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This paper proposes an alternative to maximum likelihood estimation of the parameters of the 
censored regression (or censored ‘Tobit’) model. The proposed estimator is a generalization of least 
absolute deviations estimation for the standard linear model, and, unlike estimation methods based 
on the assumption of normally distributed error terms, the estimator is consistent and asymptoti- 
cally normal for a wide class of error distributions, and is also robust to heteroscedasticity. The 
paper gives the regularity conditions and proofs of these large-sample results, and proposes classes 
of consistent estimators of the asymptotic covariance matrix for both homoscedastic and hetero- 
scedastic disturbances. 

1. Introduction 

Many of the important recent advances in econometric methods pertain to 
limited dependent variable models - that is, regression models for which the 
range of the dependent variable is restricted to some subset of the real line. 
Such prior restrictions quite commonly arise in cross-section studies of eco- 
nomic behavior; often, for some fraction of individuals in a sample, implicit 
non-negativity or other inequality constraints are binding for the variable of 
interest. In a regression model, an inequality constraint for the dependent 
variable results in a corresponding bound on the unobservable error terms, this 
bound being systematically related to the value of the regression function. 
Hence, the mean of the restricted error term is not zero, and the usual 
conditions for consistency of least squares estimation will not apply. 

The regression model with a non-negativity constraint on the dependent 
variable was proposed by Tobin (1958); consistent estimation of the parame- 
ters of the regression function has been investigated by Amemiya (1973) and 
Heckman (1976,1979). Amemiya demonstrates the consistency and asymptotic 
normality of maximum likelihood estimation for this model, termed the 
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censored regression or censored ‘Tobit’ model, while Heckman extends least 
squares estimation to a more general limited dependent variable model by 
expressing the conditional expectation of the dependent variable as a known 
(nonlinear) function of the regressors and unknown parameters. A feature 
common to these approaches is the assumption that the error terms are 
normally distributed. This condition is essential to the proofs of consistency; 
unlike the standard linear regression model, for which normal maximum 
likelihood estimation (classical least squares) is consistent for a wide class of 
distributions of the residual, estimators based on normality in limited depen- 
dent variable models are inconsistent when the normality assumption is 
violated. Goldberger (1980) and Arabmazar and Schmidt (1982) illustrate this 
point by calculating the inconsistency of the normal maximum likelihood 
estimator for several common non-normal distributions of the error term. 

This study extends least absolute deviations (LAD) estimation to the re- 
gression model with non-negativity of the dependent variable, and gives 
conditions under which this estimator is consistent and asymptotically normal. 
In view of the sensitivity of maximum likelihood and least squares methods to 
the assumption of normality in this model, it is somewhat surprising that a 
simple modification of LAD estimation yields a consistent estimator which 
does not depend upon the functional form of the distribution of the residuals.’ 
In this sense the estimator proposed below is non-parametric, although its 
consistency and asymptotic normality require stronger assumptions on the 
behavior of the regression function than those imposed on models with normal 
residuals. As for the standard regression model, LAD estimation may be 
computationally burdensome for the censored regression model, because the 
function to be minimized is not continuously differentiable; nevertheless, it 
does provide a consistent alternative to likelihood-based procedures when prior 
information on the parametric form of the error density is unavailable. 

In the next section, the censored regression model and the corresponding 
LAD estimator are defined; the sections which follow give the appropriate 
regularity conditions for (strong) consistency and asymptotic normality of the 
estimator. Section 5 shows how consistent estimators of the asymptotic covari- 
ante matrix of the estimator can be obtained. The final section summarizes the 
foregoing results, and points out some unresolved issues as topics for further 
research. 

‘Other non-parametric estimators of the parameters of the censored regression model have been 
proposed by Buckley and James (1979) and Kalbfleisch and Prentice (1980, ch. 6). The former 
study combines estimation based upon the ‘EM algorithm’ [see Dempster, Laird, and Rubin 
(1977)] with the Kaplan-Meier (1958) non-parametric estimator of the survival curve, while the 
latter is based upon rank regression techniques. It is asserted (though not rigorously demonstrated) 
that these estimators are also consistent and asymptotically normal. Whether they are to be 
preferred to the estimator proposed here, on computational or efficiency grounds, is an open 
question; however, unlike the censored LAD estimator, they are apparently not robust to 
heteroscedasticity of the error terms. 
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2. Definitions and motivation 

The censored regression model considered below can be written in the form 

yt = max{ 0, $PO + u, }, t=l,...,T, (2.1) 

where the dependent variable y, and regression vector x, are observed for each 
t, while the (conformable) parameter vector & and error term u, are unob- 
served. It will be presumed throughout that estimation of &, is the primary 
object of the statistical analysis (as opposed to, say, estimation of the condi- 
tional probability that yr exceeds zero given xt). 

The definition of the LAD estimator for this model will be based on the fact 
that, for any scalar random variable Z, the function E[]Z- b] - ]Z]] is 
minimized by choosing b to be a median of the distribution of Z. Hence, if the 
median of y, is some known function m(x,, &) of the regressors and unknown 
parameters, a sample analogue to the conditional median can be defined by 
choosing fir so that the function (l/T)& - m(x,, p)I is minimized at the 
value /I = &. But suppose the error term u, is continuously distributed 
with median zero, and that the density function is positive at zero (so that the 
median of u, is unique). Then it is easy to verify that the median function for yI 
takes a particularly simple form, namely, m(x,, &,) = max{O, x;& }. This fact 
is illustrated in fig. 1. In the top panel, for which xl& > 0, the probability that 
y, = 0, equivalent to the probability that_@ s xl/l0 + u, I 0, is less than one-half, 
and the median of yI is x;&. On the other hand, if xi&, < 0 (the bottom panel 
of fig. l), the probability that y, equals zero exceeds one-half, and zero is the 
unique median of y,. 

Thus, the LAD estimator for the censored regression model minimizes the 
sum of absolute deviations of y, from max{O, x;&} over all /3 in the parameter 
space (denoted B). Algebraically, the censored LAD estimator & minimizes 

s,(p)-(I,T)~~~~y,-man(0,x:Pj/ (24 

over all p in B. 

This minimum will always exist if the parameter space B is compact, since 
the function S,(p) is continuous. Unfortunately, this minimization may not 
yield a unique value for &. As a simple example, suppose the sample has 
y, = 0 for all t. In this case, any value of /3 in B which has x$? I 0 for all t will 
yield the same minimizing value of S,(p), zero. Of course, this case can be 
ruled out for large samples, as long as the probability that u, > -x;&, is 
positive for a substantial proportion of the regressors { xt }; nonetheless, it will 
be necessary to restrict the possible behavior of the regression function x$, to 
ensure the uniqueness of the censored LAD estimator &- for large samples. 
The precise condition to be imposed is given by Assumption R.l of the 

J.Econ- C 
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following section; it is, loosely speaking, a requirement that xi&, 2 0 for 
‘enough’ sample points, and that the regressors x, are not collinear for these 
observations. This restriction is easily motivated. For those values of x, for 
which x$, < 0, there is no one-to-one relationship between the median of yt 
(zero) and the value of x;&,, so knowledge of the median of y, for these 
regressors yields no information concerning the unknown &. This is reflected 
in the definition of the minimand (2.2); for terms in the sum with ~$3 -C 0, the 
value of the term, y,, is unrelated to p. Thus minimization of (2.2) can be 
interpreted as performing LAD estimation only for those points with x$ L 0. 
If this procedure is to be consistent, the true regression function ni&, must be 
non-negative for a substantial proportion of the sample as well. 

Unlike the usual conditions for consistency in linear regression models, 
which only need to rule out multicollinearity of the regressors for large 
samples, consistency for censored LAD estimation requires a joint condition 
on the regressors and parameter vector, a condition which may be difficult to 
verify a priori. Fortunately, this assumption seems likely to hold in practice. If 
the regressors can be chosen freely by the researcher, the experiment can be 
designed so that the condition will hold for all points in the parameter space. 
For economic applications, in which the individual characteristics x, are 
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generally not under the control of the researcher, the condition amounts to the 
assumption that the ‘typical’ (i.e., median) value of the ‘true’ dependent 
variable yf” = x,‘&, + U, is non-negative for a positive fraction of individuals in 
the sample, which is not unreasonable for many populations sampled. 

The assumptions on the distribution of the error term U, required for 
consistency are much weaker than those for maximum likelihood or least 
squares estimators for the censored regression model. It is the fact that the 
median of the censored variable yt does not depend upon the functional rorm 
of the density of the errors that makes censored LAD a ‘distribution-free’ 
estimator, a property not shared by the mean (if it exists) of y,. Hence least 
absolute deviations estimation is a natural approach for censored data when 
the assumption of normality of the errors is suspect. 

3. Strong consistency of the censored LAD estimator 

To show the large-sample (almost sure) convergence of & to the true value 
&, the following conditions on &, u,, and x, are imposed: 

Assumption P. I. The parameter vector & is an element of a compact parame- 
ter space B. 

Assumption E.1. The error terms { uI} are independently and identically 
distributed random variables, are independent of the regressors, and have 
median zero, and the distribution function of U, is continuously differentiable 
with density which is bounded above and positive at zero. Hence, defining 
F(F(A)=Pr(u,<h), F(O)=+ and dF(F(X)=f(A)dh withf(A)<f,, somef,>O, 
and f(0) > 0. 

Assumption R.l. The regressors {x,} are independently distributed random 
vectors with E(IxJ3 < K, for all t and some positive K,, and JJ~, the smallest 
characteristic root of the matrix 

has vT > v0 whenever T > TO, some positive E,,, vO, and TO.2 

A few remarks concerning the necessity and generality of these assumptions 
(beyond those made in the previous section) are in order. The compactness of 
B would be difficult to relax in this context, since it ensures the existence and 

‘The symbol ‘l(A)’ denotes the indicator function of the event ‘A’, i.e., it is a function which 
takes the value one if A is true and is zero otherwise. 
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measurability of 8, [by Lemma 2 of Jennrich (1969)] and the uniformity of the 
(almost sure) convergence of the minimand over B, as required by Lemma A.2 
of appendix 1 below. 

As usual, the requirement that the errors have median zero is not restrictive, 
provided there is an unknown constant term in the regression function 
(although the condition on the matrix in Assumption R.l presumes that the 
regression function is written so that u, has zero median). Also, the conditions 
that the error terms are continuously and identically distributed are made for 
convenience, and can easily be relaxed. It suffices that the conditional distribu- 
tion of U, given x1 has median zero for all 1, and the corresponding distribu- 
tion functions for the { ut} only need to be continuously differentiable in a 
uniform neighborhood of zero, with density functions { f,(X]x,)} which are 
uniformly bounded away from zero, i.e., 

(3.1) 

whenever ]h( < k, some k > 0, all t. 

Thus, while Assumption E.l presumes homoscedasticity of the residuals, this 
condition is not needed for strong consistency of &. (nor for its asymptotic 
normality, as discussed below), since the conditional median of the dependent 
variable will still be of the form max{O, x:& }_ This robustness of the censored 
LAD estimator to (bounded) heteroscedasticity makes it attractive even when 
the error terms are Gaussian; as Maddala and Nelson (1974) and Arabmazar 
and Schmidt (1981) have shown, heteroscedastic errors also cause incon- 
sistency of likelihood-based estimators for Tobit models. 

Finally, the assumption that the regression vectors { xt} are stochastic and 
mutually independent is imposed to simplify the additional condition to be 
imposed below to obtain asymptotic normality of &.; however, since the { xr } 

are not presumed to be identically distributed, this assumption is not as 
restrictive as it might first appear. In particular, this setup will accomodate a 
fixed design matrix, where the {x, } take fixed (and uniformly bounded) values 
with probability one. Nevertheless, there may be samples for which the 
assumption of independence of the { xt } over t is inappropriate (e.g., in panel 
studies, where the regressors represent several measurements of individual 
characteristics over time); while independence of the regressors does not 
appear to be essential to the large-sample results given below, relaxation of this 
assumption would greatly complicate the discussion of asymptotic normality, 
and thus will not be pursued here.3 

3Robinson (1982) has recently shown Tobit maximum likelihood estimation to be strongly 
consistent and asymptotically normal under weaker conditions on the dependence of the error 
terms, and it seems likely that his approach could be extended to the estimator considered here. 
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Theorem I. For the censored regression model (2.1) under Assumptions P.1, R.l, 
and El, the censored LAD estimator & is strongly consistent; that is, if 

where S,( /3) is defined in (2.2) above, then &- converges to /I,, almost surely. 

The proof of this result, as well as the proofs for Theorems 2 and 3 below, are 
given in appendix 2. 

4. Asymptotic normality of the censored LAD estimator 

Having established the consistency of the censored LAD estimator &, 
determination of its asymptotic distribution is the next logical step in the 
analysis of its sampling properties. However, for estimation methods based 
upon minimization of an absolute value criterion, distribution theory is com- 
plicated by the lack of differentiability of the minimand. Hence the standard 
approach to the demonstration of asymptotic normality, based on a Taylor’s 
series expansion of the objective function, is not directly applicable in the 
present context. Several methods have been used to obtain the large-sample 
distributions of LAD estimators for the standard linear regression model. 
Bassett and Koenker (1978) prove the asymptotic normality of LAD in its 
alternative representation as the solution of a linear programming problem, an 
approach suggested by Taylor (1974); unfortunately, their proof would be 
difficult to generalize in the present context, since the minimization problem 
which defines & cannot be rewritten as a linear program, except possibly in a 
neighborhood of B r..4 An alternative proof of the limiting normality of 
standardized LAD regression coefficients has been given by Amemiya (1982), 
who approximates the sum of absolute deviations by a twice-differentiable 
function that tends to the same limit function; the LAD estimator is then 
shown to have the same large-sample behavior as the estimator that minimizes 
this differentiable function. While this method appears to be more applicable 
in this case, it is algebraically quite complicated, and thus is not adopted here. 

The proofs of asymptotic normality given below are based on an approach 
used by Huber (1967), Bickel (1975), JureckovB (1977), Ruppert and Carroll 
(1980), Koenker and Bassett (1982a), and Powell (1983). The proof of asymp- 
totic normality given in appendix 2 uses a simple modification of Huber’s 
version of this technique, the modification being required because Huber’s 

4Minimization of S,(p) cannot be restated as a linear programming problem because the 
minimand, while piecewise linear, is not convex in 8. However, if at the respective solution values 
there are no data points for which x$,= 0, then for small variations about fiT the function S,(& 
will behave just like a sum of absolute deviations for those data points with x$, z 0. 
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discussion involves identically distributed random variables. The formal state- 
ment of this theorem, along with the conditions for its validity, are given in 
appendix 1 (Lemma A.3). In short, the lemma approximates the (discontinu- 
ous) subgradient of the objective function by its continuously differentiable 
expectation, and then relates this approximation to the asymptotic ‘first-order 
condition’ defining the estimator (which sets the subgradient equal to zero 
asymptotically). 

For this method to be applicable to the censored LAD estimator, additional 
regularity conditions are required; that is, conditions P.l, E.l, and R.l are not 
sufficient in general to ensure that fl( &. - &,) has a limiting normal distri- 
bution. One additional condition is needed because the conditional median 
function max{O, xl/3 } of y, is not well-behaved for values of x, which are nearly 
orthogonal to p, since the function is not differentiable in p when x$ = 0. To 
ensure asymptotic normality of &, sequences of values of x, which are 
orthogonal to & with positive frequency must be ruled out. For this purpose, 
the following condition will suffice: 

Assumption R.2. In addition to the conditions of Assumption R.l, defining 

Gt(z, P> r) = E[l( WI 5 llxtll ~z)llxtllr] 7 

the function G, is o(z) for z near zero, 0 near &, and r = 0, 1,2, uniformly in 
t, i.e., 

for some positive K, and [a. 

To interpret this condition, first suppose for simplicity that the regressors 
have bounded support (i.e., lIx,JJ I K with probability one for all t and some 
K > 0). Then it suffices that Pr( 1x$1 I z) = o(z) uniformly in t for p near & 
and z near zero, since Pr(lx$l< JJx,JJ . z ) IS no greater than Pr( /x$1 I K - z) in 
this case. When the { xr } are preassigned vectors, this condition would require 
that lx~&l> k (with probability one) for some k > 0; for many applications, 
though, such an assumption would be too restrictive, and this is the reason for 
the more general condition R.2. Heuristically, the assumption implies that the 
regression function x$ is distributed much like the corresponding error term 
u,, at least for /3 near &, and x$ near the censoring point (zero). Obviously, 
this condition does not exclude deterministic components of the vector x,, nor 
components which have discrete distributions; only the linear combination x:fi 
must have a Lipschitz continuous distribution function near zero. 

For regressors with unbounded support, it is the ‘normalized’ regression 
function IIx,II-~x$ which must be smoothly distributed near zero. In addition, 
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condition R.2 requires the values of x, nearly orthogonal to p to be well 
behaved, in the sense that the conditional moments of /lx,jJ given the event 
(Ix,II-~Ix# I x (if these moments are well defined) are uniformly bounded in t 
for z and /3 in the given neighborhoods. For example, the regressors will 
satisfy this latter condition if they are spherically distributed about zero, i.e., 
the { xt} are continuously distributed with density functions of the form 
h,(xjx,); in this case, llxJ/ and Ijx,ll- lx, are independent, the latter being 
distributed uniformly on the unit sphere, so R.2 will be satisfied (by the 
uniform boundedness of E(\x,((~ imposed in R.1). Of course, in practical 
applications the regressors will have much more complicated distributions, but 
it is still reasonable to expect in practice that the moments of l]xJl will be well 
behaved (in the sense of R.2) when x$?/llx,ll is near zero. 

Two additional technical conditions on the parameter vector and error terms 
are imposed to obtain asymptotic normality of &; the second can be relaxed 
when the support of the regressors is uniformly bounded. 

Assumption P.2. The parameter vector & is an interior point of the compact 
parameter space B. 

Assumption E.2. In addition to the conditions of Assumption E.l, the density 
function f( X) of the ( ut } is Lipschitz continuous: 

lf(A,)-f(A,)IILo.lX,-h,l, some&>O. 

With these additional conditions, the following result can be established: 

Theorem 2. For the censored regression model (2.1) under Assumptions P.2, E.2, 
and R.2, the censored LAD estimator is asymptotically normal, 

where I$ is any square root of the matrix 

(1/T)~l(xj&,> 0)x,x; .’ 
t I 

Before turning to a discussion of consistent estimation of C,, a simple 
extension of the preceding result should be indicated. Asymptotic normality of 

sIf lim MT= M exists, the conclusion of the theorem can be written in the more suggestive 

form fi(B,- s,;: N(0,[2f(0)]-2M;‘). 
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& will still hold if the error terms {u,} are (boundedly) heteroscedastic, 
although the asymptotic covariance matrix [2f(0)]-2M,1 will no longer be 
appropriate. Specifically, suppose that the conditional density functions of the 
{z+} are of the form given in (3.1), and that ‘f(A)’ is replaced by ‘f,(XJx,)’ in 
the statement of E.2; then the proof of Theorem 2 can easily be modified 
(provided E&xtl15 < K,, some K, > 0) to show that M; ‘Cr.. fi(& - &) has a 
limiting N(0, I) distribution, where 

this clearly reduces to the result of Theorem 2 when f,(O(x,) =1(O). 

5. Estimation of the asymptotic covariance matrix 

In order for the result of Theorem 3 to be useful in constructing large- 
sample Wald-type hypothesis tests concerning the unknown parameter vector 
/3,, a consistent estimate of the asymptotic covariance matrix of & must be 
obtained.6 The most difficult problem this poses - one which is generic to 
estimation methods based on least absolute deviations - is the estimation of 
the density function f( .) of the underlying error terms { U, }. While there is no 
lack of reasonable estimators for f(O), there is no unique ‘natural’ sample 
counterpart; any estimator which is the derivative of a ‘smoothed’ version of 
the empirical distribution function of the residuals will necessarily be sensitive 
to the nature and amount of ‘smoothing’ for finite samples. 

To be more specific, for estimation of [2f(0)]-2M;1, a ‘natural’ estimator 
for MT, the matrix given in Theorem 2, is 

A&= (l/T)Cl(x$,> 0)x,x;. (5.1) 

Now suppose f(0) is estimated by 

&(O)= Cl(x$,>O) -I ~TIC1(Xj~T>O).l(OIi(tI~r) 
t 1 I I 1 

=i,(o; &, Q, (5.2) 

where fit =_y, - x;& and where E, is an appropriately chosen function of the 

6Koenker and Bassett (1982b) have shown that, for tests of linear hypotheses in the standard 
linear model, estimation of the density function of the residuals is not needed for calculation of 
Lagrange multiplier test statistics based on LAD estimates. While their analysis does not 
immediately generalize to the censored regression model, similar results for censored LAD 
estimation can undoubtedly be obtained. 
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data. It is assumed that there is some non-stochastic sequence { cr} such that 

plim t/c, = 1, CT= o(l), c;’ = o(@); (5.3) 
T-CC 

that is, C, tends to zero in probability, but at a rate slower than T-f. To 
interpret this estimator, let fir(X) denote the empirical c.d.f. of the set of 
residuals { ic, : x$, > O}; then 

MO>= [MQ-QO-)]&, (5.4) 

so the density function is estimated by the fraction of residuals (with positive 
regression functions) in the interval [0, 2,] divided by the width of this 
interval7 The function E, might be defined to be scale equivariant; one such 
example would be 

~,=c,T-Ymedian(ic,:ir,>O,x:~,>O}, cO>O, y~(O,i). (5.5) 

Yet even with this sequence of interval widths, there will be a wide range of 
possible estimates of f(0) corresponding to different choices of c0 and-y (i.e., 
different degrees of ‘smoothing’). The following result shows that jr(O) is 
consistent for f(0) under (5.3) and the conditions of Theorem 2 without further 
specifying the sequence { E, }. 

Theorem 3. _ Under_ Assumptions P.2, E.2, a?d R.2, _and condition (5.3), the 
estimator [2fT(0)]*i& of [2f(0)12M,, where MT and f#) are defined by (5.1) 
and (5.2) above, is (weakly) consistent, i.e., [2fT(0)12MT - [2f(0)121Lf, con- 
verges in probability to the zero matrix. 

Of course, more elaborate smoothing schemes for the estimation of f(0) 
could be devised for this problem, but there seems to be no a priori reason to 
prefer an alternate estimator. Even if the estimator fr(O) of f(0) is adopted, 
with a definition of Z, like that in (5.5), the constants c0 and y must be 
specified. With additional smoothness conditions on f(h), Parzen (1962) 
showed that y = 0.2 would be optimal (in the sense of minimizing mean 
squared error) for such a density estimator in an i.i.d. sample, so this may be a 
reasonable choice in the present circumstance; the optimal value of c0 would 
depend upon the form of the density function, but may be set in (5.5) to be 
best for some nominal (e.g., Gaussian) density. 

The estimator [2~r.(0)]-2&;1 will in general be inconsistent for the true 
asymptotic covariance matrix of @(jr- &) if the error terms are hetero- 

‘This interval is centered at fZT rather than at zero to ensure that no data points with 2, = x$, 
(corresponding to points with y, = 0) are used to estimate the density at zero. 
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scedastic. Following White (1980b), the correct expression for the asymptotic 
covariance matrix, given immediately after the statement of Theorem 2, can be 
consistently estimated by 6;1fi&1, where hr. is given in (5.1) and 

~~~2(~,T)-‘~l(x:~,~o)1(o_<ii,I~~)x,x:. (5.6) 

It is possible to show that er. is consistent for Cr., defined in (4.1), by an 
argument analogous to that given for Theorem 3. 

6. Conclusion 

The results given above complete the investigation of the first-order asymp- 
totic properties of the censored LAD estimator; since &- is consistent and 
asymptotically normal, and since its asymptotic covariance matrix can be 
consistently estimated, tests of hypotheses concerning the unknown regression 
coefficients &, can be constructed which are valid in large samples. Because 
neither the computation nor the large-sample properties of 8, require the 
distribution of the error terms to be specified, the associated hypothesis tests 
are a fortiori robust to misspecification of the likelihood function (although 
proper specification of the regression function is still essential for the validity 
of the asymptotic results). Indeed, the censored LAD estimator may be used to 
test whether the distribution of the errors has alparticular (e.g., Gaussian) 
parametric form of interest, by comparison of & with the corresponding 
maximum likelihood estimator, as suggested by Hausman (1978). A statisti- 
cally significant difference between the maximum likelihood estimator and the 
censored LAD estimator may indicate failure of the assumptions of homo- 
scedasticity or normality, or may be due to some other misspecification of the 
model. 

From a practical point of view, computation of the estimator is an important 
consideration. While the usual gradient methods of optimization are not 
applicable to the minimization of S,(p), the censored LAD estimator can be 
computed using ‘direct search’ methods developed for nonlinear programming. 
Among these are M.J.D. Powell’s (1964) ‘conjugate directions’ method and the 
‘flexible polygon’ search of Nelder and Mead (1965); the latter method has 
been successfully used to compute & for test cases involving 200 observations 
and three regression parameters. Description of these methods and Fortran 
programs which implement them are given by Himmelblau (1972); the meth- 
ods are also available in the GQOPT statistical package. 

An open question is the efficiency loss of the proposed estimator relative to 
maximum likelihood estimation if the error terms have a known (Gaussian) 
distribution; since the asymptotic covariance matrices of the LAD and maxi- 
mum likelihood estimators depend in a non-trivial way on the distribution of 
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the regressors as well as the error terms in the model considered, efficiency 
comparisons will depend in general on the particular design matrix chosen. It 
would also be useful to know when a sample size is large enough for the 
asymptotic distribution to be a good approximation; a simulation study, based 
on sample sizes and designs encountered in practice, would be valuable in 
addressing the latter question. 

Appendix 1: Preliminary lemmas 

A.1. Consistency 

The proof of consistency given in appendix 2 is similar to the approach 
taken by Obenhofer (1982) to prove (weak) consistency of the LAD estimator 
for the nonlinear regression model [although his regularity condition B4 does 
not hold for model (2.1)].8 The proof here uses the following lemmas by White 
(1980a): 

Lemma A.1 [Lemma 2.3 of White (1980)]. Let {Z,} be independent random 
variables which assume values in some set Z endowed with the a-jield A. Let 

41 . - * = x 0 -+ R’, where 0 E Rr is compact. Assume: 

(4 

(b) 

(4 

For each 6 in 0, q,(z, 6) is A-measurable. 

qt(Z,, t3) is continuous on 0, uniform& in t, a.s. 

There exist measurable m,: E --, R’ for which [q,(.z, @)I < ml(z) for all 9 in 
0, and for all t, E]m,(Z,)] ‘+’ I M < cc, some 6 > 0. Then 

(9 Wq,(Z,, @>I IS continuous on 0, uniformly in t. 
(ii) supe,o](l/T)c~=,q,(Z,, @) - e,(S)] + 0 a.s., where QT(e) = 

(l/T)C:&q,(Z,, Ql- 

Lemma A.2 [Lemma 2.2 of White (1980)]. Let Qr(o, 8) be a measurable 
function on a measurable space 52 and for each w in J2 a continuous function of 0 
on a compact set 0. Then there exists a measurable function e,(o) such that 

for all w in 0. If lQr(o, 0) - Q,(S)1 + 0 a.e. uniformly for alI 8 in 0 and if 
Q&e) has a minimum at 8, which is identifiably unique (i.e., for any E > 0, 

inf min{Q,(e)-Q,(e,):eEO,lle-eoll>E} >o, 
TrT, f3 

for some positive integer T,), then 8, converges to t3, almost surety (w). 

‘1 am grateful to a referee for pointing out Obenhofer’s paper. 
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A. 2. Asymptotic normality 

The proof of asymptotic normality of & is based upon a simple extension 
of a theorem proved by Huber (1967) for maximum-likelihood-type estimation 
for i.i.d. samples. This theorem gives sufficient conditions under which a 
sequence of consistent estimators {Jr} which satisfy some ‘first-order condi- 
tion’ 

is asymptotically normal, where the {Z,} are i.i.d. random variables taking 
values in some sample space z, and where J/ : Z x 0 --) RP is some given 
function, for 0 an open subset of Euclidean space R*. 

For the estimator considered above, the corresponding random variables 
{Z,} are not identically distributed (although their mutual independence is 
assumed throughout), and in other applications the appropriate functions 
( )C/((Zr, 8)} may vary systematically with the index t; nonetheless, Huber’s 
conditions can be easily modified to apply in such cases. Define 

where the expectations here and throughout are taken with respect to the true 
distributions of the {Z,}, and let 

The following conditions are imposed on lClr, A,, and pClr: 

Assumption N.l. For each fixed B E 0 and each t, (p,(Z,, 0) is measurable, 
and $,( Z,, t9) is separable in the sense of Doob for all t: i.e., there is a 
countable subset 0’ C 0 such that for every open set U c 0 and every closed 
interval A, the sets {Z,: (I$I(Z,, @)(I E A, for all 0 c U} and {Z,: ll+,(Z,, f3)ll 
E A, for all B c Un 0’} differ at most by a set of (probability) measure zero. 

Assumption N.Z. There is some 8, E 0 such that A,( aa) = 0 for T. 

Assumption N.3. There are (strictly positive) numbers a, b, c, d,, and TO such 
that, for all t, 

(0 ilW)il 2 a. 118 - 44 for ~~e-e,~~~d,, n To, 

00 E[p,(Z,,6’,4Isb.d for 118 - solI + d I d,, d 2 0, 

(iii) E[pI(Z,, 8, d)12 I c-d for ~l~--~,,ll+d~d,, dko. 
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Assumption N.4. Ell+,(Z,, e,,)l(’ 2 K for all t and some K> 0. 

With these conditions, a simple asymptotic expression for A,(&) can be 
obtained. 

Lemma A.3. Assume that Assumptions N.1 to N.4 hold and that 

o/J?;)~~,(z,>~,)= o,(l) for 8,4,(z,,...,z,). 

If 8, is consistent for 8, (i.e., Pr{ 118, - 8,l( > n} = o(1) for any TJ > 0), then 

Proof. The method of proof is identical to that in Section 4 of Huber (1967). 
In each step of the proof of his Lemma 3, terms of the form 

T.X(8), T-Ep(Z,B,d), etc., 

can be replaced by their ‘averaged’ counterparts 

T.A,(@), C%(Z,, 8, d), etc., 

without affecting the validity of the argument if T is sufficiently large. 

Appendix 2: Proofs of theorems in text 

Proof of Theorem 1. Let 

ur =yr- max{O, ,+,}, 

and define 

h, = max(0, x:/3} - max{O, xX$,} = h,(P, Pa), 

where 

S=P-P,, 

(A al) 

(A.2) 

(A-3) 

here and throughout. Now minimization of S,(p) is equivalent to minimiza- 
tion of 

eAs)=%t~)-S,t&), (A.4) 
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since S,(&) does not depend upon j3; because the sequence of minimizing 
values { &.} is not affected by this normalization, the function Q,(p) will be 
shown to satisfy the conditions of Lemma A.1.9 Writing this minimand in 
terms of (A.l) and (A.2), 

Q&3)= (l/T)C[lu: - Wlu:k (A.5) 

Each of the terms in this summation is bounded (in magnitude) by Ih,( j3, &,)I 
I 2[IIpII + II&ll]llx,II, which is O(llx,lj) by the compactness of B. Assumptions 
R.l and E-1 and Lemma A.1 thus yield 

hm ~~Qr(~)-&(/3)~~=0, a.s.,uniformlyinP, (A.61 
T-W 

where 

or(~) E E[%(P) - ~~Utdl. (A-7) 
By Lemma A.2, and since CT(&) = 0 and Q,(p) 2 0, p, will be strongly 
consistent if, for any E > 0, Q,(~) is bounded away from zero, uniformly in /3, 
for II/3 - &II 2 E and all T sufficiently large. 

The expected value of Qr( /I), conditional on the regressors {x, >, is 

E[Q~(P)I+.., xTI 

=2(1/T)~l(n;/3,,~O,x;j3~0)/61:p(x;6-X)f(X)dh 
1 

+2(l/T)~l(x:P,~O,r:B<O)J_O~,~~(h+x:Po)/(X)dh 
I , 

+2(1/T)Cl(x;P,<O,~:P~O)So-~‘~‘(~~~)f(h)dh 
f 

+2(1/T)Cl(x;P,<0,n;B<O)~~~~o(x;6-X)f(~)dX. (A.81 
t : 

All terms in this expression are positive, so 

E[Q,(P)lxI~.4+1 

2 2(1/T) x1( 44, 10, ~$3 r O)r( x;S - h)f( X) dX 
t 

+2(1/T)C1(x:8,~0,~:8<O)J_~~~~(A+x~~~)~(A)dh. (A-9) 
t : 

‘This normalization is used by Huber (1963, 1967), Amemiya (1982), and Obenhofer (1982), 
among others; its purpose is to eliminate the requirement that U, have finite first moment. 
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Now by Assumption E.l, there exists an fi > 0 such that f( h) > fi whenever 
]A 1 -c fi. Then, for any number 7 such that 0 < 7 < min{ .Q, fi } (where &cl is 
defined in Assumption R.l), inequality (A.9) yields 

2 w7-)Cl(x:Po - >~~,x;PkO).l(Jx;Glt7)/‘(7--)fidh 
t 0 

+2(l/WWx:P,~%, ~;fi<O)/~(A+T)f,dh 
(A.lO) 

t -7 

Taking expectations with respect to the distribution of the {xl}, and applying 
Holder’s and Jensen’s inequalities, implies 

2 b2fiKT2)[(W12 - 72)llsll-2]3, 

where vr. is the smallest characteristic root of E[(l/T)Cl(x;& 2 E,,)x~x$ 
which is strictly positive for large T by Assumption R.l. Thus, choosing 
72 -C vr~~ shows that j&.(/3) is uniformly bounded away from zero for large T 
and (]6(] = ]]/I - &]] > E, as required. 

Proof of Theorem 2. Defining 

~(~,,xt,P)~l(X:B~O)[f-l(~t~X:(P-Po))lXt~ (A.12) 
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the condition 

must be established. Noting that the function # can be written as 

(A.14) 

it is easily verified that - 2T- f ‘kT( /I) is the vector of left partial derivatives of 
the objective function S&3) defined in (2.2) above. Because & minimizes 
S,(B), it is straightforward to show that ‘P,(&) satisfies 

(A.15) 

x ~[1(0<y,=x$r)+~~1(x;&=0)], 

where the subscript j denotes the jth component of the corresponding vector 
[see Ruppert and Carroll (1980), proof of Lemma A.2, for demonstration of a 
similar result]. But max{ ]]x,]]: t I T} = o(n) almost surely by Assumption 
R.l, and the sum on the right-hand side of (A.15) is finite with probability one 
for all T suitably large by Assumptions E.l, R.2, and the strong consistency of 
a,. Thus condition (A.13) holds. 

Next, conditions N.l though N.4 of Lemma A.3 must be established; only 
condition N.3 will be verified here, since the remaining conditions are easily 
checked. To show N.3(i) holds, it is convenient to write 

tl/T)C-l(x:P>O).f(X~)x,x: (P-P,,), (A.16) 
I 1 

where ‘E,’ denotes the expectation operator for the marginal distribution of x, 
and the {XT } are mean-value coefficients lying between zero and x:( p - &). 
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The second equality of (A.16) can be used to show 

A,(D) -f(O)+&= OW - Poll), (A.17) 

uniformly in T for /3 near /I,,, where M, is the matrix given in the statement of 
the theorem. This holds because each element of the difference satisfies 

= (l/T)~E,[l(x:~‘O)[f(~~)-f(O)lx,,x~~ 
I 

+[f(o)l(l/T)CE,[{l(x;~‘o)-l(x:P,’O)}x,,x,, 
I 

2 wmEx[l(4P ’ O)lf( Y) -f(0)Illx,l?] 
(~4.18) 

+ [f(o)l(l/T)CE,[l(lx:Pol~ llxrll IIP- Pclll)llxtl121 
t 

for II@ - &,I[ < So by Assumptions R.2 and E.2. Thus 

MP) =f(O) %(P - PO) + NIP - POl12)~ (A.19) 

and since the minimum characteristic root of Mr. is bounded above zero for all 
T sufficiently large (by Assumption R.l), inequality N.3(i) will be satisfied for 
all p in a sufficiently small neighborhood of & 

To verify N.3@) and (iii), define 

(A.20) 

Then the definition of $ and some manipulation yields 

P,(A 4 2 sup tllXtll* 1( l4Pl 2 IdP - Y > I) 
IIY-Bll<d 

+ sup ll~,ll~~(l~,-~:PI~I~:~P-Y~l) 
lb-Bll<d 

(A.21) 

5 Ilx,ll[+ * 1( IxlPl 5 Iklld) + 1( 1% - x:PllI Ilx,lld)] , 
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so 

E[/-dP, d)] 5 [:K, +fo(f$)2’3] -d, 

when IIP - &ll I &,, by Assumptions R.2 and E.1. Similarly, 

(A.22) 

E[dP, d)]* 5 [K, + V&,1 .d> 

when II/3 - &II I lo, since pLt < 211x111 by (A.21). 

Hence N.3 and the other conditions of Lemma A.3 hold, so 

(A.23) 

Conditions (A.19), (A.24), and the consistency of &- imply 

@(8,-PII)= [f(o)~,1-‘(1/\lT)Cl(x:Po>o) 

x [ $ - l( U, > o)] x, + o,(l). (A.29 

The asymptotic normality of 8, then follows from the application of Liapunov’s 
central limit theorem to (A.25). 

Proof of Theorem 3. Only the weak consistency of &-(0) will be demonstrated 
here; the convergence of M, to Ma can be proved in a similar fashion. First, the 
denominator of &.(O), when multiplied by l/T, can be replaced by 
(l/T)C Pr{ x$, > 0}, since 

I(~/T)C[~(X:B,>O)-P~{~;B,>~}~( 
t 

2 (l/T) x1( Ix:Pol 5 llxtll . II& - Poll) 

+l(l/T)C[l(x;P,>O)-Pr{x;P,,>O}]/. 
t 

(~.26) 

The second term on the right-hand side is clearly o,(l); to show the first term 
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also converges to zero in probability, note that, for any q> 0, 

~~(~~/~~C~(l~~P,I~ll~rll~ll~r-Poll~~~} 

~n((~/~~~~(l~~~~l~l~~tl~r),nj+~~~~l8~-ii,,~~ 
t 

2 I-‘(l/T)C Pr{ I4Pd 2 IIxtllz} + Pr{ Ilk &II > 4 
(A.27) 

when z < &, which follows from Markov’s inequality and Assumption R.2(i). 
Thus, by choosing z sufficiently small, the right-hand side of (A.27) can be 
made arbitrarily small for large T by the consistency of 8,. 

Similarly, the numerator, normalized by l/T, can be replaced by 
(c,T)- ‘cl< xi&, > 0). l(0 I U, I cr.), because plim &./c, = 1 and 

These terms can each be shown to converge to zero in probability in the same 
fashion as in (A.27), using Assumptions R.2’ and E.2 and the facts that . 
c;‘ll&- &II = o,(l) and that c~‘li+-- cTI = o,(l). Now 

E (c,T)-‘~l(x:Bo>0).1(O~u,I~,) 
[ t 1 
= (l/T)x Pr{x$e> 0} l?c,‘f(h)dX 

[ t 1 
(l/T)C pr{x$0>0} /df(+h)dX 

t 1 
(A.29) 

= (l/T)C Pr{ -Go > O} f(O) + o(l), 
t 1 
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by the dominated convergence theorem, and 

= (f+T)-‘C var[l( ix& > 0). l(0 2 u, 2 Q.)] 

~(c,T)~lc~‘Pr{O~u,~c,}=o(l/JT). 

Hence 

&(O)= (l/T)C Pr{xj&>O} +0,(l) -’ [ I 1 

x f(O>(l/T)C Pr{ x2%> O} +-o,(l) 
[ ! 1 

(A.30) 

(A-31) 

as asserted. 
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