
ECO 519. Handout on Powell, Censored LAD (1984)

The basic setup is a censored-dependent variable situation, where for each observation

i = 1, . . . , n we observe yi = max{0, x′iβ0 + ui}, where the error term ui is continuously

distributed, independent of xi and has median equal to zero1. Let the cdf of ui be F (·)
with corresponding density function f(·). We will assume throughout that f(0) > 0, so the

median of u is unique2. Given this setup, is is easy to see that conditional on xi:

Pr(yi < y|xi) =





0 if y < 0

F
(
y − x′iβ0

)
if y ≥ 0

Therefore, the median of y (conditional on xi) is determined by min
{

F (0), F
(−x′iβ0

)}
. We

have:

median(yi|xi) = max
{
0, x′iβ0

}
.

So, it was easy to characterize the conditional median of yi in this censored-dependent

variable context. How can we exploit this information in order to estimate β? It is a well

known result that for any scalar random variable y, the loss function E
∣∣y − b

∣∣ is minimized

at b = median(y). Following this principle, the censored-LAD estimator β̂ minimizes the

objective function Sn(β) given by:

Sn(β) =
1

n

n∑
i=1

∣∣∣yi −max{0, x′iβ}
∣∣∣. (1)

over a compact parameter space B ⊂ Rk.

1 Consistency of β̂̂β̂β

If we had y < 0 w.p.1, then the median of y would not depend on β. In this case, β would

fail to be point-identified; any β for which x′β ≤ 0 w.p.1 would yield the same median of y

1More generally, we assume that conditional on xi, the error term ui has median equal to zero. This

allows for heteroskedasticity.
2This is not completely accurate. Remember from our discussion about Almost Sure Representation

theorems that the median of y is formally defined as inf{t : Pr(y ≥ t) ≥ 1/2}, which is always unique. We

need f(0) > 0 here in order to ensure asymptotic normality of our estimator.
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(zero). So first of all, we need to rule out the case in which u ≤ −x′β0 w.p.1. In addition to

this, we also need to rule out the case x′β0 < 0 w.p.1, because in that case —once again—

there is no longer a one-to-one relationship between the median of y and β0: If we change

β0 slightly, the median of y would not change. Finally, we also need to rule out perfect

multicollinearity of x. These concerns are captured in Assumption R.1 of Powell:

R.1 The regressors xi are independently distributed3 with E
∥∥xi

∥∥3 ≤ K0 for all i and some

K0, and for some ε0 > 0 and some n0 ∈ N, the smallest characteristic root of the

matrix

E

[
1

n

n∑
i=1

1l
{
x′iβ0 ≥ ε0

}
xix

′
i

]

is bounded below by some ν0 for all n ≥ n0

the smallest eigenvalue is involved because eigenvalues can be used to characterize lower

bounds for the norm of the matrix. This assumption ensures that the distribution of the

covariates has enough mass in the set {x′iβ0 > 0}. The paper also assumes a compact

parameter space B, in addition to the assumptions stated above regarding the F (·) and f(·)
(the cdf and density of u respectively). Assumption R.1 yields the following result: For any

ε > 0, ∃δ > 0 such that

inf
‖β−β0‖>ε

E
[
Sn(β)

] ≥ E
[
Sn(β0)

]
+ δ

This condition and the previous assumptions yield strong consistency: β̂
a.s−→ β0β̂
a.s−→ β0β̂
a.s−→ β0.

See especially Equations (A.10) and (A.11) in the appendix. Right now, we are more

interested in using this result (strong consistency) in order to see how the paper uses Huber’s

Lemma to establish asymptotic normality (next).

2 Asymptotic normality of β̂̂β̂β using Huber’s conditions.

Due to the nature of the objective function, we cannot assume that β̂ satisfies some smooth

first-order conditions, which would enable us to find the asymptotic distribution of β̂ via a

3Throughout these notes, we will act as if the xi’s were in fact also identically distributed, which changes

nothing fundamentally. The assumption of independence is never relaxed in the paper. See footnote #3 in

the paper.
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Taylor approximation. Note that Sn(β) is not differentiable whenever yi−max{0, x′iβ} = 0,

but it has well-defined left and right derivatives everywhere. This would not hold if Sn(·) were

not continuous for example. For each one of the individual terms of Sn(β), the right-partial

derivative with respect to βj is given by





−xij if x′iβ > 0 and yi ≥ x′iβ

xij if x′iβ > 0 and yi < x′iβ

0 otherwise

the left and right derivatives are the same everywhere except when yi − max{0, x′iβ} = 0,

which is when the function fails to be differentiable.

Before proceeding, we need additional assumptions to those that ensured strong consistency

of β̂. We need the conditional median of y to be well-behaved as a function of β at least

inside some neighborhood containing θ0. This conditional median will not be well-behaved as

a function of β for realizations of xi for which x′iβ = 0, since max{0, x′iβ} is not differentiable

in β whenever x′iβ = 0. This is achieved by introducing the following assumption (in addition

to those that yielded strong consistency)

R.2 For r, z ∈ R define

Gi(z, β, r) = E
[
1l
{|x′iβ| ≤ ‖xi‖ · z

}‖xi‖r
]

Then there exists ξ0 and K1 such that for any 0 ≤ z < ξ0 and r = 0, 1, 2:

sup
1≤i≤n

‖β−β0‖≤ξ0

Gi(z, β, r) ≤ K1 · z

The first consequence of this assumption is that Pr
[
x′iβ = 0 for some 1 ≤ i ≤ n

]
= 0 for all

‖β−β0‖ ≤ ξ0, but it also ensures that ‖xi‖ has uniformly bounded 1st and second moments

for values of β near β0 such that x′iβ ≈ 0. Now let us quickly see how the paper applies

Huber’s results.
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2.1 Asymptotic “First-order conditions”

Suppress right now the term 1/n in Sn(β). The right-partial derivative of Sn(β) with respect

to βj, j = 1, . . . , k is given by:

ψj(β) =
n∑

i=1

[
−xij1l

{
yi ≥ x′iβ

}
+ xij1l

{
yi < x′iβ

}]
1l
{
x′iβ > 0

}

= 2
n∑

i=1

xij

[
1l
{
yi < x′iβ

}− 1

2

]
1l
{
x′iβ > 0

}

Let ej be the k-dimensional vector that places 1 in the jth place and zero otherwise. Now

comes a key fact: Since β̂ minimizes (1), the following must be true for each j = 1, . . . , k

and any δ > 0:

ψj(β̂ − δej) ≤ 0, ψj(β̂ + δej) ≥ 0

ψj(β̂ − δej) ≤ ψj(β̂) ≤ ψj(β̂ + δej)

Therefore
∣∣ψj(β̂)

∣∣ ≤ ψj(β̂ +δej)−ψj(β̂−δej). Therefore, for any δ > 0 and all j = 1, . . . , k:

∣∣ψj(β̂)
∣∣ ≤

2
n∑

i=1

(
xij

[
1l
{
yi < x′iβ̂ + δxij

}− 1
2

]
1l
{
x′iβ̂ + δxij > 0

}− xij

[
1l
{
yi < x′iβ̂ − δxij

}− 1
2

]
1l
{
x′iβ̂ − δxij > 0

}
)

let’s examine the components of this sum and take the limit as δ → 0

lim
δ→0

n∑
i=1

xij

[
1l
{
x′iβ̂ − δxij > 0

}− 1l
{
x′iβ̂ + δxij > 0

}]
=

n∑
i=1

xij1l
{
x′iβ̂ = 0

}

and since yi ≥ 0 for all i ( by the censored-nature of the problem)

lim
δ→0

n∑
i=1

xij

[
1l
{
yi < x′iβ̂ + δxij

}
1l
{
x′iβ̂ + δxij > 0

}− 1l
{
yi < x′iβ̂ − δxij

}
1l
{
x′iβ̂ − δxij > 0

}]

= lim
δ→0

n∑
i=1

xij

[
1l
{
yi < x′iβ̂ + δxij

}− 1l
{
yi < x′iβ̂ − δxij

}]
=

n∑
i=1

xij1l
{
yi = x′iβ̂

}

Therefore,

∣∣ψj(β̂)
∣∣ ≤ 2

n∑
i=1

xij

[
1l
{
yi = x′iβ̂

}
+

1

2
1l
{
x′iβ̂ = 0

}]
≤ 2

n∑
i=1

∣∣xij

∣∣
[
1l
{
yi = x′iβ̂

}
+

1

2
1l
{
x′iβ̂ = 0

}]

(2)
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now let ψ(β̂) =
(
ψ1(β̂), . . . , ψk(β̂)

)′
be the entire vector of right-hand derivatives. So

ψ(β) = 2
n∑

i=1

xi

[
1l
{
yi < x′iβ

}− 1

2

]
1l
{
x′iβ > 0

}

Using the bound in Equation (2), we have

∥∥∥ψ(β̂)
∥∥∥ ≤ 2max

1≤i≤n

∥∥xi

∥∥×
n∑

i=1

[
1l
{
yi = x′iβ̂

}
+

1

2
1l
{
x′iβ̂ = 0

}]
.

Given Assumption (R2) and the strong consistency of β̂, we have Pr
[
x′iβ̂ = 0 for at least one i]

goes to zero as n →∞. Assumption (R2) and the continuously distributed nature of ui also

imply that Pr
[
yi = x′iβ̂

]
for at least one i goes to zero as n →∞. The paper’s assumptions

also ensure that max
1≤i≤n

∥∥xi

∥∥ = Op(1). All these facts together imply that

∥∥∥∥
1√
n

ψ(β̂)

∥∥∥∥ ≤
2√
n

max
1≤i≤n

∥∥xi

∥∥×
n∑

i=1

[
1l
{
yi = x′iβ̂

}
+

1

2
1l
{
x′iβ̂ = 0

}]
= op(1).

Therefore

∥∥∥∥ 1√
n
ψ(β̂)

∥∥∥∥ = op(1). These are the asymptotic “first-order conditions” that

will fit into Huber’s Lemma to establish asymptotic normality of β̂̂β̂β. Using Huber’s

notation, let λ(β) = E
[
ψ(β)/n

]
. Note that

λ(β) =
2

n

n∑
i=1

Exi

[
xi

(
F (x′i(β − β0))− 1

2

)
1l
{
x′iβ > 0

}]

and therefore λ(β0) = 0. To simplify matters, and as I mentioned before, we will assume that

the xi’s are iid and not just independent. (Lemma A.3 in Powell points out that Huber’s

Lemma 3 extends immediately and automatically to the case in which the covariates are

only independent, but not identically distributed without further assumptions simply by

generalizing λ(β) to (1/n)
∑n

i=1 E[ψ(xi, β)].). So λ(β) simply becomes

λ(β) = 2Ex

[
x

(
F (x′(β − β0))− 1

2

)
1l
{
x′β > 0

}]

Asymptotic normality will be established by showing that

1√
n

n∑
i=1

ψ(xi, β0) +
√

nλ(β̂) = op(1)
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which is achieved by showing that the assumptions made by the paper are sufficient for the

conditions in Lemma 3 of Huber to hold.

Inside the neighborhood characterized in Assumption (R2), we have

∇βλ(β) ≡ Λ(β) = 2Ex

[
xx′f(x′(β − β0))1l

{
x′β > 0

}]
if the covariates are iid

=
2

n

n∑
i=1

Exi

[
xix

′
if(x′i(β − β0))1l

{
x′iβ > 0

}]
if the covariates are only independent (Powell’s setting)

Dominated convergence and (R2) yield: Λ(β̂)
p−→ Λ(β0) = f(0)Ex

[
xx′1l

{
x′β0 > 0

}]
. We

already know the punchline: If the remaining conditions in Huber, Lemma 3 are satisfied

then we will have

√
n(β̂ − β0)

=
(
f(0)Ex

[
xx′1l

{
x′β > 0

}])−1 1√
n

n∑
i=1

xi

[
1l
{
yi < x′iβ0

}− 1

2

]
1l
{
x′iβ0 > 0

}
+ op(1)

(the number 2 we have been carrying around drops out here) the final version of this handout

will provide further details of how Assumptions (N-3)(i-iii) in Huber are satisfied here.

Before proceeding, let us state the rest of the assumptions in the paper (in addition to those

stated above already)

P.2 β0 is an interior point of B.

E.2 Summary of assumptions about f(·) (the density of the error term u): F (0) = 1/2,

f(0) > 0, f(u) < f0 < ∞ for all u;
∣∣f(u1) − f(u2)

∣∣ ≤ L0

∣∣u1 − u2

∣∣ for all u1, u2 and

some L0 > 0 (f(·) is bounded and Lipschitz continuous everywhere)

By Assumption R.2, the following second-order Taylor approximation is valid in a neighbor-

hood around β0:

λ(β) = λ(β0)︸ ︷︷ ︸
=0

+Λ(β0)(β − β0) +
∥∥β − β0

∥∥2
O(1)︸︷︷︸
by R.2

where

Λ(β0) =





f(0)Ex

[
xx′1l

{
x′β0 > 0

}]
if covariates are iid

f(0) 1
n

∑n
i=1 Exi

[
xix

′
i1l

{
x′iβ0 > 0

}]
if covariates are only independent

6



Now, assumption R.1 kicks in, since (combined with R.2 and the assumption f(0) > 0) it

implies that there exists a strictly positive constant c0 such that ‖Λ(β0)‖ > c0. Therefore, in

a neighborhood of β0, we have: ‖λ(β)‖ > c0‖β − β0‖. This satisfies condition (N-3)(i)

in Huber. Next we have to verify if there exists a d0 b and c such that for all d ≥ 0:

E

[
sup

‖β−τ‖+d≤d0

∥∥∥∥∥xi

[
1l
{
yi < x′iβ

}− 1
2

]
1l
{
x′iβ > 0

}− xi

[
1l
{
yi < x′iτ

}− 1
2

]
1l
{
x′iτ > 0

}
∥∥∥∥∥

]
≤ b · d

E

[
sup

‖β−τ‖+d≤d0

∥∥∥∥∥xi

[
1l
{
yi < x′iβ

}− 1
2

]
1l
{
x′iβ > 0

}− xi

[
1l
{
yi < x′iτ

}− 1
2

]
1l
{
x′iτ > 0

}
∥∥∥∥∥

2]
≤ c · d

(3)

Notice that for all β, τ :

xi

[
1l
{
yi < x′iβ

}− 1
2

]
1l
{
x′iβ > 0

}− xi

[
1l
{
yi < x′iτ

}− 1
2

]
1l
{
x′iτ > 0

}

=





1/2 if x′iβ > 0 and x′iτ ≤ 0 or x′iβ ≤ 0 and x′iτ > 0

1 if 0 < x′iβ < yi ≤ x′iτ or 0 < x′iτ < yi ≤ x′iβ

0 otherwise

Notice that

1l
{
if x′iβ > 0 and x′iτ ≤ 0 or x′iβ ≤ 0 and x′iτ > 0

} ≤ 1l
{|x′iβ| ≤ |x′iβ − x′iτ |

}

1l
{
if 0 < x′iβ < yi ≤ x′iτ or 0 < x′iτ < yi ≤ x′iβ

} ≤ 1l
{|yi − x′iβ| < |x′iβ − x′iτ |

}

Therefore
∥∥∥∥∥xi

[
1l
{
yi < x′iβ

}− 1

2

]
1l
{
x′iβ > 0

}− xi

[
1l
{
yi < x′iτ

}− 1

2

]
1l
{
x′iτ > 0

}
∥∥∥∥∥

≤
∥∥xi‖ ×

(
1

2
1l
{
|x′iβ| ≤ |x′iβ − x′iτ |

}
+ 1l

{
|yi − x′iβ| < |x′iβ − x′iτ |

})

≤
∥∥xi‖ ×

(
1

2
1l
{
|x′iβ| ≤ ‖xi‖ ·

∥∥β − τ
∥∥
}

+ 1l
{
|yi − x′iβ| < ‖xi‖ ·

∥∥β − τ
∥∥
})

which means that

sup
‖β−τ‖+d≤d0

∥∥∥∥∥xi

[
1l
{
yi < x′iβ

}− 1

2

]
1l
{
x′iβ > 0

}− xi

[
1l
{
yi < x′iτ

}− 1

2

]
1l
{
x′iτ > 0

}
∥∥∥∥∥

≤
∥∥xi‖ ×

(
1

2
1l
{
|x′iβ| ≤ ‖xi‖ · (d + d0)

}
+ 1l

{
|yi − x′iβ| < ‖xi‖ · (d + d0)

})
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By Assumption R.2 and choosing d + d0 < ξ0, we verify that Conditions (3) are satisfied.

Thus, all the assumptions of Huber are satisfied and we obtain:

√
n(β̂ − β0) =

(
f(0)Ex

[
xx′f(1l

{
x′β > 0

}])−1 1√
n

n∑
i=1

xi

[
1l
{
yi < x′iβ0

}− 1

2

]
1l
{
x′iβ0 > 0

}
+ op(1)

︸ ︷︷ ︸
if covariates are iid

(
f(0)

1

n

n∑
i=1

Exi

[
xix

′
i1l

{
x′iβ > 0

}])−1 1√
n

n∑
i=1

xi

[
1l
{
yi < x′iβ0

}− 1

2

]
1l
{
x′iβ0 > 0

}
+ op(1)

︸ ︷︷ ︸
if covariates are only independent
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