transfor-

mation of Θ, we will describe a set of conditions under which our pairwise inequalities in (9) can

point-identify the parameters of the model.

Recall that W1 ≡ X1∪X1 and V ≡ X2∪W1. As we did above, let (Vi ,Vj ) be independent draws

from F. Immediately, we can see that any (β1,β2) such that PF(X ′1Ujβ1 ≤ X ′1Liβ1) = 0 would satisfy

the inequalities in (9) regardless of the value of β2. Thus, any hope to point-identify of (β10,β20)

through the inequalities in (9) requires that PF(X ′1Ujβ10 ≤ X ′1Liβ10) > 0. Let Supp(ξ) denote the

support of the marginal distribution ξ, and let Supp(ξ |ψ) denote the support of the distribution

of ξ conditional on ψ. Let Xℓ1 be the regressor whose coefficient βℓ1 is normalized to ±1. Recall that

if Xℓ1 is observable, then Xℓ1 = X
ℓ
1 = Xℓ1. Consider the following restriction,

(i) The marginal distributions of both Xℓ1 and X
ℓ
1 are absolutely continuous with respect to Lebesgue

measure conditional on W1 \ (Xℓ1,X
ℓ
1). Therefore, for each β1 ∈Θ, the marginal distributions of

both X ′1Lβ1 and X ′1Uβ1 are absolutely continuous with respect to Lebesgue measure.

(ii) ∀ β1, β̃1 ∈Θ : β̃1 , β1, Supp(X ′1Lβ1|X ′1Lβ̃1,X
′
1U β̃1)∩ Supp(X ′1Uβ1|X ′1Lβ̃1,X

′
1U β̃1) has nonzero

Lebesgue measure.
(R1)

Intuitively, the above restriction requires that the marginal supports of the lower and upper

bounds for the control function have a nonempty overlap. An immediate case where this would

happen is when each of these bounds has an unbounded support. Note that (R1) does not assign

positive probability to the event that the lower and upper bounds are equal to each other; it is a

statement about the comparisons between the marginal (not joint) supports of the bounds. If (R1)

holds, we have

PF
(
X ′1Liβ1 < X

′
1Ujβ1 < X

′
1Liβ1 + ε , X ′1Uj β̃1 ≤ X ′1Li β̃1

)
> 0 ∀ β1, β̃1 ∈Θ: β1 , β̃1, ∀ ε > 0. (10)

The result in (10) can be the first building block towards point-identification of (β10,β20) through
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the inequalities in (9), but additional conditions are needed. Consider the following restriction,

(i) HF(·) is a strictly increasing function over R

(ii) ∀ ε > 0 and F − a.e (X ′1Lβ10,X
′
1Uβ10),

PF
(
µ1F(W1) > HF(X ′1Uβ10)− ε

∣∣∣ X ′1Lβ10,X
′
1Uβ10

)
> 0,

and

PF
(
µ1F(W1) < HF(X ′1Lβ10) + ε

∣∣∣ X ′1Lβ10,X
′
1Uβ10

)
> 0

(R2)

Part (i) strengthens the monotonicity conditions in Assumption 1 forHF . Part (ii) assumes that, for

F−a.e (X ′1Lβ10,X
′
1Uβ10), the support of µ1F(W1) spans the entire interval [HF(X ′1Lβ10), HF(X ′1Uβ10)].

This is a special (stronger) case of the inequalities in (8). Combined with (R1), the condition in

(R2) yields,

PF
(
µ1F(W1i) < µ1F(W1j ) , X ′1Ujβ1 ≤ X ′1Liβ1

)
> 0 ∀ β1 ∈Θ : β1 , β10. (11)

If (11) holds, the selection-equation parameters β10 can be identified from the second inequality

in (9). Identification of the entire parameter vector (β10,β20) requires restrictions involving the

first inequality in (9). Consider the following restriction,

(i) λF(·) is a strictly decreasing, Lipschitz-continuous function over R

(ii) ∀ ε > 0 and F − a.e (X ′1Lβ10,X
′
1Uβ10),

PF
(
EF[λF(X ′1β10)|V ] > λF(X ′1Lβ10)− ε

∣∣∣ X ′1Lβ10,X
′
1Uβ10

)
> 0,

and

PF
(
EF[λF(X ′1β10)|V ] < λF(X ′1Uβ10) + ε

∣∣∣ X ′1Lβ10,X
′
1Uβ10

)
> 0

(R3)

Part (i) strengthens the shape restrictions in Assumption 1 for λF . Part (ii) states that, for F−a.e

(X ′1Lβ10,X
′
1Uβ10), the support of EF[λF(X ′1β10)|V ] spans the entire interval [λF(X ′1Uβ10), λF(X ′1Lβ10)].

This is a special (stronger) case of the inequalities in (6). Combined with (R1), the condition in

(R3) yields,

PF
(
EF[λF(X ′1iβ0)|Vi] > EF[λF(X ′1jβ0)|Vj ] , X ′1Ujβ1 ≤ X ′1Liβ1

)
> 0 ∀ β1 ∈Θ : β1 , β10,

PF
(∣∣∣EF[λF(X ′1iβ0)|Vi]−EF[λF(X ′1jβ0)|Vj ]

∣∣∣ < ε , X ′1Ujβ10 ≤ X ′1Liβ10

)
> 0 ∀ ε > 0.

(12)

The first result in (12) implies that (β1,β20) would violate the first inequality in (9) with strictly

positive probability for any β1 , β10. Combined with an exclusion restriction between W1 and X2,

the two results in (12) can lead to identification of β20. Recall that Xℓ1 ∈ X1 is the regressor whose
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coefficient βℓ1 has been normalized to βℓ1 = ±1. Consider the following restriction,

(i) (Xℓ1,X
ℓ
1) < X2

(ii) ∀ δ2 , 0, ∀ β1 ∈Θ, and F−a.e W1, Supp(X ′2δ2 | β′1X1L)∩ Supp(X ′2δ2 | β′1X1U ) is nonempty,

and includes at least two points.

(R4)

If the condition in (R4) holds, we have,

PF
(
X ′2jδ2 > X

′
2iδ2 , X ′1Ujβ1 ≤ X ′1Liβ1

)
> 0

and

PF
(
X ′2jδ2 < X

′
2iδ2 , X ′1Ujβ1 ≤ X ′1Liβ1

)
> 0

 ∀ β1 ∈Θ, ∀ δ2 , 0. (13)

Combined with (12), the result in (13) leads to point-identification of (β10,β20) through the first

inequality in (9). In the online appendix (Section A1.1) we show that an exclusion restriction

between X2 and W1 is a necessary condition for the result in (13). If the conditions in (R1), (R3)

and (R4) hold, we have

PF
(
EF[λF(X ′1iβ10)|Vi] +X ′2iδ2 > EF[λF(X ′1jβ10)|Vj ] +X ′2jδ2 , X ′1Ujβ1 ≤ X ′1Liβ1

)
> 0 ∀ δ2 , 0, ∀ β1 ∈Θ.

Since µ2F(V ) −X ′2β2 = EF[λF(X ′1β10)|V ] +X ′2(β20 − β2) for any β2, the previous result implies that,

if the restrictions in (R1), (R3) and (R4) hold,

PF
(
µ2F(Vi)−X ′2iβ2 > µ2F(Vj )−X ′2jβ2 , X ′1Ujβ1 ≤ X ′1Liβ1

)
> 0 ∀ (β1,β2) : β2 , β20. (14)

(12) and (14) imply that any (β1,β2) , (β10,β20) will violate the first inequality in (9) with strictly

positive probability, leading to point-identification of the parameters through our inequalities.

We summarize our results next.

Result 1 Suppose restriction (R1) holds. Then,

(i) If restriction (R2) holds, any (β1,β2) such that β1 , β10 will violate the second inequality in (9)

with strictly positive probability.

(iii) If restrictions (R3) and (R4) hold, any (β1,β2) , (β10,β20) will violate the first inequality in (9)

with strictly positive probability. This is true whether or not (R2) is satisfied.

(iv) If restrictions (R2) and (R3) hold, and if the condition in part (ii) of restriction (R4) holds for β10

(but not necessarily for every β1 ∈ Θ), then any (β1,β2) , (β10,β20) will violate either the first or
the second inequalities in (9) with strictly positive probability.
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Thus, we conclude that if restrictions (R1) and (R2) hold, the inequalities in (9) identify β10, and if
restrictions (R1), (R3) and (R4) hold, the inequalities in (9) identify (β10,β20). If the restriction in (R4)

is satisfied only for β10, our inequalities can still point-identify (β10,β20) if (R1), (R2) and (R3) hold.

Proof: The statements in Result 1 are simply a summary of the results described in equations

(10), (11), (12), (13) and (14). Thus, we can prove Result 1 by showing that the results in those

equations follow from restrictions (R1), (R2), (R3) and (R4). We do this in the online appendix. ■

In summary, if the marginal supports of the lower and upper bounds for the control function have

a nonempty overlap, and if the range of values that the control function can take spans the entire

interval given by these bounds, the pairwise inequalities in (9) can point-identify the parameters

in the model if there exists a continuously distributed regressor in the selection equation that is

excluded in the outcome equation. Our Monte Carlo experiments in Section 4 will revisit Result

1 using designs that satisfy its conditions. There, we will compute the probabilities of violations

of our inequalities for parameter values other than (β10,β20). In practice, whether the restrictions

leading to Result 1 are reasonable would depend on the specific application. For this reason,

our inferential approach will not rely on these restrictions, and we will not presuppose that our

inequalities point-identify the parameters of the model.

2.2 A model with unobserved regressors which can be bounded by an economic model

Interval data can be viewed as the most natural motivation for our model. In the absence of

interval data, bounds for unobserved control variables can, in some instances, be obtained from

an auxiliary economic theory. We illustrate this in a model where the selection equation depends

on economic agents’ unobserved beliefs. Leave the outcome equation as described in (1), and

consider a selection equation of the form,

Y ∗1 =W ′1β
w
10 + βπ10π1 + ε1,

where π1 denotes the agent’s subjective expectation for P (Y1 = 1|W1) (the probability that an eco-

nomic agent with characteristics W1 will select to “participate”). Group X1 ≡ (W1,π1). Suppose

beliefs π1 are unobserved by the econometrician, and that we allow two agents with the same

characteristics W1 to have different (and potentially incorrect) beliefs. If we assume that agents

share a common prior for the distribution of ε1, we can place bounds on unobserved beliefs π1

based on iterated elimination of nonrationalizable beliefs, or on the stronger concept of Bayesian

Nash equilibrium (BNE) beliefs. In what follows, suppose agents have a common parametric prior

H1(·) for the distribution of ε1, assumed to be known to the econometrician (e.g, H1(·) can be the

standard normal distribution). The prior H1 does not have to correspond to the true distribution

of ε1; we only require that the same prior be used by all agents.
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2.2.1 Bounds forW ′1β
w
10 + βπ10π1W ′1β
w
10 + βπ10π1W ′1β
w
10 + βπ10π1 based on iterated elimination of nonrationalizable beliefs

Suppose economic theory predicts that βπ10 ≥ 0, so the likelihood of participation increases with

the expected proportion of other agents with the same characteristics who will also participate8.

We can obtain bounds on beliefs by adapting an approach suggested in Aradillas-López and Tamer

(2008) in incomplete-information games. Suppose that the priorH1 is consistent with the assump-

tion that ε1⊥W1. We describe the procedure of iterated elimination of nonrationalizable beliefs

next.

Step 1: Since beliefs are probabilities, they must satisfy 0 ≤ π1 ≤ 1. Therefore, any set of beliefs

consistent with this fact must satisfy,

H1

(
W ′1β

w
10

)
︸        ︷︷        ︸
≡π1

1L(W1,β10)

≤ π1 ≤H1

(
W ′1β

w
10 + βπ10

)
︸               ︷︷               ︸
≡π1

1U (W1,β10)

.

Beliefs outside this range cannot be rationalized if agents know that π1 ∈ [0,1].

Step 2: Suppose agents assume that everybody else performs at least one step of elimination of

nonrationalizable beliefs. In this case, agents know that everyone else’s beliefs satisfyπ1
1L(W1,β10) ≤

π1 ≤ π1
1U (W1,β10), where these bounds are described above. Any set of beliefs consistent with this

assumption must satisfy,

H1

(
W ′1β

w
10 + βπ10π

1
1L(W1,β10)

)
︸                                ︷︷                                ︸

≡π2
1L(W1,β10)

≤ π1 ≤H1

(
W ′1β

w
10 + βπ10π

1
1U (W1,β10)

)
︸                                 ︷︷                                 ︸

≡π2
1U (W1,β10)

.

Beliefs outside this range cannot be rationalized if agents assume that everybody else performs at

least one step of elimination of nonrationalizable beliefs.

Step k: We can extend this construction to k ≥ 3 steps iteratively as follows. Suppose agents

assume that everybody else’s beliefs are consistent with at least k − 1 steps of elimination of non-

rationalizable beliefs, so πk−1
1L (W1,β10) ≤ π1 ≤ πk−1

1U (W1,β10). Any set of beliefs consistent with this

assumption must satisfy,

H1

(
W ′1β

w
10 + βπ10π

k−1
1L (W1,β10)

)
︸                                  ︷︷                                  ︸

≡πk1L(W1,β10)

≤ π1 ≤H1

(
W ′1β

w
10 + βπ10π

k−1
1U (W1,β10)

)
︸                                  ︷︷                                  ︸

≡πk1U (W1,β10)

.

Beliefs outside this range cannot be rationalized if agents assume that everybody else performs at

least k − 1 steps of elimination of nonrationalizable beliefs.

8The bounds that follow can be re-computed if economic theory predicts that βπ10 ≤ 0.
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Suppose that the conditions in Assumption 1 hold, with X1 ≡ (W1,π1). In this case, our control

function is now W ′1β
w
10 + βπ10π1 (instead of X ′1β10, in the interval-data model). Since π1 is unob-

served, the control function W ′1β
w
10 + βπ10π1 is unobserved. If we assume that agents’ beliefs are

consistent with at least k steps of iterated elimination of nonrationalizable beliefs, we must have,

W ′1β
w
10 + βπ10π

k
1L(W1,β10)︸                          ︷︷                          ︸

≡g1L(W1,β10)

≤W ′1β
w
10 + βπ10π1 ≤W ′1β

w
10 + βπ10π

k
1U (W1,β10)︸                          ︷︷                          ︸

≡g1U (W1,β10)

. (15)

These bounds for the control function will replace those in (2) in the interval-data model.

2.2.2 Bounds forW ′1β
w
10 + βπ10π1W ′1β
w
10 + βπ10π1W ′1β
w
10 + βπ10π1 based on the assumption of BNE beliefs

For a given W1, Bayesian-Nash equilibrium (BNE) beliefs are given by any solution in π1 to the

BNE system

π1 =H1(W ′1β
w
10 + βπ10π1).

Assume that H1 is continuous. Then, existence9 of a solution follows from Brouwer’s fixed point

theorem (Mas-Colell, Whinston, and Green (1995, Theorem M.I.1)). If βπ10 > 0, the BNE system

can have multiple solutions. Suppose there exist R solutions, ranked in order as π∗1,1(W1,β10) <

π∗1,2(W1,β10) < · · · < π∗1,R(W1,β10). If we make no assumptions about the BNE selection mechanism,

we have

W ′1β
w
10 + βπ10π

∗
1,1(W1,β10)︸                          ︷︷                          ︸

≡g1L(W1,β10)

≤W ′1β
w
10 + βπ10π1 ≤W ′1β

w
10 + βπ10π

∗
1,R(W1,β10)︸                          ︷︷                          ︸

≡g1U (W1,β10)

. (16)

Under the assumptions of BNE beliefs, these bounds for the control function replace those in (2)

in the interval-data model.

2.2.3 Testable implications

Maintain the exclusion and monotonicity restrictions in Assumption 1, with X1 ≡ (W1,π1) in this

case. Then, the bounds in equations (6) and (8) are obtained once again, with X ′1β
w
10 + βπ10π1 re-

placing X ′1β10, and with g1L(W1,β10) and g1U (W1,β10) replacing X ′1Lβ10 and X ′1Uβ10, respectively.

By the same arguments we presented in Section 2.1, these bounds are sharp given Assumption

1 and cannot be improved upon without further restrictions. The same steps leading to (9) now

9Regarding cardinality, the Index Theorem (Mas-Colell, Whinston, and Green (1995, Proposition 17.D.2)) can be
used to show that this system has a finite number (in fact, an odd number) of regular solutions. These are solutions for
which the Jacobian of the BNE system with respect to π1 is non-zero.
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yield the pairwise inequalities,((
µ2F(Vi)−X ′2iβ20

)
−
(
µ2F(Vj )−X ′2jβ20

))
1

{
g1U (W1j ,β10) ≤ g1L(W1i ,β10)

}
≤ 0(

µ1F(W1j )−µ1F(W1i)
)
1

{
g1U (W1j ,β10) ≤ g1L(W1i ,β10)

}
≤ 0

 w.p.1. (17)

The expressions of the control-function bounds g1L(W1,β10) and g1U (W1,β10) would depend on

the behavioral model assumed. Note that this approach can be a novel way to do inference in

models of strategic interaction (games) with multiple equilibria or an uncertain solution concept.

We will use the pairwise inequalities in (17) as a general expression of the testable implications

of our bivariate sample-selection model, since they include the interval-data example (equation

9) as a special case.

3 Inference

In this section we propose an inferential procedure for the parameters of the model based on

the type of pairwise functional inequalities described in (17). We begin by presenting a general

description of a bivariate sample-selection model with censored data that encompasses both ex-

amples in Section 2 as special cases. The pairwise inequalities produced by our general model can

be expressed exactly as in equation (17).

3.1 A general description of our model

We will maintain that the outcome equation is described by (1), with observable regressors10 X2,

and we will assume a general expression for the selection equation of the form,

Y ∗1 = g1(X1,β10) + ε1 (18)

g1(X1,β1) has known functional form, but a subset of regressors in X1 are unobserved. We assume

that, either by the nature of the data available, or through an auxiliary economic theory, we have

bounds11 for g1(X1,β10),

g1L(W1,β10) ≤ g1(X1,β10) ≤ g1U (W1,β10) w.p.1, (19)

where W1 are observable covariates, and where g1L(W1,β1) and g1U (W1,β1) have known func-

tional form. This includes the examples from Section 2 as special cases. Group V ≡ X2 ∪W1,

and maintain the exclusion and monotonicity restrictions described in Assumption 1. These

10Extensions where X2 is unobserved are included in the online appendix.
11Cases where we only have a lower or an upper bound (but not both) for the control function will be discussed in

Section 5. However, our results and methodology will focus on the setting described in (19).
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restrictions once again yield that, if we denote EF [ε2| ε1 > −g1(X1,β10) , X1,V ] ≡ λF (g1(X1,β10)),

and PF(Y1 = 1|W1,X1) = HF(g1(X1,β10)), then λF(·) is nonincreasing, and HF(·) is nondecreas-

ing. Denoting, once again, µ2F(V ) ≡ EF [Y2|V ,Y1 = 1], Assumption 1 yields, µ2F(V ) = X ′2β20 +

EF [λF(g1(X1,β10))|V ], which is a generalized version of equation (5). From here, using the same

arguments as in Section 2, we obtain a generalized version of the bounds described in equations

(6)-(8),
λF (g1U (W1,β10)) ≤ EF [λF(g1(X1,β10))|V ] ≤ λF (g1L(W1,β10))

λF (g1U (W1,β10)) ≤ µ2F(V )−X ′2β20 ≤ λF (g1L(W1,β10))

HF ((g1L(W1,β10))) ≤ µ1F(W1) ≤HF ((g1U (W1,β10)))

 w.p.1. (20)

By the same arguments described in Section 2, these bounds are sharp given the conditions in

Assumption 1, and cannot be improved upon without further restrictions. From here, the model

produces the pairwise functional inequalities given by the expressions in (17).

3.2 Variations and extensions of our model

Our bivariate sample selection model can be modified in various ways. In the online appendix

(Section A2), we explore two modifications/extensions. The first one describes the case where

we have unobserved covariates in both the selection and outcome equations, with bounds that

depend on observables. The second modification discusses the truncated-data case, where our

data consists only of observations where Y ∗1i > 0. In each case we describe the pairwise functional

inequalities that arise, which are the counterpart versions of (17) in our main model. Equipped

with the corresponding pairwise inequalities, inference would be carried out by modifying the

procedure we will describe below.

Section 5 focuses on more significant departures from our main model, and analyzes alterna-

tive scenarios where the control functions may be partially identified. There, we discuss models

where all regressors are observed, but the parameters of the control function are nevertheless par-

tially identified. This could happen, for example, when all the regressors in the selection equation

are discrete. We also discuss cases where control variables are unobserved (as in our main model),

but only lower or upper bounds (but not both) are available. In each case, we outline the in-

ferential strategies we would pursue. However, the main results in the paper will focus on the

case described above, where control functions are partially identified because a subset of control

variables are unobserved, and where (lower and upper) bounds which depend on observable co-

variates are available, either directly from the data (e.g, with interval data), or from an auxiliary

economic theory.
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3.3 On the possibility that (17) may point-identify β0

In Section 2.1.2 we described conditions under which the pairwise inequalities in the interval-data

example would be capable of point-identifying the parameters of the model. Those restrictions

are described in equations (R1)-(R4) and they yield the identification properties in Result 1. At

a high-level, these restrictions can be straightforwardly extended to our general model. The first

basic requirement is that the marginal supports of the control-function bounds g1L(W1,β1) and

g1U (W1,β1) have a nonempty overlap for each β1 ∈Θ. From here, point-identification can follow if:

(i) the supports of the functionals EF[λF(g1(X1,β10))] and µ1F(W1) span the entire intervals given

by the bounds in (20), and (ii) if there exists a regressor in W1 with rich enough support, excluded

fromX2, such that the type of conditions described in restriction (R4) are satisfied. These are high-

level conditions, which were examined in detail in the interval-data example. Bringing them down

to more basic restrictions in our general model would depend on the specific parameterizations

of the selection equation and of the control-function bounds.

If one is willing to impose the type of point-identification restrictions leading to Result 1, an

estimator for (β10,β20) could be constructed using a sample objective function based on the pair-

wise inequalities in (17). An example of an extremum estimator based on conditional moment in-

equalities can be found in Khan and Tamer (2009). While their estimator is based on using a space

of instrument functions (an approach suggested by Dominguez and Lobato (2004) in conditional

GMM models, and further generalized in Andrews and Shi (2013)), the nature of our problem

would require the use of nonparametric estimators for the functionals involved. Having said this,

in this paper we will not assume (or rule out) that our pairwise inequalities point-identify the

parameters of the model, since the restrictions required may not be realistic in many data sets.

Instead, we will focus on the construction of confidence sets with asymptotic properties that are

valid whether or not our pairwise inequalities can point-identify12, since the restrictions required

may not be realistic in many data sets. Instead, we will focus on the construction of confidence

sets with asymptotic properties that are valid whether or not our pairwise inequalities can point-

identify the parameters of the model.

3.4 Preliminary transformations to the parameter space

As we pointed out in Section 2.1.2, our nonparametric treatment of λF and HF will necessitate

some preliminary transformations to the parameter space. First, note that our inequalities are

invariant to the presence of an intercept in β20, which is always differenced out in our inequalities.

Second, we need a generalization of the location and scale normalizations of β10 in the interval

data example. This can be done as follows. Let dw1
≡ dim(W1). In what follows, we will assume

12One could also use a simple data-generating process; for example, one where all regressors are discrete (but still
observed in intervals), to obtain the population identified set produced by our inequalities, and have a good sense of
its size and informativeness.
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that the parameter space Θ has been modified, so that,

∃ β1,β
′
1 ∈Θ, and ∃ (w1, w̃1) ∈Rdw1×Rdw1 : g1U (w1,β1) ≤ g1L(w̃1,β1), and g1U (w1,β

′
1) > g1L(w̃1,β

′
1)

(21)

This rules out a parameter space where for every β1 there exists β′1 , β1 that is observationally

equivalent in terms of our pairwise inequalities. Any original features of the parameter space that

must be modified in order to satisfy (21) are impossible to partially identify to any extent through

our pairwise inequalities. In the interval-data example when the control-function bounds are

linear indices of β10, the condition in (21) requires that the parameter space exclude an intercept

for β10, and that the scale of the slope coefficients in β10 be normalized. These were exactly the

modifications to the parameter space we made in Section 2.1.2.

The need to modify the parameter space is owed to our nonparametric treatment of λF(·) and

HF(·), and it would also be necessary even if the control functions were perfectly observed (see

footnote 5). Location and scale restrictions are common in semiparametric models, including

the pairwise-differencing methods of Powell and coauthors, as well as rank estimators, whose

testable implications involve inequalities between linear indices of parameters (see Han (1987),

Sherman (1993), Cavanagh and Sherman (1998)), and our model shares similarities with both.

To avoid introducing new notation, we will keep denoting our parameters as (β10,β20) ≡ β0, and

our parameter space as Θ, keeping in mind the preliminary modifications to the parameter space

described above.

3.5 A population statistic for the pairwise inequalities (17)

We observe an iid sample (Y1i ,Y2i ,Vi)
n
i=1 generated by F, where V ≡ X2 ∪W1. In what follows, for

any i , j, (Y1i ,Y2i ,Vi) and (Y1j ,Y2j ,Vj ) denote two independent draws from F. We will focus on

density-weighted versions of the functionals in the pairwise inequalities (17). Density-weighting

will be convenient for reasons that will become apparent below. Let fV (·) denote the density

function of V , and let fV ,1(·) denote the joint density of (V ,Y1), evaluated at Y1 = 1. That is,

fV ,1(V ) ≡ PF(Y1 = 1|V ) · fV (V ). Let fW1
(·) denote the density function of W1. For a given β ∈Θ, let

τ2F(Vi ,Vj ,β) ≡((
µ2F(Vi)−X ′2iβ2

)
−
(
µ2F(Vj )−X ′2jβ2

))
1

{
g1U (W1j ,β1) ≤ g1L(W1i ,β1)

}
· fV ,1(Vi)fV ,1(Vj )

·φ2(Vi)
2φ2(Vj )

2,

τ1F(W1i ,W1j ,β1) ≡(
µ1F(W1j )−µ1F(W1i)

)
·1

{
g1U (W1j ,β1) ≤ g1L(W1i ,β1)

}
· fW1

(W1i)fW1
(W1j )φ1(W1i)

2φ1(W1j )
2,

(22)

17



where φ1(·) and φ2(·) are weight functions, chosen by the econometrician13 , which are strictly

positive over a pre-specified inference range V ⊆ Supp(V ) and zero everywhere else. Our inference

procedure will be based on testing the pairwise inequalities (17) over the inference range V . Let

(A)+ ≡ A∨ 0, and denote,

T2F(β) ≡ EF
[(
τ2F(Vi ,Vj ,β)

)
+

]
, T1F(β1) ≡ EF

[(
τ1F(W1i ,W1j ,β1)

)
+

]
. (23)

By construction, T2F(β) ≥ 0 ∀ β, and T2F(β) = 0 if and only if the first inequality in (17) holds

almost surely over our inference range. Similarly, T1F(β1) ≥ 0 ∀ β1, and T1F(β1) = 0 if and only

if the second inequality in (17) holds almost surely over our inference range. T2F and T1F can

be straightforwardly aggregated into a statistic that captures whether both of the functional in-

equalities in (17) are satisfied almost surely over our inference range. Consider the population

statistic,

TF(β) ≡ T2F(β) + T1F(β1). (24)

By construction, TF(β) ≥ 0 ∀ β, and TF(β) = 0 if and only if both of the functional inequalities in

(17) are satisfied almost surely over our inference range. We can generalize (24) to assign different

weights to T2F and T1F based, for example, on the scale of the covariates in the outcome and

selection equations, respectively14. Our results can be straightforwardly extended to such cases.

We focus on (24) for simplicity.

3.6 Constructing an estimator for TFTFTF

Denote,
R2F(V ) ≡ µ2F(V )fV ,1(V )φ2(V ), Q2F(V ) ≡ fV ,1(V )φ2(V ),

R1F(W1) ≡ µ1F(W1)fW1
(W1)φ1(W1), Q1F(W1) ≡ fW1

(W1)φ1(W1)
(25)

The functionals τ2F(Vi ,Vj ,β) and τ1F(W1i ,W1j ,β1) defined in (22) can be rewritten as,

τ2F(Vi ,Vj ,β) ≡
((
R2F(Vi)Q2F(Vj )−R2F(Vj )Q2F(Vi)

)
−
(
X ′2iβ2 −X ′2jβ2

)
Q2F(Vi)Q2F(Vj )

)
·1

{
g1U (W1j ,β1) ≤ g1L(W1i ,β1)

}
φ2(Vi)φ2(Vj ),

τ1F(W1i ,W1j ,β1) ≡
(
R1F(W1j )Q1F(W1i)−R1F(W1i)Q1F(W1j )

)
·1

{
g1U (W1j ,β1) ≤ g1L(W1i ,β1)

}
φ1(W1i)φ1(W1j ).

(26)

We will focus on kernel-based nonparametric estimators for the functionals in (25). Suppose we

can partition V ≡ (V c,V d) ∈ RLv , where V c and V d are continuously distributed and discrete,

13The reason why φ1 and φ2 enter squared into our expressions is for convenience, as it will allow us to rewrite them
in the way we will describe below, in equations (25) and (26).

14Our results will be based on a statistic that will be constructed using a properly normalized estimator of TF . The
normalization will be based on a (regularized) estimator of a standard deviation that will reflect the scale of TF .
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respectively, and let r ≡ dim(V c) (the number of continuously distributed covariates in V ). Sim-

ilarly, partition W1 ≡ (W c
1 ,W

d
1 ), where W c

1 and W d
1 are continuously distributed and discrete,

respectively, and let ℓ ≡ dim(W c
1 ) (the number of continuously distributed covariates in W1). Re-

call that W1 ⊆ V , and therefore ℓ ≤ r. Let κ(·) be a real-valued, univariate kernel function and let

hn be a bandwidth sequence. We will use multiplicative kernels where, a given v ≡ (vc,vd) and

w1 ≡ (wc1,w
d
1 ),

K
(
V c
i − v

c

hn

)
≡

r∏
m=1

κ

(
V c
mi − v

c
m

hn

)
, K

(
W c

1i −w
c
1

hn

)
≡

ℓ∏
m=1

κ

(
W c

1mi −w
c
1m

hn

)
,

Γ (Vi ,v,hn) ≡ K
(
V c
i − v

c

hn

)
·1

{
V d
i = vd

}
, Γ (W1i ,w1,hn) ≡ K

(
W c

1i −w
c
1

hn

)
·1

{
W d

1i = wd1
}
.

We will describe restrictions for the kernel κ(·) and the bandwidth hn below. We estimate,

R̂2(v) ≡ 1
n · hrn

n∑
i=1

Y2iY1iφ2(Vi)Γ (Vi ,v,hn), Q̂2(v) ≡ 1
n · hrn

n∑
i=1

Y1iφ2(Vi)Γ (Vi ,v,hn),

R̂1(w1) ≡ 1

n · hℓn

n∑
i=1

Y1iφ1(W1i)Γ (W1i ,w1,hn), Q̂1(w1) ≡ 1

n · hℓn

n∑
i=1

φ1(W1i)Γ (W1i ,w1,hn),

(27)

Density-weighting has the advantage of producing estimators in the form of sample averages,

without estimated densities in the denominator15. Using the expressions in (26), we estimate,

τ̂2(Vi ,Vj ,β) ≡
((
R̂2(Vi)Q̂2(Vj )− R̂2(Vj )Q̂2(Vi)

)
−
(
X ′2iβ2 −X ′2jβ2

)
Q̂2(Vi)Q̂2(Vj )

)
·1

{
g1U (W1j ,β1) ≤ g1L(W1i ,β1)

}
φ2(Vi)φ2(Vj ),

τ̂1(W1i ,W1j ,β1) ≡
(
R̂1(W1j )Q̂1(W1i)− R̂1(W1i)Q̂1(W1j )

)
·1

{
g1U (W1j ,β1) ≤ g1L(W1i ,β1)

}
φ1(W1i)φ1(W1j ).

For a given β ∈Θ, our estimators for T2F(β), T1F(β1) and TF(β) are,

T̂2(β) ≡ 1
n · (n− 1)

n∑
i=1

∑
j,i

τ̂2(Vi ,Vj ,β) ·1
{
τ̂2(Vi ,Vj ,β) ≥ −bn

}
,

T̂1(β1) ≡ 1
n · (n− 1)

n∑
i=1

∑
j,i

τ̂1(W1i ,W1j ,β1) ·1
{
τ̂1(W1i ,W1j ,β1) ≥ −bn

}
,

T̂ (β) ≡ T̂2(β) + T̂1(β1),

(28)

15The theoretical advantages of density-weighting were also exploited, e.g, in Powell, Stock, and Stoker (1989).
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where bn > 0 is a positive bandwidth sequence converging to zero, whose properties will be de-

scribed below.

Remark 1 All the results that follow will hold exactly as described if we use a bandwidth bτ2
n for

T̂2(β) and a different bandwidth bτ1
n for T̂1(β1), as long as both bandwidths satisfy the convergence

rate restrictions for bn that we will describe in Assumption 4. ■

3.7 Asymptotic properties of T̂ (β)T̂ (β)T̂ (β)

Next, we will describe a series of assumptions involving conditions such as smoothness, man-

ageability and regularity for the functionals in our model, along with restrictions for our tuning

parameters. Combined, these assumptions will yield a linear representation result for T̂ (β), which

will be the foundation for the construction of a test-statistic for estimating a confidence set for β0.

The assumptions we will describe are technical in nature, but we will add an intuitive discussion

to describe how each one of them contributes towards our main result.

We will let F denote the space of distributions that contains F, the distribution generating

the sample observed. Our expanded parameter space is then Θ × F ≡ {(β,F): β ∈Θ, F ∈ F }. Our

goal will be to describe conditions that will yield uniform asymptotic results over Θ ×F . We will

use the subscript F to explicitly denote functionals of F, except when it makes the notation too

cumbersome. In every case, figuring out which objects are functionals of F will be clear from our

discussion and definitions. Let {mn(β): β ∈ Θ} be a stochastic process. Following convention, we

will use the following terminology. We say that sup
β∈Θ

∥∥∥mn(β)
∥∥∥ = op(nλ) uniformly over F if,

sup
F∈F

PF

n−λsup
β∈Θ

∥∥∥mn(β)
∥∥∥ > c −→ 0 ∀ c > 0,

and we say that sup
β∈Θ

∥∥∥mn(β)
∥∥∥ = Op(nλ) uniformly over F if, ∀ ε > 0 there exist a finite ∆ε > 0 and

nε ∈N such that,

sup
F∈F

PF

n−λsup
β∈Θ

∥∥∥mn(β)
∥∥∥ > ∆ε

 < ε ∀ n ≥ nε.

Similarly, consider a set C ⊆ (Θ ×F ) of the form C ≡ {(β,F) ∈Θ ×F : β ∈ C(F)}. For example, we can

have β ∈ C(F)⇐⇒ EF[GF(Z,β)] = 0 for some GF(·). We say that sup
(β,F)∈C

∥∥∥mn(β)
∥∥∥ = op(nλ) if,

sup
F∈F

PF

n−λ sup
β∈C(F)

∥∥∥mn(β)
∥∥∥ > c −→ 0 ∀ c > 0,

20



and we say that sup
(β,F)∈C

∥∥∥mn(β)
∥∥∥ =Op(nλ) if, ∀ ε > 0 there exist a finite ∆ε > 0 and nε ∈N such that,

sup
F∈F

PF

n−λ sup
β∈C(F)

∥∥∥mn(β)
∥∥∥ > ∆ε

 < ε ∀ n ≥ nε.

Clarifying the above notation will facilitate the interpretation of our results.

3.7.1 Assumptions leading to an asymptotic linear representation result

Our first set of assumptions involve smoothness conditions for a collection of functionals that

show up in our linear approximations. For a given v ≡ (x2,w1) and β, let,

ητ2
a,F(v,β) ≡ EF

[
(R2F(V )− β′2 (X2 − x2)Q2F(V ))1 {g1U (w1,β1) ≤ g1L(W1,β1)}1 {τ2F(V ,v,β) ≥ 0}φ2(V )

]
,

ητ2
b,F(v,β) ≡ EF

[
(R2F(V )− β′2 (X2 − x2)Q2F(V ))1 {g1U (W1,β1) ≤ g1L(w1,β1)}1 {τ2F(v,V ,β) ≥ 0}φ2(V )

]
,

ητ2
c,F(v,β) ≡ EF [Q2F(V )1 {g1U (W1,β1) ≤ g1L(w1,β1)}1 {τ2F(v,V ,β) ≥ 0}φ2(V )] ,

ητ2
d,F(v,β) ≡ EF [Q2F(V )1 {g1U (w1,β1) ≤ g1L(W1,β1)}1 {τ2F(V ,v,β) ≥ 0}φ2(V )] .

(29)

And for a given w1 and β1, let,

ητ1
a,F(w1,β1) ≡ EF [R1F(W1)1 {g1U (w1,β1) ≤ g1L(W1,β1)}1 {τ1F(W1,w1,β) ≥ 0}φ1(W1)] ,

ητ1
b,F(w1,β1) ≡ EF [R1F(W1)1 {g1U (W1,β1) ≤ g1L(w1,β1)}1 {τ1F(w1,W1,β) ≥ 0}φ1(W1)] ,

ητ1
c,F(w1,β1) ≡ EF [Q1F(W1)1 {g1U (W1,β1) ≤ g1L(w1,β1)}1 {τ1F(w1,W1,β) ≥ 0}φ1(W1)] ,

ητ1
d,F(w1,β1) ≡ EF [Q1F(W1)1 {g1U (w1,β1) ≤ g1L(W1,β1)}1 {τ1F(W1,w1,β) ≥ 0}φ1(W1)]

(30)

Assumption 2 (Smoothness and boundedness properties over the inference range VVV ) The weight
functions φ2(v) and φ1(w1) are M times differentiable w.r.t vc and wc1, respectively, with bounded
derivatives for a.e v ∈ V and a.e w ∈ V . Both weight functions are bounded above by a constant φ. The
inference range V and the parameter space Θ are compact, and there exists a finite constant D such that,

sup
x2∈V
β2∈Θ

∣∣∣x′2β2

∣∣∣ ≤D, and sup
v∈V

(
fV ,1(v)∨

∣∣∣µ2F(v)
∣∣∣) ≤D, for each F ∈ F .

Let M be as described above. Uniformly over F ∈ F , the following conditions are satisfied,

(A) For the densities fV ,1, fW1
and the conditional expectations µ2F and µ1F , the following holds,

(i) fV ,1(v) and µ2F(v) are M times differentiable with respect to vc, with bounded derivatives
for a.e v ∈ V .
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(ii) fW1
(w1) and µ1F(w1) areM times differentiable with respect to wc1, with bounded derivatives

for a.e w ∈ V .

(B) For the functionals defined in equations (29) and (30), the following holds,

(i) Uniformly over Θ, the functionals ητ2
a,F(v,β), ητ2

b,F(v,β), ητ2
c,F(v,β) and ητ2

d,F(v,β) are M times
differentiable with respect to vc, with bounded derivatives for a.e v ∈ V .

(ii) Uniformly over Θ, the functionals ητ1
a,F(w1,β1), ητ1

b,F(w1,β1), ητ1
c,F(w1,β1) and ητ2

d,F(w1,β1) are
M times differentiable with respect to wc1, with bounded derivatives for a.e w ∈ V . ■

We will describe below a lower bound for M (the degree of smoothness of our functionals). Com-

bined with bias-reduction properties for our tuning parameters, the conditions in Assumption 2

will help ensure that the asymptotic bias of our estimators converges to zero at the appropriate

rate, uniformly over Θ ×F .

To obtain uniform asymptotic results, we will maintain assumptions that produce manage-

ability properties (see Pollard (1990, Definition 7.9)) for a collection of empirical processes and

U-processes that are relevant to our problem. Specifically, we will maintain assumptions that pro-

duce Euclidean classes of functions, leading to a special case of manageable processes. Euclidean

classes of functions are defined, for example, in Nolan and Pollard (1987, Definition 8), Pakes and

Pollard (1989, Definition 2.7), and Sherman (1994, Definition 3). They include, among others,

classes of linear indices (and transformations of bounded variation of linear indices), indicator

functions over VC classes of sets, as well as the Type I, II and III classes of functions described

in Andrews (1994). Euclidean classes encompass, in particular, the parametric functions in the

two examples in Section 2. In the online appendix we present the definition of Euclidean classes,

along with detailed examples. Having Euclidean classes will allow us to invoke convenient maxi-

mal inequality results in Sherman (1994) on our path to our main asymptotic result.

Assumption 3 (Manageability, integrability) There exist D4 <∞ and C4 <∞ such that EF[|Y2|4] ≤
D4 and EF[∥X2∥4] ≤ C4 for all F ∈ F . Take the functionals ητ2

ℓ,F defined in (29) for ℓ ∈ {a,b,c,d}. There
exists a finite constant G such that, for each ℓ ∈ {a,b,c,d} and for any β,β′ ∈Θ,

sup
v∈V

∣∣∣ητ2
ℓ,F(v,β)− ητ2

ℓ,F(v,β′)
∣∣∣ ≤ G · ∥∥∥β − β′∥∥∥ ∀ F ∈ F .

(i) The class of sets

C ≡
{
(w1,w1) ∈RdU ×RdL : g1U (w1,β1) ≤ g1L(w1,β1) for some β1 ∈Θ

}
is a VC class with VC dimension V C .
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(ii) There exists a c0 > 0 and a finite constant V D such that, for each F ∈ F , the classes of sets

S
τ2
F ≡

{
(v1,v2) ∈RLv ×RLv : τ2F(v1,v2,β) ≥ c for some c ∈ [−c0,0] and β ∈Θ

}
,

S
τ1
F ≡

{
(w1,w2) ∈RLw ×RLw : τ1F(w1,w2,β) ≥ c for some c ∈ [−c0,0] and β ∈Θ

}
are VC classes of sets with VC dimension bounded above by V D . ■

VC classes of sets are defined, e.g, in Pakes and Pollard (1989, Definition 2.2) and Kosorok (2008,

Section 9.1.1). Sufficient conditions for the VC property can be found, e.g, in Pollard (1984, Sec-

tion II.4), Dudley (1984, Section 9), or Kosorok (2008, Section 9.1.1), and are also discussed in

the online appendix. Due to the linear-index nature of the parametric functions involved, the

VC property in part (i) of Assumption 3 holds in our interval-data example by Pakes and Pollard

(1989, Lemma 2.4). The fundamental reason for our VC property assumptions is that indicator

functions over VC classes of sets are themselves Euclidean classes of functions. The next assump-

tion describes our restrictions for tuning parameters (bandwidths and kernels).

Assumption 4 (Kernels and bandwidths) Let M be the integer described in Assumption 2.

(i) We use a multiplicative kernel K . For any ψ ≡ (ψ1, . . . ,ψD )′, we have K(ψ) =
∏D
d=1κ(ψd),

where κ(·) is a bias-reducing kernel of order M with support of the form [−S,S] (with κ(S) =

κ(−S) = 0, κ(v) = 0 ∀ v < (−S,S), with
∫ S
−S κ(v)dv = 1,

∫ S
−S v

jκ(v)dv = 0 for j = 1, . . . ,M − 1 and∫ S
−S |v|

Mκ(v)dv <∞) and symmetric around zero (i.e, κ(v) = κ(−v) for all v). κ(·) is a function of
bounded variation, satisfying |κ(·)| ≤ κ for a constant κ <∞.

(ii) The bandwidth sequences hn > 0 and bn > 0 are such that there exists 0 < ϵ < 1/2 such that
n1/2−ϵ · h2r

n −→∞ and n1/2−ϵ · hrn · bn −→∞, while n1/2+ϵ · b2
n −→ 0, and n1/2+ϵ · hMn −→ 0. ■

Section 3.10 includes a practical discussion about bandwidth selection. There, we show that if our

bandwidths are of the form hn ∝ n−αh and bn ∝ n−αb , then the smallest value of M that can satisfy

the restrictions in Assumption 4 is M = 2r + 1. Next, we present a regularity condition.

Assumption 5 ((Behavior of τ2F(·)τ2F(·)τ2F(·) and τ1F(·)τ1F(·)τ1F(·) at zero from below)) Let Vi ,Vj be independent draws
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from F. There exist b0 > 0 and m <∞ such that, ∀ b ∈ [−b0,0) and ∀ F ∈ F ,

(i) sup
β∈Θ

EF
[
1

{
−b ≤ τ2F(Vi ,Vj ,β) < 0

}]
≤m · b ∀ 0 < b ≤ b0,

sup
β1∈Θ

EF
[
1

{
−b ≤ τ1F(W1i ,W1j ,β1) < 0

}]
≤m · b ∀ 0 < b ≤ b0,

(ii) sup
β∈Θ
v∈V

EF [1 {−b ≤ τ2F(Vi ,v,β) < 0}] ≤m · b ∀ 0 < b ≤ b0,

sup
β∈Θ
v∈V

EF [1 {−b ≤ τ2F(v,Vi ,β) < 0}] ≤m · b ∀ 0 < b ≤ b0,

(iii) sup
β1∈Θ
w1∈V

EF [1 {−b ≤ τ1F(W1i ,w1,β1) < 0}] ≤m · b ∀ 0 < b ≤ b0,

sup
β1∈Θ
w1∈V

EF [1 {−b ≤ τ1F(w1,W1i ,β1) < 0}] ≤m · b ∀ 0 < b ≤ b0. ■

Assumption 5 is a mild requirement, amounting to the restriction that, uniformly over Θ ×F , the

functionals described there have a finite density in a neighborhood of the form [−b0,0). Let us il-

lustrate this for part (i). For a given β, let Fτ2
(·|β) and Fτ1

(·|β1) denote the distribution functions of

τ2F(Vi ,Vj ,β) and τ1F(W1i ,W1j ,β1), respectively, and let fτ2
(·|β) and fτ1

(·|β1) denote the correspond-

ing density functions. Part (i) of Assumption 5 presupposes that there exists an interval [−b0,0)

and a finite constant m such that Fτ2
(·|β) and Fτ1

(·|β1) are continuous, and fτ2
(·|β2) and fτ1

(·|β1) are

bounded above by m, uniformly over Θ ×F . That is,

sup
β∈Θ

b∈[−b0,0)

fτ2
(b|β) ≤m, and sup

β1∈Θ
b∈[−b0,0)

fτ1
(b|β1) ≤m, ∀ F ∈ F .

If the above is true, a mean-value argument yields the condition in part (i) of Assumption 5. Parts

(ii) and (iii) of Assumption 5 impose analogous restrictions on the densities of the functionals

described there. Note that the conditions in Assumption 5 allow for each one of the functionals

described there to have a point-mass at zero, since these conditions focus on an interval of the form

[−b0,0), which excludes zero. A point mass at zero occurs when the inequalities are binding with

positive probability. Combined with the rate-of-convergence restrictions on bn, the conditions

in Assumption 5 will ensure that the expectation of a particular process vanishes with n at the

appropriate rate. The details and intermediate steps can be found in the online appendix.

3.7.2 An asymptotic linear representation result for T̂ (β)T̂ (β)T̂ (β)

Equipped with the previous set of assumptions we can present the main result in this section.
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Lemma 1 Group all the observable covariates in the model as Z ≡ (Y1,Y2,V ). In the results that follow,
let ϵ > 0 be the constant described in Assumption 4.

(A) Let (Vi ,Vj ) be two independent draws from F and let

HT2
1F(Vi ,β) ≡ 1

2
·
(
EF

[(
τ2F(Vi ,Vj ,β)

)
+

∣∣∣Vi]+EF
[(
τ2F(Vi ,Vj ,β)

)
+

∣∣∣Vi])−T2F(β)

Note that EF[HT2
1F(Vi ,β)] = 0 ∀ (β,F). Next, take the functionals defined in (29) and let,

HT2
2F(Zi ,β) ≡

((
ητ2
a,F(Vi ,β)− ητ2

b,F(Vi ,β)
)
·Y1i +

(
ητ2
c,F(Vi ,β)− ητ2

d,F(Vi ,β)
)
·Y2iY1i

)
· fV (Vi) ·φ2(Vi)

2

−EF
[((
ητ2
a,F(Vi ,β)− ητ2

b,F(Vi ,β)
)
·Y1i +

(
ητ2
c,F(Vi ,β)− ητ2

d,F(Vi ,β)
)
·Y2iY1i

)
· fV (Vi) ·φ2(Vi)

2
]
.

Note that EF[HT2
2F(Y2i ,Vi ,β)] = 0 ∀ (β,F). Now let ψT2

F (Zi ,β) ≡ 2 ·HT2
1F(Vi ,β) +HT2

2F(Zi ,β), and note that
EF[ψT2

F (Zi ,β)] = 0 ∀ (β,F). If Assumptions 1-5 hold,

T̂2(β) = T2F(β) +
1
n

n∑
i=1

ψT2
F (Zi ,β) + ξT2

n (β), where

sup
β∈Θ

∣∣∣∣ξT2
n (β)

∣∣∣∣ = op
( 1
n1/2+ϵ

)
, uniformly over F ,

(B) Suppose (W1i ,W1j ) are two independent draws from F and let

HT1
1F(W1i ,β1) ≡ 1

2
·
(
EF

[(
τ1F(W1i ,W1j ,β1)

)
+

∣∣∣W1i

]
+EF

[(
τ1F(W1j ,W1i ,β1)

)
+

∣∣∣W1i

])
−T1F(β1)

Note that EF[HT1
1F(W1i ,β1)] = 0 ∀ (β1,F). Next, take the functionals defined in (30) and let,

HT1
2F(Zi ,β1) ≡

((
ητ1
a,F(W1i ,β1)− ητ1

b,F(W1i ,β1)
)

+
(
ητ1
c,F(W1i ,β1)− ητ1

d,F(W1i ,β1)
)
·Y1i

)
· fW1

(W1i) ·φ1(W1i)
2

−EF
[((
ητ1
a,F(W1i ,β1)− ητ1

b,F(W1i ,β1)
)

+
(
ητ1
c,F(W1i ,β1)− ητ1

d,F(W1i ,β1)
)
·Y1i

)
· fW1

(W1i) ·φ1(W1i)
2
]
.

Note that EF[HT1
2F(Zi ,β1)] = 0 ∀ (β1,F). Now let, ψT1

F (Zi ,β1) ≡ 2 ·HT1
1F(W1i ,β1) +HT1

2F(Zi ,β1), and note
that EF[ψT1

F (Zi ,β1)] = 0 ∀ (β1,F). If Assumptions 1-5 hold,

T̂1(β1) = T1F(β1) +
1
n

n∑
i=1

ψT1
F (Zi ,β1) + ξT1

n (β1), where

sup
β1∈Θ

∣∣∣∣ξT1
n (β1)

∣∣∣∣ = op
( 1
n1/2+ϵ

)
, uniformly over F .
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(C) Let ψTF (Zi ,β) ≡ ψT2
F (Zi ,β) +ψT1

F (Zi ,β1)). From (A) and (B), we have EF[ψTF (Zi ,β)] = 0 ∀ (β,F). If
Assumptions 1-5 hold,

T̂ (β) = TF(β) +
1
n

n∑
i=1

ψTF (Zi ,β) + ξTn (β), where

sup
β∈Θ

∣∣∣ξTn (β)
∣∣∣ = op

( 1
n1/2+ϵ

)
, uniformly over F . ■

The proof of Lemma 1 is included in Section A3 of the online appendix. We will summarize

the main steps next, focusing on part (A). Part (B) uses analogous steps, and part (C) follows

immediately from (A) and (B). Let

T̃2(β) ≡ 1
n · (n− 1)

n∑
i=1

∑
j,i

τ̂2(Vi ,Vj ,β) ·1
{
τ2F(Vi ,Vj ,β) ≥ 0

}
.

T̃2(β) takes T̂2(β) and replaces the indicator function 1
{
τ̂2(Vi ,Vj ,β) ≥ −bn

}
with 1

{
τ2F(Vi ,Vj ,β) ≥ 0

}
.

Let rT2
n (β) ≡ T̂2(β)− T̃2(β). The first series of steps of the proof lead to the result,

sup
β∈Θ

∣∣∣∣rT2
n (β)

∣∣∣∣ = op
( 1
n1/2+ϵ

)
, uniformly over F .

where ϵ > 0 is the constant described in Assumption 4. From here, if we re-express,

T̃2(β) =
1

n · (n− 1)

n∑
i=1

∑
j,i

(
τ2F(Vi ,Vj ,β)

)
+

+
1

n · (n− 1)

n∑
i=1

∑
j,i

(
τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)

)
·1

{
τ2F(Vi ,Vj ,β) ≥ 0

}
= T2F(β) +

1
n · (n− 1)

n∑
i=1

∑
j,i

((
τ2F(Vi ,Vj ,β)

)
+
−T2F(β)

)
+

1
n · (n− 1)

n∑
i=1

∑
j,i

(
τ̂2(Vi ,Vj ,β)− τ2F(Vi ,Vj ,β)

)
·1

{
τ2F(Vi ,Vj ,β) ≥ 0

}
,

then the next series of steps show that the above expression becomes,

T̃2(β) = T2F(β) +
1

n · (n− 1)

n∑
i=1

∑
j,i

((
τ2F(Vi ,Vj ,β)

)
+
−T2F(β)

)
+

(n− 2)
n
· 1

h
rv
n
·Ua,n(β,hn) + ξ T̃2

b,n(β),

where sup
β∈Θ

∣∣∣∣∣ξ T̃2
b,n(β)

∣∣∣∣∣ = op
( 1
n1/2+ϵ

)
, uniformly over F .

26



Where ϵ > 0 is the constant described in Assumption 4, and {Ua,n(β,h): β ∈Θ, h > 0} is a U-process

of order 2. The final step to obtain the result in part (A) of the lemma is to compute the Hoeffding

decomposition (see Serfling (1980, pages 177-178) or Sherman (1994, equations 6-7)) ofUa,n(β,hn)

and apply the maximal inequality results in Sherman (1994, Corollary 4A). All the step-by-step

details are included in Section A3 of the online appendix.

3.8 A statistic based on Lemma 1

We will rely on the linear representation result in Lemma 1 to build a statistic that will be used to

estimate a CS for β0. The following subsets of Θ ×F will be relevant for our analysis. First, let,

ΛΘ,F ≡
{
(β,F) ∈Θ ×F :

PF
((

(µ2F(Vi)−X ′2iβ2)− (µ2F(Vj )−X ′2jβ2)
)
1{g1U (W1j ,β1) ≤ g1L(W1i ,β1)} ≤ 0

∣∣∣ Vi ,Vj ∈ V) = 1,

PF
(
(µ1F(W1j )−µ1F(W1i))1{g1U (W1j ,β1) ≤ g1L(W1i ,β1)} ≤ 0

∣∣∣W1i ,W1j ∈ V
)

= 1
}

ΛΘ,F is the collection of all (β,F) that satisfy both of the functional inequalities in (17) F−almost

surely over our inference range. Before proceeding, let us formalize the notion of contact sets.

Contact sets.- For a given β, the contact sets are defined as the collection of all values of V for

which at least one of the functional inequalities in (17) is binding. Contact sets can have positive

F−measure, for example, if the lower and upper bounds for our control function are equal to each

other with strictly positive probability. ■

Next, consider the following subset of ΛΘ,F ,

ΛΘ,F ≡
{
(β,F) ∈Θ ×F :

PF
((

(µ2F(Vi)−X ′2iβ2)− (µ2F(Vj )−X ′2jβ2)
)
1{g1U (W1j ,β1) ≤ g1L(W1i ,β1)} < 0

∣∣∣ Vi ,Vj ∈ V) = 1,

PF
(
(µ1F(W1j )−µ1F(W1i))1{g1U (W1j ,β1) ≤ g1L(W1i ,β1)} < 0

∣∣∣W1i ,W1j ∈ V
)

= 1
}

ΛΘ,F is the collection of all (β,F) that satisfy both of the functional inequalities in (17) strictly
(i.e, as strict inequalities), F−almost surely over our inference range. Thus, the contact sets have

F−measure zero for all (β,F) ∈ ΛΘ,F . Accordingly, ΛΘ,F \ΛΘ,F contains all (β,F) that (i) satisfy

the functional inequalities, and (ii) have contact sets with strictly positive F−measure. Inspecting

the structure of the influence function ψTF (Zi ,β) in Lemma 1, we can see that,

(i) EF[ψTF (Zi ,β)] = 0 ∀ (β,F) ∈Θ ×F .

(ii) ψTF (Zi ,β) = 0 F−a.s ∀ (β,F) ∈ΛΘ,F .
(31)
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Denote σ2
F (β) ≡ EF[ψTF (Z,β)2]. Then, σ2

F (β) = 0 for all (β,F) ∈ ΛΘ,F , and σ2
F (β) > 0 for all ΛΘ,F \

ΛΘ,F . Thus, σ2
F (β) will be the relevant measure of the contact sets in our construction. From (31),

the linear representation result in Lemma 1 yields,

sup
(β,F)∈ΛΘ,F

∣∣∣T̂ (β)
∣∣∣ = sup

(β,F)∈ΛΘ,F

∣∣∣ξTn (β)
∣∣∣ = op

( 1
n1/2+ϵ

)
, therefore, sup

(β,F)∈ΛΘ,F

∣∣∣n1/2 · T̂ (β)
∣∣∣ = op(1), (32)

where ϵ > 0 is the constant described in Assumption 4. Thus, the statistic T̂ (β) vanishes in prob-

ability faster than n−1/2, uniformly over all (β,F) for which our inequalities are satisfied and the

contact sets have F−measure zero. This result will be useful in the construction of a test-statistic.

Next, let us focus on (Θ×F )\ΛΘ,F , the collection of all (β,F) such that at least one of the inequali-

ties is binding or violated with positive probability. We allow for σ2
F (β) to become arbitrarily close

to zero over (Θ ×F ) \ΛΘ,F as long as the following integrability condition is satisfied.

Assumption 6 (A sufficient condition for a uniform Berry-Esseen bound) There exists a B < ∞
such that,

EF[|ψTF (Zi ,β)|3]

σ3
F (β)

< B ∀ (β,F) ∈ (Θ ×F ) \ΛΘ,F ■

By the Berry-Esseen Theorem (Lehmann and Romano (2005, Theorem 11.2.7)), the condition in

Assumption 6 is sufficient to ensure the existence of a C > 0 such that

sup
(β,F)∈(Θ×F )\ΛΘ,F

sup
d

∣∣∣∣∣∣PF
 1
√
n

∑n
i=1ψ

T
F (Zi ,β)

σF(β)
≤ d

−Φ(d)

∣∣∣∣∣∣ ≤ C

n1/2 (33)

where Φ denotes, as usual, the standard normal cdf.

3.8.1 A regularized statistic and its asymptotic properties

Let κ > 0 be an arbitrarily small, but strictly positive constant, and define

tn(β) ≡
√
n · T̂ (β)

(σF(β)∨κ)
=


√
n·ξTn (β)

(σF(β)∨κ) ∀ (β,F) ∈ΛΘ,F ,

1√
n

∑n
i=1ψ

T
F (Zi ,β)

(σF(β)∨κ) +
√
n·ξTn (β)

(σF(β)∨κ) ∀ (β,F) ∈ΛΘ,F \ΛΘ,F ,
√
n·TF(β)

(σF(β)∨κ) + 1√
n

∑n
i=1ψ

T
F (Zi ,β)

(σF(β)∨κ) +
√
n·ξTn (β)

(σF(β)∨κ) ∀ (β,F) ∈ (Θ ×F ) \ΛΘ,F

(34)

The right-hand side cases arise from the linear representation result in Lemma 1. The purpose

of κ > 0 in tn(β) is to regularize the asymptotic standard deviation of T̂ (β), which is equal to zero

over ΛΘ,F . Since T̂ (β) is a scalar, regularization can be done in a straightforward way. Note from

the result in Lemma 1 that,

sup
(β,F)∈Θ×F

∣∣∣∣∣∣
√
n · ξTn (β)

(σF(β)∨κ)

∣∣∣∣∣∣ = op
( 1
nϵ

)
, (35)

28



where ϵ > 0 is the constant described in Assumption 4. Thus, our regularized statistic vanishes

in probability, uniformly over all (β,F) for which our inequalities are satisfied and the contact

sets have F−measure zero. This result, along with the pivotal in properties in (33) can be the

foundation for the construction of a CS for β0 based on tn(β). Fix α ∈ (0,1) and let z1−α be the

(1−α)th quantile of theN (0,1) distribution. If Assumptions 1-6 hold, Lemma 1 and the resulting

properties in (32)-(35) yield,

(i) lim
n→∞

sup
(β,F)∈ΛΘ,F

PF (tn(β) > z1−α) = 0,

(ii) lim
n→∞

sup
(β,F)∈ΛΘ,F \ΛΘ,F :

σF(β)≥κ

∣∣∣∣PF (tn(β) > z1−α)−α
∣∣∣∣ = 0,

(iii) limsup
n→∞

sup
(β,F)∈ΛΘ,F \ΛΘ,F :

σF(β)<κ

PF (tn(β) > z1−α) ≤ α.

(36)

From (36), we have

liminf
n→∞

inf
(β,F)∈ΛΘ,F

PF (tn(β) ≤ z1−α) ≥ 1−α (37)

Each (β,F) ∈ (Θ × F ) \ΛΘ,F violates our inequalities with strictly positive probability (according

to F) over our inference range. Our previous results allow us to study the consistency and power

properties of tn(β) as a statistic that can test for violations to our inequalities. Note from (33) that,

for any (β,F) ∈ (Θ ×F ) \ΛΘ,F , and any given c,

lim
n→∞

PF

 1
√
n

∑n
i=1ψ

T
F (Zi ,β)

(σF(β)∨κ)
+
√
n · TF(β)

(σF(β)∨κ)︸       ︷︷       ︸
→∞

> c

 = 1

Combined with (34)-(35), this yields limn→∞ PF (tn(β) > z1−α) = 1 for each (β,F) ∈ (Θ × F ) \ΛΘ,F .

More generally, take any sequence in (βn,Fn) ∈ (Θ × F ) \ΛΘ,F such that TFn(βn) ≥ δnn−1/2D for

some fixed D > 0 and some sequence of positive constants δn →∞. The results in (33), (34) and

(35) yield,

lim
n→∞

PFn (tn(βn) > z1−α) = 1. (38)

The result in (38) establishes consistency of the statistic tn(β) for detecting violations to our in-

equalities. To characterize its local power properties, take any sequence (βn,Fn) ∈ (Θ × F ) \ΛΘ,F

such that

lim
n→∞

(
σFn(βn)∨κ

)
σFn(βn)

= s1, and lim
n→∞

√
n · TFn(βn)(
σFn(βn)∨κ

) = s2.
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Note that s1 ≥ 1 and s2 ≥ 0. From the results in (33), (34) and (35), we have,

lim
n→∞

PFn (tn(βn) > z1−α) = 1−Φ (s1 · z1−α − s1 · s2) (39)

Having limn→∞ PFn (tn(βn) > z1−α) > α corresponds to the notion of nontrivial asymptotic power (see

Lee, Song, and Whang (2018, Definition 3)) for detecting violations to our inequalities. (39) im-

plies that we will have nontrivial asymptotic power for the type of sequences described above iff
s1 · z1−α − s1 · s2 < z1−α. Equipped with the above results, we are almost ready to construct a CS for

β0. The final step is to obtain an estimator for σ2
F (β).

3.9 Construction of a confidence set for β0β0β0

We propose to construct a confidence set (CS) for β0 based on the properties of the statistic tn(β)

described in (37)-(39). Before proceeding, we need to construct an estimator for σ2
F (β).

3.9.1 An estimator for σ2
F (β)σ2
F (β)σ2
F (β)

Using the structure of the influence function ψTF (z,β) in Lemma 1, we can construct an estimator

for σ2
F (β) ≡ EF[ψTF (Z,β)2]. Our estimator is

σ̂2(β) ≡ 1
n

n∑
i=1

ψ̂T (Zi ,β)2, where ψ̂T (z,β) ≡ ψ̂T2(z,β) + ψ̂T1(z,β1),

ψ̂T2(Zi ,β) and ψ̂T1(Zi ,β1) are estimators of ψT2
F (Zi ,β) and ψT1

F (Zi ,β1). We estimate ψT2
F (Zi ,β) with

ψ̂T2(Zi ,β) ≡ 2 · ĤT2
1 (Vi ,β) + ĤT2

2 (Zi ,β) where, for a given v ≡ (x2,w1) and z ≡ (y1, y2,v), based on the

expressions in part (A) of Lemma 1, we estimate

ĤT2
1 (v,β) ≡ 1

2
· 1
n

n∑
j=1

[
τ̂2(v,Vj ,β)1

{
τ̂2(v,Vj ,β) ≥ −bn

}
+ τ̂2(Vj ,v,β)1

{
τ̂2(Vj ,v,β) ≥ −bn

}]
− T̂2(β)

ĤT2
2 (z,β) ≡

((
η̂τ2
a (v,β)− η̂τ2

b (v,β)
)
· y1 +

(
η̂τ2
c (v,β)− η̂τ2

d (v,β)
)
· y2y1

)
· f̂V (v) ·φ2(v)2

− 1
n

n∑
j=1

[((
η̂τ2
a (Vj ,β)− η̂τ2

b (Vj ,β)
)
·Y1j +

(
η̂τ2
c (Vj ,β)− η̂τ2

d (Vj ,β)
)
·Y2jY1j

)
· f̂V (Vj ) ·φ2(Vj )

2
]
.
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Using the definitions in (29), the estimators on the right-hand side of the previous expressions
are,

η̂τ2
a (v,β) ≡ 1

n

n∑
j=1

(
R̂2(Vj )−

(
X ′2jβ2 − x′2β2

)
Q̂2(Vj )

)
1

{
g1U (w1,β1) ≤ g1L(W1j ,β1)

}
φ2(Vj )1

{
τ̂2(Vj ,v,β) ≥ −bn

}
,

η̂τ2
b (v,β) ≡ 1

n

n∑
j=1

(
R̂2(Vj )−

(
X ′2jβ2 − x′2β2

)
Q̂2(Vj )

)
1

{
g1U (W1j ,β1) ≤ g1L(w1,β1)

}
φ2(Vj )1

{
τ̂2(v,Vj ,β) ≥ −bn

}
,

η̂τ2
c (v,β) ≡ 1

n

n∑
j=1

Q̂2(Vj )1
{
g1U (W1j ,β1) ≤ g1L(w1,β1)

}
φ2(Vj )1

{
τ̂2(v,Vj ,β) ≥ −bn

}
,

η̂τ2
d (v,β) ≡ 1

n

n∑
j=1

Q̂2(Vj )1
{
g1U (w1,β1) ≤ g1L(W1j ,β1)

}
φ2(Vj )1

{
τ̂2(Vj ,v,β) ≥ −bn

}
,

with R̂2 and Q̂2 as described in (27), and and f̂V (v) ≡ 1
hrn
· 1
n

∑n
i=1 Γ (Vi ,v,hn). Next, our estimator

for ψT1
F (Zi ,β1) is given by ψ̂T1(Zi ,β1) ≡ 2 · ĤT1

1 (W1i ,β1) + ĤT1
2 (Zi ,β1) where, for a given v ≡ (x2,w1)

and z ≡ (y1, y2,v), based on the expressions in part (B) of Lemma 1, we estimate

ĤT1
1 (w1,β1) ≡

1
2
· 1
n

n∑
j=1

[
τ̂1(w1,W1j ,β1)1

{
τ̂1(w1,W1j ,β1) ≥ −bn

}
+ τ̂1(W1j ,w1,β1)1

{
τ̂1(W1j ,w1,β1) ≥ −bn

}]
− T̂1(β1),

ĤT1
2 (z,β1) ≡

((
η̂τ1
a (w1,β1)− η̂τ1

b (w1,β1)
)

+
(
η̂τ1
c (w1,β1)− η̂τ1

d (w1,β1)
)
· y1

)
· f̂W1

(w1) ·φ1(w1)2

− 1
n

n∑
j=1

[((
η̂τ1
a (W1j ,β1)− η̂τ1

b (W1j ,β1)
)

+
(
η̂τ1
c (W1j ,β1)− η̂τ1

d (W1j ,β1)
)
·Y1j

)
· f̂W1

(W1j ) ·φ1(W1j )
2
]
.

Using the definitions in (30), the estimators on the right-hand side of the previous expressions
are,

η̂τ1
a (w1,β1) ≡ 1

n

n∑
j=1

R̂1(W1j )1
{
g1U (w1,β1) ≤ g1L(W1j ,β1)

}
1

{
τ̂1(W1j ,w1,β) ≥ −bn

}
φ1(W1j ),

η̂τ1
b (w1,β1) ≡ 1

n

n∑
j=1

R̂1(W1j )1
{
g1U (W1j ,β1) ≤ g1L(w1,β1)

}
1

{
τ̂1(w1,W1j ,β) ≥ −bn

}
φ1(W1j ),

η̂τ1
c (w1,β1) ≡ 1

n

n∑
j=1

Q̂1(W1j )1
{
g1U (W1j ,β1) ≤ g1L(w1,β1)

}
1

{
τ̂1(w1,W1j ,β) ≥ −bn

}
φ1(W1j ),

η̂τ1
d (w1,β1) ≡ 1

n

n∑
j=1

Q̂1(W1j )1
{
g1U (w1,β1) ≤ g1L(W1j ,β1)

}
1

{
τ̂1(W1j ,w1,β) ≥ −bn

}
φ1(W1j )
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In Section A4 of the online appendix we show that, under the conditions of Lemma 1, we have

sup
β∈Θ

∣∣∣σ̂2(β)− σ2
F (β)

∣∣∣ = op(1), uniformly over F . (40)

From here, we take the asymptotic properties of tn(β) and we replace σF(β) with σ̂ (β) to construct

a CS.

3.9.2 Confidence set

Let,

t̂n(β) ≡
√
n · T̂ (β)

(σ̂ (β)∨κ)
.

We wish to construct a CS that contains β0 with asymptotic target coverage probability 1 − α.

Based on the results in (37)-(40), we construct our CS as,

ĈS1−α ≡
{
β ∈Θ : t̂n(β) ≤ z1−α

}
,

where z1−α is the (1 − α)th quantile of the N (0,1) distribution. From our previous results, the

properties of ĈS1−α are summarized in the following theorem.

Theorem 1 Suppose Assumptions 1-6 hold. Then ĈS1−α has the following asymptotic properties.

(i) Uniform asymptotic coverage: liminfn→∞ inf
(β,F)∈ΛΘ,F

PF(β ∈ ĈS1−α) ≥ 1−α.

(ii) Consistency of the associated test for (β,F) ∈ ΛΘ,F : For any (βn,Fn) ∈ (Θ × F ) \ΛΘ,F such that
TFn(βn) ≥ δnn−1/2D for some fixed D > 0 and some sequence of positive constants δn → ∞, we
have limn→∞ PFn(βn ∈ ĈS1−α) = 0.

(iii) Nontrivial local power of the associated test for (β,F) ∈ ΛΘ,F : Take any sequence (βn,Fn) ∈ (Θ ×

F ) \ΛΘ,F such that limn→∞
(σFn (βn)∨κ)
σFn (βn) = s1 and limn→∞

√
n·TFn (βn)

(σFn (βn)∨κ) = s2 (note that s1 ≥ 1 and

s2 ≥ 0). We have limn→∞ PFn(βn ∈ ĈS1−α) < 1−α if s1 · z1−α − s1 · s2 < z1−α. ■

Proof: Combined with the result in (40), part (i) of Theorem 1 follows from (37), while parts (ii)

and (iii) follow from (38) and (39), respectively. ■

3.9.3 Asymptotic adaptation to the contact sets and the role of bnbnbn

Several papers have proposed methods to detect how close moment inequalities come to being

binding for the purpose of obtaining critical values. These include generalized moment selection

as developed by Andrews and Soares (2010) and Andrews and Shi (2013), adaptive inequality

32



selection as in Chernozhukov, Lee, and Rosen (2013), the refined moment selection method pro-

posed in Chetverikov (2017), and the use of contact set estimators proposed by Lee, Song, and

Whang (2018). Like ours, all of these methods rely on tuning parameters. In our case, how close

the functional inequalities come to binding is related to the measure of the contact sets, as we

discussed previously. The properties of the sequence bn are designed to ensure that the estimators

T̂ (β) and σ̂ (β) adapt asymptotically to the measure of the contact sets, captured in our case by

σ2
F (β). Our regularization allows us to obtain a statistic with asymptotically pivotal properties

without having to estimate the contact sets themselves in a preliminary step.

3.9.4 Replacing the regularization constant κκκ with a vanishing sequence

Our assumptions allow for σ2
F (β) (the relevant measure of the contact sets in our problem) to

become arbitrarily close to zero over (Θ×F )\ΛΘ,F . If we strengthen Assumption 6 to assume that

σ2
F (β) is bounded away from zero uniformly over (Θ×F )\ΛΘ,F , we can replace our regularization

constant κ with a positive sequence κn→ 0 that vanishes asymptotically. We show this in Section

A5 of the online appendix.

3.10 On the choice of tuning parameters

Our procedure uses three tuning parameters: the bandwidth sequences hn and bn, along with

the regularization constant κ. While we leave the development of a general theory of how to

choose these tuning parameters for future work, we can provide recommendations backed by

the results of our Monte Carlo experiments in Section 4. We follow the usual path and consider

covariate-specific bandwidths for each continous regressor V c
m ∈ Vc of the form hn = ch ·σ̂ (V c

m)·n−αh ,
where αh > 0 denotes the rate of convergence of hn, which will be set to satisfy the conditions in

Assumption 4. With samples of sizes n = 1,000, n = 2,000 and n = 3,000, in our Monte Carlo

experiments, our bandwidth choice was hn ≈ 0.28 · σ̂ (V c
m). For reference, Silverman’s so-called

“rule of thumb” (Silverman (1986, p. 45)) would yield hn ≈ 0.27 · σ̂ (V c
m) when n = 1,000.

Given the type of bandwidths we use, we can obtain a lower bound for the value of M in

Assumptions 2 and 4. Recall that r denotes the number of continuously distributed covariates in

V . Fix ϵ > 0. Take any δ > 2ϵ such that ϵ + δ < 1
2 . Consider the convergence rates αh = 1

4r −
ϵ+δ
2r

and αb = 1
4 + ∆b, where ϵ

2 < ∆b <
δ−ϵ

2 . It is easy to verify that αh and αb satisfy the bandwidth

convergence restrictions in Assumption 4 if M > 2r
(

1+2ϵ
1−2(ϵ+δ)

)
. The lower bound for M is 2r + 1,

which is attained if ϵ and δ are chosen to be small enough such that 2ϵ+δ
1−2(ϵ+δ) <

1
4r . The order of

kernels we use in our experiments corresponds to this value of M.

We advocate for the choices of bn and κ to be proportional to a measure of the scale of an

33



envelope of the functions τ2F(Vi ,Vj ,β) and τ1F(W1i ,W1j ,β1) over Θ. Denote β2 ≡ sup
β2∈Θ
∥β2∥, and

τ2F(Vi ,Vj ) ≡
((∣∣∣R2F(Vi)Q2F(Vj )

∣∣∣+
∣∣∣R2F(Vj )Q2F(Vi)

∣∣∣)+ β2

(
∥X2i∥+ ∥X2j∥

) ∣∣∣Q2F(Vi)Q2F(Vj )
∣∣∣)

·φ2(Vi)φ2(Vj ),

τ1F(W1i ,W1j ) ≡
(∣∣∣R1F(W1j )Q1F(W1i)

∣∣∣+
∣∣∣R1F(W1i)Q1F(W1j )

∣∣∣) ·φ1(W1i)φ1(W1j ).

(41)

By construction, |τ2F(Vi ,Vj ,β)| ≤ τ2F(Vi ,Vj ) and |τ1F(W1i ,W1j )| ≤ τ1F(W1i ,W1j ) ∀ β ∈ Θ, so the

functions in (41) are envelope functions for τ2F(Vi ,Vj ,β) and τ1F(W1i ,W1j ,β1) over Θ. Our pro-

posal is to choose bn and κ to be proportional to a measure of the scale of these envelope functions.

We can use bτ2
n = cb ·̂τ2(0.5)

·n−αb for the first inequality, and bτ1
n = cb ·̂τ1(0.5)

·n−αb for the second inequal-

ity, where τ̂2(0.5)
and τ̂1(0.5)

denote the sample medians of τ̂2F(Vi ,Vj ) and τ̂1F(W1i ,W1j ), respectively.

Both bτ2
n and bτ1

n have the same convergence rate, αb > 0, which will be set to satisfy the restrictions

in Assumption 4. From here, we construct our statistic as,

T̂2(β) ≡ 1
n · (n− 1)

n∑
i=1

∑
j,i

τ̂2(Vi ,Vj ,β) ·1
{
τ̂2(Vi ,Vj ,β) ≥ −bτ2

n

}
,

T̂1(β1) ≡ 1
n · (n− 1)

n∑
i=1

∑
j,i

τ̂1(W1i ,W1j ,β1) ·1
{
τ̂1(W1i ,W1j ,β1) ≥ −bτ1

n

}
,

T̂ (β) ≡ T̂2(β) + T̂1(β1),

(42)

We propose a regularization parameter κ of the form κ = cκ · (̂τ2(0.5)
∧ τ̂1(0.5)

). In our Monte Carlos,

we set the values of the constants cb and cκ small enough (in the order of 10−20) that the tuning

parameters bn and κ were equivalent to zero in our computations. This was done to enhance the

power of the underlying test in the construction of our confidence sets and, with this, the infor-

mative properties of our results. Overall, with the above choices, our experiments results yielded

informative confidence intervals for the parameters of the model, and coverage frequencies for

the true parameter value that were in line with our asymptotic results. We describe the details in

Section 4.

3.11 Sharp identified set and our approach

Our approach is based on pairwise inequalities that are sharp, in the sense that they exploit all the

restrictions in Assumption 1 for the functionals involved, and cannot be improved upon without

additional restrictions. From here, we constructed a CS based on a statistic that detects violations

to our pairwise inequalities that occur with nonzero probability over a pre-specified inference

range. While the functional inequalities we rely upon are sharp given our assumptions, we do

not make the claim that they are sufficient to fully characterize the sharp identified set for the
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parameters themselves. This region can be described, at a high-level, using the definition of ob-

servational equivalence for incomplete models in Chesher and Rosen (2017). Given the nature

of our model, an inferential procedure based on the exact characterization of the sharp identified

set of parameters would require searching over all observationally equivalent structures (β,λF ,HF)

that are consistent with our assumptions. This would require us to address the issue of how to ap-

proximate the nonparametric functionals λF and HF . One of the advantages of our approach (and

the usual pairwise-difference methods in general) is precisely the ability to bypass this problem.

We conclude this discussion by pointing back to Section 2.1.2 and Result 1, where we showed that

there exist conditions under which the parameters of the model can be point-identified through

our pairwise inequalities. We leave the problem of inference on the sharp identified set for the

type of models studied here for future research.

4 Monte Carlo experiments

To study the finite-sample performance of our methodology we revisit the interval-data example

from Section 2.1. Our selection and outcome equations are given by,

Y ∗1 = β1
10 ·X

1
1 + β2

10 ·X
2
1 + ε1,

Y ∗2 = β0
20 + β1

20 ·X
1
2 + β2

20 ·X
1
1 + ε2.

(43)

Note that the regressor X1
1 appears in both the outcome and selection equations. The true param-

eter values are set to 1 for all the slope coefficients: β1
10 = β2

10 = β1
20 = β2

20 = 1, and the intercept in

the outcome equation is set to β0
20 = 0.5. The latent variables (ε1, ε2) are distributed as,ε1

ε2

 ∼N 0

0

 ,

 1 σ12

σ12 1


We set σ12 = 0.5. The regressors X1

1 and X1
2 are generated as i.i.dN (0,1), independent of (ε1, ε2).

We assume a setting where the econometrician observes the regressors X1
1 and X1

2 , but only

observes interval data (X2
1,X

2
1) for X2

1 , with X2
1 ≤ X

2
1 ≤ X

2
1 w.p.1. First, we generate X2

1 ∼ N (0,1).

From here, we generate X2
1 and X

2
1 as follows. Let α1 ∼ U [0,1] and ξ1 ∼ U [0,∆0], with ∆0 > 0

being a constant parameter. We generate, X
2
1 = X2

1 + ξ1, and X2
1 = α1 · X2

1 + (1 − α1) · X2
1. The

random variables (X1
1 ,X

1
2 ,X

2
1,α1,ξ1) are all independent of each other, and independent of (ε1, ε2).

Following the notation in the paper, we have V ≡ (X1
1 ,X

1
2 ,X

2
1,X

2
1) and W1 ≡ (X1

1 ,X
2
1,X

2
1). The

parameter ∆0 is a measure of how wide our bounds are for the unobserved regressor X2
1 , since

0 ≤ X2
1 −X2

1 ≤ ∆0, and E[X
2
1 −X2

1] = ∆0
2 . Some of our analysis will look at various values of ∆0.

35



4.1 Pairwise inequalities in our designs

The pairwise inequalities are those given in equation (9). We will refer to the first and the sec-

ond inequalities in (9) as the “outcome-equation inequality” and “selection-equation inequality”

respectively. That is,((
µ2F(Vi)−X ′2iβ20

)
−
(
µ2F(Vj )−X ′2jβ20

))
1

{
X ′1Ujβ10 ≤ X ′1Liβ10

}
≤ 0 outcome-equation inequality(

µ1F(W1j )−µ1F(W1i)
)
·1

{
X ′1Ujβ10 ≤ X ′1Liβ10

}
≤ 0 selection-equation inequality

In our case, we have X ′1Uβ10 = β1
10 ·X

1
1 + β2

10 ·X
2
1 and X ′1Lβ10 = β1

10 ·X
1
1 + β2

10 ·X
2
1 as the bounds for

the unobserved control function β1
10 ·X

1
1 + β2

10 ·X
2
1 . As we noted previously, an intercept in either

equation is differenced out in our inequalities, so our relevant parameter space will include only

the slope coefficients in both equations.

4.1.1 Identification power of the pairwise inequalities in our designs

Our design is consistent with the conditions of Result 1, which predicts that parameter values β ,

β0 should violate at least one of our inequalities with nonzero probability. Tables 1 and 2 explore

this for a few examples, and computes the probabilities of violations of our pairwise inequalities

for parameter values β , β0. In each case, we compute the probability of violations for different

values of ∆0. Smaller values of this parameter indicate tighter bounds for our unobserved control

variable, and we expect that the probability of violations should be larger for smaller values of

∆0. This intuition is confirmed by our results. While each β , β0 analyzed violated both of our

inequalities with positive probability, the probability of violations decreased with ∆0.

Table 1 computes probabilities of violations to our inequalities when we change the value of

one parameter at a time, keeping the rest fixed at their true values. Not surprisingly, these prob-

abilities are greater for values that are farther away from the truth, but they are nonzero even for

parameter values that are very close to β0. As we expected, these probabilities decrease with ∆0.

In all cases, we see that both inequalities are violated with nonzero probability whenever when-

ever β1 , β10, so both the selection and outcome-equation inequalities are informative for β10.

The parameters of the outcome equation, β20, only appear in the outcome-equation inequality,

and we see that this inequality was violated with positive probability whenever β2 , β20. Table 2

computes the probability of violations for some additional parameter values β , β0. Our findings

there are in line with those in Table 1. Overall, our results are illustrative of the identification

power of our inequalities, and they are consistent with the predictions of Result 1.
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Table 1: Caption 1
(A) Outcome equation parameters:

Probability of violating the outcome-equation inequality
by parameter values β2 , β20β2 , β20β2 , β20

Alternative values of β1
2β
1
2β
1
2 (true value is β1

20 = 1β1
20 = 1β1
20 = 1)

fixing all other parameters at their true values
β1

2 = −1 β1
2 = 0 β1

2 = 0.5 β1
2 = 0.99 β1

2 = 1.01 β1
2 = 1.5 β1

2 = 2
∆0 = 0.25 0.206 0.177 0.133 1.4E-3 1.3E-3 0.132 0.178
∆0 = 0.50 0.195 0.167 0.123 9.1E-4 9.0E-4 0.123 0.167
∆0 = 1.00 0.172 0.146 0.105 6.2E-4 6.1E-4 0.105 0.146

Alternative values of β2
2β
2
2β
2
2 (true value is β2

20 = 1β2
20 = 1β2
20 = 1)

fixing all other parameters at their true values
β2

2 = −1 β2
2 = 0 β2

2 = 0.5 β2
2 = 0.99 β2

2 = 1.01 β2
2 = 1.5 β2

2 = 2
∆0 = 0.25 0.335 0.300 0.217 1.1E-3 6.2E-4 0.059 0.079
∆0 = 0.50 0.323 0.289 0.208 8.4E-4 3.7E-4 0.050 0.069
∆0 = 1.00 0.296 0.265 0.190 6.8E-4 2.2E-4 0.036 0.053
Probabilities obtained from 50 million simulations.

(B) Selection equation parameters:
Probability of violating either the outcome-equation inequality
or the selection-equation inequality by parameter values β1 , β10β1 , β10β1 , β10

Alternative values of β1
1β
1
1β
1
1 (true value is β1

10 = 1β1
10 = 1β1
10 = 1)

fixing all other parameters at their true values
β1

1 = −1 β1
1 = 0 β1

1 = 0.5 β1
1 = 0.99 β1

1 = 1.01 β1
1 = 1.5 β1

1 = 2
∆0 = 0.25 0.238 0.108 0.037 1.6E-6 1.9E-6 0.023 0.044
∆0 = 0.50 0.225 0.093 0.027 3.6E-7 2.8E-7 0.016 0.037
∆0 = 1.00 0.199 0.067 0.014 4.0E-8 1.0E-7 0.008 0.027

Alternative values of β2
1β
2
1β
2
1 (true value is β2

10 = 1β2
10 = 1β2
10 = 1)

fixing all other parameters at their true values
β2

1 = −1 β2
1 = 0 β2

1 = 0.5 β2
1 = 0.99 β2

1 = 1.01 β2
1 = 1.5 β2

1 = 2
∆0 = 0.25 0.262 0.125 0.044 2.5E-6 1.5E-6 0.019 0.037
∆0 = 0.50 0.275 0.125 0.037 4.4E-7 4.8E-7 0.011 0.027
∆0 = 1.00 0.300 0.126 0.027 1.6E-7 1.8E-7 0.004 0.014
Probabilities obtained from 50 million simulations.

4.2 Parameter space for our implementation

As we described in Section 2.1.2, the scale of the slope coefficients β1 in the selection equation

needs to be normalized. We did so in our implementation by fixing β1
1 = 1. From here, the pa-

rameter space for (β12,β21,β22) was set to be [0,4]× [0,4]× [0,4]. In our simulations, the parameter

∆0 was set to ∆0 = 1. Recall that this parameter is a measure of the width of the bounds for our

selection-equation control function. We have chosen the largest value among those analyzed in

Table 1. As we described previously, we set the covariance between (ε1, ε2) to σ12 = 0.5.
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Table 2: Caption 2
Probability of violating the Probability of violating the

selection-equation inequality outcome-equation inequality
βa βb βc βd βa βb βc βd

∆0 = 0.25 0.166 0.043 0.003 6.0E-4 0.022 0.006 1.4E-5 1.9E-6
∆0 = 0.50 0.159 0.034 0.002 3.8E-4 0.016 0.003 3.2E-6 3.6E-7
∆0 = 1.00 0.147 0.022 0.001 2.4E-4 0.008 7.0E-4 6.4E-7 4.0E-8
Probabilities obtained from 50 million simulations.
Description of parameter values analyzed:
βa: β1

1 = 1.2, β2
1 = 0.8, β1

2 = 1.25, β2
2 = 0.75

βb: β1
1 = 0.9, β2

1 = 1.1, β1
2 = 0.9, β2

2 = 1.1
βc: β1

1 = 1.01, β2
1 = 0.99, β1

2 = 1.01, β2
2 = 0.99

βd : β1
1 = 0.995, β2

1 = 1.005, β1
2 = 0.995, β2

2 = 1.005
True parameter values: β1

10 = β2
10 = β1

20 = β2
20 = 1.

4.3 Inference range, kernels and bandwidths

We have r ≡ 4 continuously distributed observable conditioning variables, V ≡ (X1
1 ,X

1
2 ,X

2
1,X

2
1).

Our inference range V included all the observations i for which each element in Vi is between

the 0.001 and the 0.999 quantiles in the sample. Thus, in a sample of size n = 1,000, we only

eliminate observations that include the smallest or the largest observed values of Vi element-wise.

The weight functions φ2(Vi) and φ1(W1i) are simply indicator functions for the event that Vi ∈ V
andW1i ∈ V , respectively. Next, since r = 4, in order to comply with the restrictions in Assumption

4, and following the discussion in Section 3.10, we use a bias-reducing kernel of order M = 10.

Our kernel is multiplicative, K(v) =
∏4
m=1κ(vm), with κ(z) =

∑5
ℓ=1 cℓ · (S

2 − z2)2ℓ · 1{|z| ≤ S}. By

construction, κ(z) is symmetric around zero, with support [−S,S]. In our experiments we used

S = 4. The coefficients cℓ, are chosen to satisfy the conditions of a bias-reducing kernel of order

M = 10. Note that our functionals satisfy the smoothness requirements stated in our assumptions

for any value of M.

Regarding the bandwidth choice, we applied our procedure for generated samples of sizes

n = 1,000, n = 2,000 and n = 3,000. We employed covariate-specific bandwidths for each element

of V . We used, hn(V ℓ) = 0.32 · σ̂ (V ℓ) for n = 1,000, hn(V ℓ) = 0.28 · σ̂ (V ℓ) for n = 2,000, and

hn(V ℓ) = 0.26·σ̂ (V ℓ) for n = 3,000. For reference, Silverman’s so-called “rule of thumb” (Silverman

(1986, p. 45)) would yield hn(V ℓ) ≈ 0.27 · σ̂ (V c
m) for a sample of size n = 1,000. Our bandwidths

are slightly larger in magnitude reflecting the fact that their rates of convergence are slower than

those of their rule-of-thumb counterparts. Our choices of bτℓn and κ were set small enough that

they were computationally equivalent to zero in our experiments16. This was done in an effort

16Strictly speaking, we followed the prescription we described in Section 3.10 (see equations 41 and 42), with
b
τℓ
n = 10−20 · τ̂ℓ(0.50)

for ℓ = 1,2, and κ = 10−20 · (̂τ2(0.5) ∧ τ̂1(0.5) ) for all three sample sizes n analyzed. The propor-

tionality constant of 10−20 was small enough to make these tuning parameters computationally equivalent to zero in
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to enhance the power of the underlying test in the construction of our CS and, with this, the

informative properties of our results.

4.4 Results

4.4.1 Confidence intervals for individual parameters

We simulated 500 samples of sizes n = 1,000, n = 2,000 and n = 3,000. For each simulated

sample, we constructed a CS with target coverage probability 95% using our approach. Each CS

was obtained from a randomly generated grid of points. This grid was the same for all simulations,

to facilitate comparisons across simulations. Table 3 includes confidence intervals (CI) for each

individual parameter. These CIs are constructed as projections from the CS as follows. We found

the smallest and the largest values for each parameter among the parameter values that were

included in our CS with frequency at least 95% in our simulations. As our results show, the CIs

become tighter as n grows, and they all include the true parameter values. The width of the CI

is shortest for the slope coefficient β2
1 in the selection equation; this is perhaps not surprising

since, as we discussed above, both of our pairwise inequalities are informative about β2
1 . The

widths of the CIs for the outcome equation coefficients were comparable. The width was slightly

larger for β2
2 , the slope coefficient of the only regressor that appears in both equations. We do

not know whether this is indicative of a general result where our procedure is more informative

for coefficients of regressors that appear only in one equation, or if it is simply a feature of our

experiment designs. As n grows, all of our CIs become tighter and increasingly bounded away

from the boundary of the parameter space. Our results are in line with our discussion in Section

2.1.2, which illustrated that our pairwise inequalities are informative for the parameters of the

model.

Table 3: Individual confidence intervals obtained as projections from
confidence sets with target coverage probability 95%

Outcome equation Selection equation
β1

2 β2
2 β2

1
n = 1,000 [0.019 , 2.126] [0.267 , 3.229] [0.611 , 2.298]
n = 2,000 [0.123 , 1.881] [0.594 , 2.566] [0.748 , 1.801]
n = 3,000 [0.478 , 1.621] [0.840 , 2.279] [0.795 , 1.627]
Results show the smallest and largest values for each parameter among all
parameter values included in our CS with frequency ≥ 95% in 500 simulations.
Parameter space for (β1

2 ,β
2
2 ,β

2
1 ) is [0,4]× [0,4]× [0,4]. β1

1 is normalized to 1.
True parameter values are β1

20 = β2
20 = β2

10 = β1
10 = 1.

our experiments.
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4.4.2 Coverage of the true parameter value

In our designs, the probability that the lower and upper bounds for the unobserved control vari-

able are equal to each other is zero and, evaluated at the true parameter value, the contact sets

have measure zero. In this case, Theorem 1 predicts that our confidence set will include the true

parameter value with asymptotic probability 1 (see part (ii) of equation (36)). Table 4 presents

the frequency with which we would have included the true parameter value in our 95% CS. That

is, the frequency with which our test-statistic, evaluated at the true parameter value, was below

the z0.95 critical value. Our results are in line with the asymptotic predictions of Theorem 1, with

coverage frequencies very close to 1 in each of the sample sizes analyzed.

Table 4: Frequency with which the true parameter
value was included in our confidence sets with

target coverage probability 95%
n = 1,000 n = 2,000 n = 3,000

0.998 0.998 0.996
500 simulations

Overall, our Monte Carlo experiments suggest that the implementation of our approach with

arguably “intuitive” tuning parameter choices leads to reasonably informative results consistent

with our asymptotic predictions.

5 Other cases where control functions may be partially identified

This paper focused on models where control functions are partially identified because some con-

trol variables are unobserved, but (lower and upper) bounds are available for them. There are

other scenarios where control functions may be partially identified. We briefly discuss two possi-

bilities here.

5.1 Models where all regressors are observed, but the parameters of the control func-
tions are partially identified

For illustration, let us keep our focus on our bivariate sample-selection model. Suppose now that

all regressors in both equations (X1,X2) are observed, but that the parameters of the selection

equation, β10 are (possibly) partially identified. Due to the discrete-choice nature of the selection

equation, this can happen, for example, if X1 consists only of discrete regressors (Khan, Ouyang,

and Tamer (2021)). Suppose we maintain the exclusion restrictions of Assumption 1. This predicts

that PF(Y1 = 1|W1,X1) = PF(Y1 = 1|X ′1β10) a.s for the selection equation. What we have in this

instance is a generalization of the pairwise-difference models studied by James L. Powell and

coauthors, with the only caveat that the parameters are (possibly) partially identified. Leaving
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aside issues of sharpness for the moment, a characterization of the identified set of parameters can

be given by a combination of the above exclusion restriction and the usual pairwise conditional

moment condition in the model,

ΘI ≡
{
(β1,β2) ∈Θ : PF(Y1i = 1|X1i) = PF(Y1i = 1|X ′1iβ1), and

EF
[(
Y2i −X ′2iβ2

)
−
(
Y2j −X ′2jβ2

) ∣∣∣ Y1i = Y1j = 1,X ′1iβ1 = X ′1jβ1

]
= 0 a.s

}
In models like this, we would be able to drop the monotonicity restrictions for λF and HF in

Assumption 1 while still avoiding the need to estimate these functions. Other versions of this case

may include the case where (X1,X2) are observed, but the selection equation is characterized by

moment inequalities; for example, if Y1 is unobserved, but we observe Y 1 such that Y 1 ≥ Y1 w.p.1,

so that Y1 = 1 only if Y 1 = 1. In either scenario, inference can be based on methods that combine

conditional moment equalities/inequalities (e.g, Andrews and Shi (2013), Chernozhukov, Lee,

and Rosen (2013)), properly modifying these procedures to account for the pairwise nature of the

second conditional moment.

5.2 Models where some control variables are unobserved and only lower or upper
bounds are available

Our approach assumes that we have lower and upper bounds for the unobserved control variables.

In some cases, we may have only lower or upper bounds but not both. For illustration, consider

our bivariate sample selection example with interval data from Section 2.1. Once again, suppose

X1 is unobserved, and our observable data only provides a lower bound for the selection-equation

control function, where X ′1Lβ10 ≤ X ′1β10 w.p.1, with X1L observable. We now have W1 ≡ (X1L,X2).

If we maintain all the conditions in Assumption 1, our model implies17 EF[Y2|W1,Y2 = 1] ≤ X ′2β20+

λF(X ′1Lβ10), and PF[Y1 = 1|W1] ≥HF(X ′1Lβ10) w.p.1. From here, a characterization of the identified

set of parameters (β1,β2) can be given by,

ΘI ≡
{
(β1,β2) ∈Θ : EF[Y2i |W1i ,Y2i = 1] ≤ X ′2iβ2 +λF(X ′1Liβ1), and

PF[Y1i = 1|W1i] ≥HF(X ′1Liβ1) a.s
}

Our proposal in this case would not involve pairwise comparisons, but rather to apply nonpara-

metric methods to estimate the functionals λF(·) and HF(·) nonparametrically, and then use these

estimators to conduct inference on β0 based on the conditional moment inequalities given above.

To this end, we can try to adapt existing nonparametric approaches to estimating control func-

17If we only observed an upper bound, where X′1Uβ10 ≥ X′1β10 w.p.1, the signs of our inequalities would be reversed,
and we would have, EF [Y2|W1,Y2 = 1] ≥ X′2β20 +λF (X′1Uβ10), and PF [Y1 = 1|W1] ≤HF (X′1Uβ10) w.p.1.
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tions, such as the series estimators proposed in Das, Newey, and Vella (2003). This would likely

require additional assumptions on the nature and properties of these functionals, which we were

able to bypass through our pairwise comparison approach when we have lower and upper bounds

for the unobserved control variables. We leave the formal development and study of such an

approach to future work.

6 Concluding remarks

Control function methods to estimate semiparametric models have been studied in multiple set-

tings. The general approach proposed by James L. Powell and coauthors consists of making pair-

wise comparisons in the data based on matching (asymptotically) these control functions. Con-

ditional on the matching, these models produce moment conditions that allow us to identify and

estimate the parameter of interest. In some instances, control variables are unobservable, mak-

ing pairwise matching impossible. However, in some of these cases, we may have bounds for the

unobserved control functions which depend on observables. These bounds may result from the

presence of interval data or they may be obtained from economic theory. Using a bivariate sam-

ple selection model as a working example, we illustrated that, if the control functions enter the

econometric model monotonically, inference can still proceed by making pairwise comparisons.

In this case, the “matching” is based on identifying pairs of observations for which the bounds

for the control functions are disjoint, resulting on pairwise conditional functional inequalities.

Using this result, we proposed an inferential procedure that constructs a confidence set for the

parameters of the model using a statistic design to test whether a parameter value satisfies the

pairwise inequalities almost surely over a pre-specified inference range. Our proposed statistic

has pivotal properties and adapts asymptotically to the measure of the contact sets, avoiding the

need to estimate them in a previous step. Our Monte Carlo results showed that our procedure

has finite-sample properties aligned with its asymptotic predictions. We are hopeful that our

exposition illustrates how our approach can be extended beyond our bivariate sample selection

example to other semiparametric models. As we pointed out, it can also provide a novel way to

do inference in models of strategic interaction with multiple solutions.
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Honoré, B. and J. Powell (1994). Pairwise difference estimators of censored and truncated re-

gression models. Journal of Econometrics 64(2), 241–278.

43
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