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a b s t r a c t

This paper contributes to the literature on econometric estimation of incomplete information gameswith
Nash equilibrium behavior by introducing a two-step estimation procedure that makes no parametric
assumptions about the distribution of unobservable payoffs shocks. Instead, its asymptotic properties
rely on assuming only that these distributions satisfy an invertibility condition, and that the underlying
equilibrium selection mechanism is degenerate. Our methodology relies on a pairwise-differencing
procedure which, unlike Aradillas-Lopez (2010), does not require computing the equilibria of the game.
Furthermore, if normal-form payoffs are linear in the parameters of interest, our procedure results in
an estimator with a closed-form expression. We contribute to the pairwise-differencing econometric
literature by introducing the first model, where both the control variables being matched and the
regressors in the index function parameterized by θ contain nonparametric functions. In particular, the
asymptotic theory developed in Aradillas-Lopez et al. (2007) does not cover this setting. We describe
conditions under which nonparametrically estimated plug-ins yield a

√
N-consistent and asymptotically

normal estimator for the parameter of interest. A consistent specification test based on semiparametric
residuals is also developed. It appears to be the first test of this type for a model involving nonparametric
or ‘‘generated’’ regressors. Several extensions of our method are also discussed. A series of Monte Carlo
experiments are used to investigate the properties of our estimator and our specification test.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

This paper studies the estimation of static games with
incomplete information under the assumption of Bayesian–Nash
equilibrium (BNE) behavior with additively separable payoff
shocks and beliefs conditioned on observable covariates. These
assumptions characterize existing related work, including Seim
(2006), Pesendorfer and Schmidt-Dengler (2008), Sweeting (2009)
and Bajari et al. (2010). Unlike those papers and most of the
existingwork on the subject, ourmethodwill leave the distribution
of unobservable payoff shocks unknown except for the assumption
that it is strictly increasing everywhere. Such an inferential setting
was examined in Section 4 of Aradillas-Lopez (2010). However,
the method prescribed requires the computation of equilibria
at each step of the procedure. Here we describe a two-step
procedurewhich does not require the computation of equilibria. Its
validity relies on the assumption that the underlying equilibrium
selection mechanism is degenerate and hence the data (choices)
in each observation is generated from a single equilibrium. This
assumption is common in existing two-step estimation procedures
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in game-theoretic models (e.g., see Pesendorfer and Schmidt-
Dengler (2008), Bajari et al. (2010)), where conditional choice
probabilities are estimated in a first-step and plugged into a second
stage to recover the payoff parameters of interest. The assumption
that the data in each observation (e.g., market) is generated by a
single equilibrium can also be found, either explicitly or implicitly,
in Moro (2003), Seim (2006) and Jia (2008). Examples of dynamic
models that also rely on this assumption include Aguirregabiria
and Mira (2002) and Aguirregabiria (2007). By the nature of the
repeated interaction through time of the same set of agents, the
assumption that the same equilibrium is being selected has a
more solid justification in dynamic vis-à-vis static games. In other
instances (see, e.g., Pakes et al. (2007)), modeling assumptions
can ensure uniqueness of equilibrium. This paper contributes to
the literature by introducing a two-step procedure that does not
rely on assuming a known functional form for the distribution of
unobservable payoff shocks.

The main idea behind our method is the following. If unob-
servable shocks are additively separable and their distribution is
strictly increasing, a degenerate equilibrium selection mechanism
implies a one-to-one mapping between conditional choice prob-
abilities and the observable portion of players’ expected utility.
After suitable location-and-scale normalizations, this will allow
us to identify the payoff (expected utility) parameters of inter-
est provided that prototypical full-rank and exclusion restriction
(i.e., that each player has an exclusive payoff shifter) hold for the
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payoff covariates included. If we could match observations (mar-
kets) based on their conditional choice probabilities, their corre-
sponding (observable) expected utilities should also coincide. Our
method achieves this matching asymptotically through the use of
kernel weights and a bandwidth sequence converging to zero. This
enables us to deal with the case where conditional choice proba-
bilities are continuous. Informally speaking, the resulting method
boils down to minimizing a kernel-weighted ‘‘sum of squared
residuals’’.

More precisely, our estimation technique relies on a pairwise-
differencing procedure which, given our parameterization of
normal-form payoffs, yields an estimator with a closed-form
expression that is trivial to compute. Pairwise differencing
estimation has been prominently studied, e.g. in Aradillas-Lopez
et al. (2007) andHonoré and Powell (2005, 1994) (henceforthAHP).
As in AHP, the control variables being matched in our model are
nonparametric functions (conditional choice probabilities in our
case). However, the model we study here is not a special case of
AHP because the index parameterized by the structural parameter
of interest θ (in our case, this index corresponds to the observable
portion of players’ expected utility) also contains nonparametric
functions (players’ beliefs in our case). As a result, we have a
model with a nonparametric control function and nonparametric,
or ‘‘generated regressors’’. This setting is not contemplated in
the asymptotic theory results in AHP, and the results presented
there cannot be used for inference here. Moreover, the conditions
and assumptions in AHP are not designed to provide guidance
regarding the estimation of the control functions and the generated
regressors to ensure

√
N-consistency and asymptotic normality of

the resulting estimatorθ . Our paper contributes to the pairwise-
differencing literature by examining a model where both the
control functions and the parameterized index function include
unknown functions that must be nonparametrically estimated. In
a more general econometric context, the estimation procedure we
study is related to semiparametric models where an unknown
function is treated as an (infinite-dimensional) nuisance parameter
in the quest for estimating a finite-dimensional parameter of
interest θ . Identification strategies in such settings have included
exclusion restrictions, invertibility, as well as moment or quantile
restrictions. A few examples related to our paper in various
degrees include Manski (1985, 1975), Han (1987), Powell et al.
(1989), Horowitz (1992), Klein and Spady (1993), Ahn and Manski
(1993), Ahn and Powell (1993), Ichimura and Lee (1991), Ichimura
(1993), Ahn et al. (1997) and Blundell and Powell (2004). Our
estimator (as well as most of the ones just cited) relies on
kernel weights. Recently, Sieve-based procedures have received
increasing attention and they could be suitable to analyze a model
like ours. A recent survey of that literature can be found in Chen
(2007).

The assumption that the data in each observation is generated
from a single equilibrium is a driving identification condition in
this paper as well as in the ones cited above. In other instances,
point-identification has been achieved by modeling the selection
mechanism explicitly (Sweeting, 2009; Bajari et al., 2005).
Alternatively, point-identification has been achieved without
modeling the selection mechanism explicitly, but ruling out
that certain types of equilibria can be selected. For instance,
Bresnahan and Reiss (1990), Bresnahan and Reiss (1991a),
Tamer (2003) and Davis (2006) establish identification results
in complete information games when only pure-strategy Nash
equilibria is played. A few examples of papers that deal with the
econometrics of partially identified game-theoretic models under
the assumption of equilibrium behavior include Ciliberto and
Tamer (2009), Pakes et al. (2006), Andrews et al. (2004), Galichon
and Henry (2011) and Beresteanu et al. (2008). A recent survey
of the econometrics of discrete, static models with equilibrium
behavior can be found in Berry et al. (2006). A thorough analysis
of moment-inequality econometric methods arising frommultiple
equilibria in empirical work is presented in Pakes (2008). Recently,
identification results with non-equilibrium behavior in static
games has been studied in Aradillas-Lopez and Tamer (2008).

The class of static models we study here can be applied
to a variety of empirical problems. One of the most common
applications involves entry decisions. Particular examples – some
of which assume complete information – include Bresnahan and
Reiss (1991a,b), Berry (1992), Cohen and Manuszak (2006), Davis
(2006), Seim (2006) and Ciliberto and Tamer (2009). A recent
survey of entry/exit applications of game-theoretic models can
be found in Berry and Reiss (2007). Other applications include
labor participation decisions (Bjorn and Vuong, 1984), social
interactionsmodels (Brock and Durlauf, 2001a,b), empirical model
of competition in the supermarket industry (Davis, 2006) and
recommendation decisions by stock analysts (Bajari et al., 2010)
and the coordination in the timing of radio commercials (Sweeting,
2009). Other recent applications of game-theoretic models related
to ours in differing degrees include Augereau et al. (2006),
Ishii (2008) and Ho (2009). More recently, de Paula and Tang
(forthcoming) have shown conditions under which the sign of
strategic interaction can be nonparametrically identified in binary
games. In experimental settings, the models we study here are
particularly well suited to analyze quantal-response equilibrium
(QRE) behavior as described in McKelvey and Palfrey (1995).
Empirical applications have also received increasing attention
in other fields. Some examples in the fields of political science
and international relations include Signorino (1999, 2002) and
Signorino and Tarar (2006). Themethodswe develop here for static
models of strategic interaction can be adapted to many of the
applications examined in the papers cited above. We hope that its
computational simplicity and robustness features will make it an
attractive tool for practitioners.

The paper proceeds as follows. Section 2 describes the structure
of the underlying game along with the behavioral assumptions
and the identification conditions that result from them. Section 4
describes a pairwise-differencing estimation procedure based on
these identification conditions and it describes the asymptotic
features of the resulting estimator. Section 4 describes a residual-
based consistent specification test for our model. Section 5
discusses several extensions of our methodology and results.
Section 6 examines the properties of our estimator and our
specification test for a series ofMonte Carlo experiments. Section 7
concludes. Unless noted otherwise, all proofs can be found in the
Mathematical Appendix.

2. The model

Wewill illustrate our methods for estimation and specification
testing by focusing on a 2 × 2 game. We do this for two
reasons. First, because our approach extends naturally to games
with multiple actions or players. We describe such extension in
Section 5.3. Various other extensions will be described throughout
Section 5. The second reason why we use the 2 × 2 game to
introduce our methodology is because this has been one of the
prototypical examples in the econometric literature on static
discrete games to model entry in monopoly markets (see, e.g.,
Bresnahan and Reiss, 1990 or Tamer, 2003).Wewill use p = 1, 2 to
denote a particular player, and −p will denote his opponent. Each
p chooses a binary action Yp ∈ {0, 1}. The payoffs are given by

Up(Yp) = Yp ×

X ′

pβp +1pY−p − ζp

.

Xp ∈ RLp and ζp ∈ R denote observable and unobservable
payoff covariates to the researcher. βp and 1p are the payoff
parameters of interest. This payoff parameterization was used
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in Bresnahan and Reiss (1991a) and Tamer (2003) to model
entry/exit decisions. The payoffs described above have three
distinctive features: (i) Additive separability in observables and
unobservables (to the researcher). (ii) A strategic-interaction effect
that is not covariate-dependent (captured entirely in our case
by the constant parameter 1p for player p). (iii) Observable
covariates enter payoffs through a linear index. Other instances
of applied-oriented work that assumed payoffs with these three
features include Berry (1992) and Ciliberto and Tamer (2009)
who analyzed entry decisions in airline markets, Seim (2006) who
studied location decisions by video stores, Sweeting (2009) who
analyzed commercial break timing decisions by radio stations,
and both Bjorn and Vuong (1984) and Kooreman (1994) who
studied labor participation decisions. The stock recommendation
decision model in Section 5 of Bajari et al. (2010) assumes
payoffs that satisfy all three of the above features.2 This is also
true for the empirical model of competition in the supermarket
industry in Davis (2006) (although more general identification
results are also presented there). In the experimental economics
literature, the quantal response equilibrium (QRE) behavioral
model (see McKelvey and Palfrey, 1995) is used to explain why
players fail to choose best-responses with certainty. QRE replaces
the deterministic predictions of Nash equilibrium behavior are
replaced with a statistical version where players’ utility for
each action are augmented by a privately observed random
error. QRE corresponds to the Bayesian–Nash equilibrium of the
augmented or ‘‘perturbed’’ incomplete information game. As in
our payoff characterization, this unobserved error is assumed
to enter additively. In applications outside of economics, the
extensive-form game estimated in Signorino (1999) to study
international conflict assumes payoffs (for each terminal node of
the extensive-form) that are additively separable in observables
and unobservables. Notice that the payoffs of choosing Yp = 0
are normalized to zero. This is done because expected utility
maximization (a maintained assumption here) will imply that
the only differences in payoffs are relevant. Payoff normalizations
of this type are present for identification purposes in every
econometric model of discrete games.3 All the aforementioned
articles assume a known parametric distribution (possibly up to
a finite-dimensional parameter) for unobservable payoff shocks.
In contrast, we will study the case in which these distributions
are completely unknown except for an invertibility restriction. Of
the three general payoff features mentioned above, only additive
separability is indispensable for the potential applicability of a
pairwise-differencing approach to estimation. The linear index
restriction on observables is perhaps the easiest assumption to
drop. Identification concerns aside, the only immediate cost would
be that the estimator that results from our approach would
no longer have a simple, closed-form expression. Subject to
the identification implications for the specific parameterization
employed, our approach has the potential of being extended to
models where strategic interaction is a function of observable
payoff covariates. We will describe these issues in detail in
Section 5.1, where we discuss the extension of our methods to
gameswithmore general payoff functional forms. Sections 5.2–5.3
will describe other relevant extensions aimed at making our
methodology applicable to more complicated and flexible games
including many of the empirical applications cited above.

2 Bajari et al. (2010) also present identification results for payoff functions that
are additively separable in unobservable, but where observable covariates do not
necessarily enter through a linear index.
3 Econometric models of experimental games stand apart here because the

researcher has full control over the observable components of payoffs.
2.1. Basic assumptions

This paper concentrates on an incomplete information envi-
ronment where actions are taken simultaneously. The source of
incomplete information will be assumed to be the realization of
the payoff shock ζp, which will be assumed to be only privately
observed by player p. All other components of the game are as-
sumed to be known to both players, including the realization of
X ≡ X1 ∪ X2, as well as the true values of the payoff parameters
and the true distributions of all covariates involved.4 Both players
choose simultaneously (i.e., before observing the choice of their op-
ponent) the action that maximizes their expected utility. Players’
beliefs are unobserved by the researcher, but they are nonparamet-
rically estimated in a first stage based on the following behavioral
assumption.5

Assumption A0. (i) Players’ behavior corresponds to a
Bayesian–Nash equilibrium (BNE). In this context, we refer to an
equilibrium as a pair of beliefs for both players (probability distri-
butions over opponents’ actions) that satisfy the self-consistency
requirements of a BNE. The game is equipped with a selection
mechanism S that chooses among the existing equilibria if more
than one exists.Wewillmaintain the assumption that S is degener-
ate, meaning that it selects only one of the existing equilibria with
probability one. This rules out a selection mechanism S that can
select two or more equilibria with positive probability.
(ii) The privately observed payoff shocks ζ1, ζ2 are independent
of each other, independent of X ≡ X1 ∪ X2 and of the selection
mechanism S. We denote the distribution of ζp by Fp, which is
unknown to the researcher but assumed to be strictly increasing
everywhere in R.

Rational players should condition their beliefs on everything that
is informative for their opponent’s payoffs and behavior. From
Assumption A0, the realization of ζp conveys no information for
ζ−p. It follows that both players should condition their beliefs on
the realization of the publicly observed payoff covariates X ≡

X1 ∪ X2 and their knowledge of the true payoff parameter values
and the distributions involved (see Footnote 3). Let x be a given
realization of X and let {µr(x)}R(x)r=1 ≡

µr
1(x),µr

2(x)
R(x)

r=1 denote
all the pairs (µ1, µ2) that solve the system

µ1 = F1(x′

1β1 +11µ2), µ2 = F2(x′

2β2 +12µ1),

where the payoff parameters are evaluated at their true values.
From Assumption A0, every element in {µr(x)}R(x)r=1 is an equilib-
rium. By the continuity properties of Fp and the fact that it is
bounded in [0, 1] it is easy to show (e.g., using Brouwer’s Fixed
Point Theorem) that at least one equilibrium must exist for any
realization x. By the stochastic properties of ζ1, ζ2 (namely, their
independence of X and S), iterated expectations and BNE behavior
yield

Pr[Y1 = 1|X = x] =

R(x)
r=1

Pr

S = µr(x)

 X = x


× F1

x′

1β1 +11µr
2(x)


,

Pr[Y2 = 1|X = x] =

R(x)
r=1

Pr

S = µr(x)

 X = x


× F2

x′

2β2 +12µr
1(x)


.

4 The extension of our results to asymmetric information environments will be
discussed in Section 5.3.
5 See Manski (2004) for a discussion on measuring subjective expectations.
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Degeneracy of S implies that only one equilibrium is selected
with positive probability. Let us denote that equilibrium simply
as µ(x). It follows that Pr [S = µ(x)| X = x] = 1, and
Pr [S = µr(x)| X = x] = 0 for all µr(x) ≠ µ(x). Altogether, this
implies that Assumption A0 yields

Pr [Y1 = 1| X = x] ≡ µ1(x) = F1

x′

1β1 +11µ2(x)

;

Pr [Y2 = 1| X = x] ≡ µ2(x) = F2

x′

2β2 +12µ1(x)

.

(1)

The inferential setting in this paper is one where the researcher
does not observe players’ beliefs. The behavioral conditions in As-
sumption A0 (BNE behavior and degenerate selection mechanism)
allows us to identify beliefs. The invertibility features of Fp coupled
with Eq. (1) will lead to a constructive identification result for the
payoff coefficients following a reparameterization. The identifica-
tion strategy will match conditional choice probabilities with the
observable portion of players’ expected utility. By (1), players’ be-
havior is summarized as

Y1 = 1

X ′

1β1 +11 Pr[Y2 = 1|X] − ζ1 ≥ 0

;

Y2 = 1

X ′

2β2 +12 Pr[Y1 = 1|X] − ζ2 ≥ 0

.

(2)

Optimal decision rules can be represented as threshold-crossing
conditions because the distribution of ζp rules out optimal
indifference between Yp = 1 and Yp = 0 with probability one.6

The degeneracy property of the selection mechanism implies
that the data (choices) in each observation (e.g., market) is
generated from a single equilibrium. This is a common assumption
in two-step estimation of game theoretic models. Examples
in both dynamic and static settings include Moro (2003),
Pesendorfer and Schmidt-Dengler (2008), Bajari et al. (2010)
and Aguirregabiria (2007). In another instance, the modeling
assumptions in Pakes et al. (2007) ensure that there is a unique
equilibrium associated with a given data generating process.
Assuming that the data in each observation is generated from a
single equilibrium allows the different procedures described in
those papers to use nonparametric conditional choice probability
estimates as plug-ins for unobserved beliefs in order to recover
the structural parameters of interest. A degenerate selection rule
was also assumed in Seim (2006) (who also studied conditions
for uniqueness of equilibria), and Jia (2008), who imposed
the stronger assumption that the equilibrium selected was an
extremal one. In contrast, Assumption A0 does not require
knowledge of which equilibrium is being selected, although the
smoothness conditions that we will impose below on µ1 and
µ2 as functions of X will in turn imply ‘‘smoothness’’ properties
of the selection mechanism S. These boil down, for instance,
to assuming that only stable equilibria are selected w.p.1.7 Our
econometric framework differs from existing work in that we do
not impose any parametric assumptions at all on the distribution
of unobservable payoff shocks. Dropping the assumption that
the data observed is generated by a single equilibrium typically

6 This is an important distinction with complete information models, where
knowing the exact realization of everybody’s payoffs enables agents to mix their
actions in a way that makes their opponents optimally indifferent between more
than one choice. Moreover, even ruling outmixed-strategy equilibria does not yield
threshold-crossing decision rules (e.g., see Bresnahan and Reiss, 1991a or Tamer,
2003). As a result, ex-ante knowledge of the direction of strategic interaction (i.e.,
the signs of 11 and 12 in our case) is necessary in order to do inference. This
feature is true both for identified models (Bresnahan and Reiss, 1991a) or partially
identified models (Ciliberto and Tamer, 2009).
7 In our model, an equilibrium µr is stable if the Jacobian with respect to µ1 ,
µ2 of the BNE equilibrium system has full rank evaluated at µr . Assuming that
the determinant of such Jacobian is nonzero w.p.1. would suffice. A discussion on
smooth equilibrium selection and stable equilibria can also be found in Bajari et al.
(2010).
presents the researcher with two general alternatives. He could
either impose specific assumptions on the selection mechanism
such as ruling out certain kinds of equilibria (Bresnahan and
Reiss, 1991a,b; Tamer, 2003), or model the mechanism explicitly
(Bjorn and Vuong, 1984; Sweeting, 2009; Bajari et al., 2005).
Alternatively, one could make no assumptions on the selection
rule and approach the model explicitly as being only partially
identified and do inference accordingly (Ciliberto and Tamer,
2009; Pakes et al., 2006; Andrews et al., 2004; Galichon and
Henry, 2011; Beresteanu et al., 2008; Pakes, 2008). The approaches
vary from moment-inequality based, to set-estimation and the
properties of nonadditive likelihoods and capacity functionals. The
assumption of equilibrium behavior is common to all the above
cited papers except for Section 6.1 in Beresteanu et al. (2008),
where rationalizable behavior as in Aradillas-Lopez and Tamer
(2008) is considered.

Note that if there is a unique BNE for a given x, then the selection
mechanism S plays no role whatsoever and the data (for that
x) is trivially generated by a single equilibrium. The cardinality
of equilibria will depend on the stability of the Jacobian matrix
(with respect to µ1, µ2) of the BNE system in the set (µ1, µ2) ∈

[0, 1]×[0, 1]. These features in turn depend on themagnitude and
direction of themutual strategic interaction effect, and the relative
importance of private information, the latter being measured by
how ‘‘flat’’ the distributions Fp are. For instance, for a given x it is
easy to verify that if 1112F ′

1(x
′

1β1 + 11c2)F ′

2(x
′

2β2 + 12c1) < 1
for all constants (c1, c2) ∈ [0, 1] × [0, 1], then there will be a
unique BNE for x. If the derivatives of F1(·) and F2(·) are assumed
to be uniformly bounded by two constants F ′

1 and F ′
2 respectively,

then 1112 < 1/(F ′
1F ′

2) would ensure uniqueness everywhere
in S(X) (the support of X). This would be immediately satisfied
for instance, if 1112 ≤ 0 which corresponds to a game where
strategic interaction has opposite signs between both players. We
will add the following assumption.

Assumption A1. The distributions of X1 and X2 are absolutely
continuous with respect to Lebesgue measure. The supports of X1
and X2 are not contained in any proper linear subspace of RK1 and
RK2 respectively. There exist regressors X1ℓ ∈ X1 and X2ℓ ∈ X2
such that β1ℓ ≠ 0, β2ℓ ≠ 0 and conditional on X1 \X1ℓ and X2 \X2ℓ,
we have Pr [X1ℓ ≠ X2ℓ] > 0. We will also assume that we observe
a random sample of N games where (Yi, Xi, ζi)

N
i=1 comes from the

population described here.

The requirement that all variables in X1 and X2 be continuously
distributed is not essential and our methodology can be readily
adapted accordingly. The exclusion restriction in Assumption A1
which assumes the existence of individual-specific observable
payoff shifters will allow identification of the strategic-interaction
parameter αp. This type of restriction can be also found in Bajari
et al. (2010). In Section 4.1 we will discuss inference in
experimental data sets when this exclusion restriction is not
satisfied. We will argue that in those types of settings, having
precise knowledge of observable components of payoffs can allow
the researcher to consistently test our behavioral model under
weaker versions of our assumptions.

2.2. Reparameterization

We are interested in a procedure to estimate the payoff
parameters that relies only on Eq. (1) and on the invertibility
properties of Fp(·) in an inferential setting where the researcher
observes an iid sample from the population of games described
above. Exploiting these features, our estimation procedure will
match (asymptotically) conditional choice probabilities with the
observable components of players’ expected utility.Wewill exploit
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the fact that, with probability one, for any pair of observations i, j
in the sample,

µp(Xi) = µp(Xj)

⇐⇒ X ′

piβp +1pµ−p(Xi) = X ′

pjβp +1pµ−p(Xj),

where the above parameters are evaluated at their true value.
Consequently, for identification purposes our parameter space Θ
and the stochastic properties of X need to be such that there
does not exist (βp,1p) ≠ (βp,1p) such that w.p.1., µp(Xi) =

µp(Xj) ⇐⇒ X ′

pi
βp + 1pµ−p(Xi) = X ′

pj
βp + 1pµ−p(Xj). Given

our previous results, this situation will be ruled out if and only if
there does not exist an invertible mapping Γ : R → R such that
Γ (X ′

pβp + 1pµ−p(X)) = X ′
p
βp + 1pµ−p(X) w.p.1. for some pair

of parameter values (βp,1p) ≠ (βp,1p) in Θ . For the ‘‘only if’’
part, suppose such a mapping Γ does exist for the true parameter
value (βp,1p). Thenw.p.1.wewould have Fp(X ′

pβp+1pµ−p(X)) =

Fp

Γ (X ′

p
βp + 1pµ−p(X))


≡ Fp(X ′

p
βp + 1pµ−p(X)). Note thatFp

would be invertible by the properties of Fp, and w.p.1. we would
have µp(Xi) = µp(Xj) ⇐⇒ X ′

pi
βp + 1pµ−p(Xi) = X ′

pj
βp +1pµ−p(Xj). For the ‘‘if’’ part, suppose such a mapping Γ does not

exist. Then for any (βp,1p) ≠ (βp,1p), with positive probability
we can have µp(Xi) = µp(Xj) but X ′

pi
βp + 1pµ−p(Xi) ≠ X ′

pj
βp +1pµ−p(Xj).

By the linear index nature of expected payoffs in our model, it
is easy to see that we only need to look at linear mappings of the
form Γ (ψ) = a + bψ . It follows immediately that our parameter
space needs to be such that for both p = 1, 2,

@ a, b ∈ R : a + b ·

β ′

pXp +1pµ−p(X)


= β ′

pXp + 1pµ−p(X)

w.p.1. for some (βp,1p) ≠ (βp,1p).

For the above condition to be satisfied,Xp cannot include a constant
term (i.e., an intercept cannot be identified), and our parameter
spacemust be such that the norm of at least a subset of parameters
in (βp,1p) is fixed and known. In addition, the covariates in
Xp must satisfy a full-rank condition and µp(X) needs to have
a rich enough (i.e., continuous) support. The scale normalization
will be addressed by assuming the existence, for each p, of a
continuously distributed regressor Wp (whose identity is known
to the researcher) with a strictly positive slope coefficient. Our
parameter space will normalize this coefficient to 1. Thus, our
model will be reparameterized as follows: We will split Xp =

(Wp, Vp) and we will have βp = (1, γp). The unknown payoff
parameter vector for pwill hence be denoted by θp = (γp, αp), with
αp denoting the strategic-interaction parameter in our normalized
parameter space. We will define Zp = (Vp, µ−p(X)). Therefore, (1)
becomes

Pr

Yp = 1| X


≡ µp(X) = Fp


Wp + Z ′

pθp


for p = 1, 2.

The regressor Wp will be assumed to be continuously distributed
conditional on all other covariates and Vp will be assumed to
have full-column rank with positive probability. Normalizations of
scale and location are common in semiparametric index models.
A partial list of well-known examples includes Manski (1975,
1985), Han (1987), Horowitz (1992), Klein and Spady (1993),
Ichimura (1993), Ichimura and Lee (1991) and Sherman (1993).
Instances in which the absolute value of an individual coefficient
was normalized to 1 include Sherman (1993) and Horowitz (1992).
In our context, normalizing an individual coefficient to 1 will have
the added computational advantage of resulting in an estimator
with a closed-form expression.
Proposition 1. As before let θ = (θ1, θ2) denote the true value of the
payoff parameters and letθ = (θ1,θ2) denote an arbitrary value for
it. Consider an i.i.d sample from the population described above and
denote µp(Xi) ≡ µpi for the ith observation in the sample. Take any
two observations i ≠ j. If Assumptions A0 and A1 are satisfied, then
under our reparameterization

E

(W1i − W1j)+ (Z1i − Z1j)′θ12µ1i = µ1j


and

E

(W2i − W2j)+ (Z2i − Z2j)′θ22µ2i = µ2j


are each uniquely minimized atθ1 = θ1 andθ2 = θ2 respectively.

The result of Proposition 1 is a direct consequence of A0 and
A1 and the properties of our parameter space. Invertibility of Fp(·)
implies

E

(Wpi − Wpj)+ (Zpi − Zpj)′θp2

= E

(Zpi − Zpj)′(θp − θp)+ F−1

p (µpi)− F−1
p (µpj)

2
.

Therefore whenever µpi = µpj we have E[((Wpi − Wpj) +

(Zpi − Zpj)′θp)2] = E

(Zpi − Zpj)′(θp − θp)

2
. Next, note that

by the full-rank assumption of Vpi and the exclusion restriction in
Assumption A1, element-wise we have Pr[Zpi ≠ Zpj|µpi = µpj] >

0. In particular, the exclusion restriction in Assumption A1 (i.e., the
presence of individual-specific observable payoff shifters) implies
that µ1i and µ2i are not deterministic conditional on each other.
This allows for identification of the strategic interaction coefficient
αp. It follows that the above conditional expectation is uniquely
minimized atθp = θp.8 The estimation procedure we develop here
exploits these conditional moment restrictions.

3. Estimation

Given Proposition 1, if µ1i and µ2i were exactly known
and if we had an i.i.d sample of the population described
above, a pairwise-difference estimator for θp in the spirit of
Honoré and Powell (2005) would minimize the objective function

N
2

−1
1
ha


i<j Ka(

µpi−µpj
ha

)[(Wpi − Wpj) + (Zpi − Zpj)′bp]2, where
Ka(·) and ha would be appropriately chosen kernel and bandwidth
respectively.9 The intuition is that conditional on Xi, if the kernel
Ka(·) and bandwidth ha are chosen appropriately then for any given
vector of constants bp,

1
ha


N
2

−1
i<j

Ka


µpj − µpi

ha

 
(Wpj − Wpi)+ (Zpj − Zpi)′bp

2
is a consistent estimator for E[ [(Wpj − Wpi)+ (Zpj − Zpi)′bp]2

µpj
= µpi, Xi]. Since both µpi and µ−pi (and therefore, Zpi) are
unknown, this strategy unfeasible.Wewill replace these unknown
functions with nonparametric estimates.

8 In Section 4.1 we discuss inference in experimental data sets without
individual-specific observable payoff shifters. There we argue that having exact
knowledge of the true properties of the observable payoff components allows the
researcher to do consistent behavioral specification testing.
9 The notation


i<j(νi, νj) describes a summation over all combinations of pairs

of indices (i, j) out of (1, 2, . . . , n).
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3.1. Nonparametric estimators forµ1(·) andµ2(·)

Lack of knowledge about the functional forms for Fp(·), p = 1, 2
implies that µp(·) is also unknown. As before, let X ≡ X1 ∪ X2 and
denote the dimension of X by L. We will employ the usual kernel-
smoothed estimators, for p = 1, 2 and x ∈ S(X),

µp(Xi) ≡ µpi =
1

NhL
b

N
j=1

YpjKb


Xj − Xi

hb


1

NhL
b

×

N
j=1

Kb


Xj − Xi

hb


. (3)

The properties of the bandwidth sequence hb and the kernel Kb(·)
will be carefully detailed below. From now on, we will useµp(Xi)
and µpi interchangeably. LetZ1i ≡


V ′

1i,µ2i
′

; Z2i ≡

V ′

2i,µ1i
′
.Zpi constitute generated regressors used instead of their unknown

nonparametric population counterparts. The estimator analyzed
here will plug-in these nonparametric estimates into a kernel-
weighed objective function. The model we study here constitutes
the first known instance of a pairwise differencing procedure
with nonparametricmatching control variables (i.e., those plugged
into the kernel function Ka) and nonparametric or ‘‘generated’’
regressors. The following section describes the estimator and its
properties.

3.2. Pairwise-difference estimator

Let φ : RL
→ R+ be a function such that φ(X) > 0 if X ∈ X

and φ(X) = 0 if X ∈ S(X)\X andX is a compact set in the interior
of S(X). The estimator we study here is given by:

θp = argmin
b

1
ha


N
2

−1
i<j

Ka

µpi −µpj

ha



×


(Wpi − Wpj)+

Zpi −Zpj′ b2 φ(Xi)φ(Xj). (4)

This is a pairwise-difference procedure with nonparametric
control variables (the unknown functions inside Ka(·)). Aradillas-
Lopez et al. (2007) (AHP) study the asymptotic properties of such
procedures in a context that differs from (4). To see how, note that
all the asymptotic results in AHP are obtained for estimators that
minimize with respect to b an objective function of the form
N
2

−1
i<j

K
µ(Wi,γ )−µ(Wj,γ )

hN


s(Vi, Vj; b)φ(Wi)φ(Wj)

(see Eq. (18) and Section 3.3 in AHP), whereµ is nonparametrically
estimated and γ is a finite-dimensional parameter that is either
known (or not present at all), or a

√
N-consistent asymptotically

normal estimator. φ(·) is a trimming function. The crucial feature
of the objective function in AHP is that the parameterized index
function s(vi, vj; b) is not assumed to include any unknown
functions or ‘‘generated regressors’’. In contrast, the estimator in
(4) involves an objective function of the form
N
2

−1
i<j

K
µ(Wi,γ )−µ(Wj,γ )

hN


s(Vi,Vj; b)φ(Wi)φ(Wj),

where the generated regressors inVi andVj are nonparametrically
estimated (and γ is not present). For asymptotic purposes, this
distinction is as relevant as the one we would make between a
linear regression model Yi = β0 + β1X1i + β2X2i + εi where X1i
and X2i are observed, and Yi = β0 + β1X1i + β2E[Zi|X2i] + εi,
where E[Zi|X2i] has unknown functional form and it is replaced
with a nonparametric estimator E[Zi|X2i]. Another instance that
highlights the asymptotic relevance of dealingwith nonparametric
regressors is Ahn and Manski (1993), who study the asymptotic
distribution of β in a binary choice model of the form Yi =

1

X ′

1iβ1 + β2E[Zi|X2i] + εi ≥ 0


where the distribution of εi is
assumed to be known up to a finite dimensional parameter and
E[Zi|X2i] has unknown functional form and is replaced with a
kernel-weighed nonparametric estimate. Just like the standard
asymptotic theory of linear regression or that of binary choice
models would be inappropriate to do inference in counterpart
cases that include nonparametric or ‘‘generated’’ regressors,10 the
asymptotic results in AHP are not useful to us. Furthermore, the
conditions and assumptions in AHP do not tell us whether a

√
N-

consistent asymptotically normal estimator can be constructed in a
situationwhere both the control variablesµ and the index function
s contain nonparametric functions. We will describe exactly why
this is the case below, in the discussion following Theorem 1.
To our knowledge, the model we study here constitutes the first
instance of a pairwise-differencing procedure with nonparametric
matching control variables and nonparametric or ‘‘generated’’
regressors.11,12

The optimization problem in (4) yields a simple, closed-form
expression forθp,
θp =


−


N
2

−1 1
ha


i<j

Ka

µpi −µpj

ha



×
Zpi −Zpj Zpi −Zpj′ φ(Xi)φ(Xj)

−1

×


N
2

−1 1
ha


i<j

Ka

µpi −µpj

ha



×
Zpi −Zpj Wpi − Wpj


φ(Xi)φ(Xj)


(5)

which resemble the expression for weighted-least squares estima-
tors. We use a trimming function φ(·) in order to stay away from
points near the boundary of the support of X . This will enable us to
keep under control the order of magnitude of the bias ofµp(·) uni-
formly in our sample.Wewill study the properties of the proposed
estimator under the following assumptions.

3.3. Additional assumptions

In addition to A0 and A1, we will consider the following:

Assumption A2. There exists a constant M ≥ L + 1 (recall that
L is the dimension of X ≡ X1 ∪ X2) such that F1(·) and F2(·) are
M-times differentiable with bounded derivatives. Let fX (x) be the

10 Rilstone (1993) characterizes semiparametric efficiency bounds in simple
models with nonparametric regressors.
11 The model we study here is briefly mentioned in Section 2.3.1 of AHP as an
extension of their setup, but no attempt was made there to obtain asymptotic
results for such a model.
12 Hong and Shum (2010) describe a pairwise-difference estimation procedure
for a dynamic optimization model. Strong assumptions about the accumulation
equation in their model yields a control variable that has a known functional form.
Section 2.3.2 of AHP briefly suggests how to potentially extend their setup to one
with nonparametric control variables, but once again no asymptotic results are
presented.
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joint density of X . Then fX (·) isM-times differentiable with respect
to all of its arguments, with bounded derivatives. There exists a
random variable ν such that ∥X∥ ≤ ν w.p.1 and E[ν4] < ∞.

Assumption A3. The trimming function φ(·) is bounded,M-times
differentiable with bounded derivatives everywhere in R, it is
positive for all x ∈ X ⊂ int (S(X)) and zero for all x ∈ S(X) \ X.
For p = 1, 2, let F ′

p(·) denote the first derivative of Fp(·), then
∃ℓ > 0, f > 0 such that inf {F ′

p(x
′
pβp + αpµ) : x ∈ X, µ ∈

[0, 1]} > ℓ for p = 1, 2 and inf {fX (x) : x ∈ X} > f . In addition,
the trimming function φ(·) is such that E[φ(X)|µp(X) = µ] and
E[Zpφ(X)|µp(X) = µ] are both M-times differentiable functions
of µwith bounded derivatives for p = 1, 2.

To be more precise, given the continuously-distributed nature
of X , the trimming function φ(·) only needs to be differentiable
almost everywhere in S(X).13 Given the previous assumptions,
the last part of A3 is satisfied if neither φ(X1) nor φ(X2) are
deterministic conditional on µp(X) for p = 1, 2. Note also that
Assumptions A0–A3 imply that the density fµp(µ) is M-times
differentiable with bounded derivatives for p = 1, 2.

Assumption A4. LetM be as defined above. The kernelsKa(·),Kb(·)
and bandwidths ha, hb satisfy

(i) The kernel Ka(·) : R → R is symmetric around zero, bounded
and bias-reducing of order M . In addition, Ka(·) has bounded
first and second derivatives everywhere in R denoted by
K (1)a (·) and K (2)a (·)which satisfy

K (1)a dψ = 0;

ψK (1)a (ψ)dψ = −1;

ψ jK (1)a (ψ)dψ = 0 for j = 2, . . . , d − 1

and

ψdK (1)a (ψ)dψ < ∞, with d > 2.

(ii) The kernelKb(·) : RL
→ R is symmetric around zero, bounded

and bias-reducing of orderM .
(iii) There exists δ > 0 such that N1/2−δhL

bh
2
a → ∞. Let d and M

be as described above, then

N1/2hd
a → 0, N1/2hM

a → 0, N1/2hM
b /h

2
a → 0.

Using bandwidths of the form ha ∝ N−a and hb ∝ N−b for some
a > 0, b > 0 it is easy to show that M is bounded above by a
function that increases with L. The following full-rank assumption
is the last piece to ensure asymptotic normality of our estimator.

Assumption A5. The following matrix has full rank for p = 1, 2

Dp ≡ E

E[ZpZ ′

pφ(X)|µp] · E[φ(X)|µp]

− E[Zpφ(X)|µp]E[Zpφ(X)|µp]
′


fµp(µp)


.

Note that given the definition of Zp, a necessary condition for
asmA5 to hold is that for p ≠ q with p, q ∈ {1, 2},
Pr

E

µp|µq


≠ µp|X ∈ X


> 0. The exclusion restrictions in

Assumption A1 are sufficient to ensure this.

Theorem 1. Let Dp be as described in Assumption A5. Let

τpi =

ZpiE


φ(X)|µpi


− E


Zp φ(X)|µpi

 
Y−pi − µ−pi


φ(Xi)

13 Thus, everything that follows would work for example if φ(X) = 1{X ∈ X}.
υpi =


ZpiE


φ(X)|µpi


− E


Zpφ(X)|µpi


fµp(µpi)

F ′
p


Wpi + Z ′

piθp


×

Ypi − µpi


φ(Xi)

ψ
θp
i = D−1

p ×

τpiαp + υpi


. (6)

Then, if Assumptions A0–A5 are satisfied

θp − θp =
1
N

N
i=1

ψ
θp
i + op(N−1/2), and consequently

√
N(θp − θp)

d
−→ N


0, E


ψθpψθ ′

p

.

The term τpi reflects the researcher’s lack knowledge of the
true functional form of Zpi. This term is not present in the
influence function described in Theorem 4 of AHP. Therefore, using
the asymptotic results in that paper would lead us to incorrect
standard errors and inconsistent inference here. The reasonwhy τpi
is absent in AHP is because that paper specializes on the casewhere
the index function parameterized by θ does not include unknown
functions. The second term in our influence function is υpi, and it
reflects the nonparametric nature of the control variables used in
Ka. A quick look at the influence function ψθp reveals once again
the importance of the condition Pr


E

µp|µ−p


≠ µp|X ∈ X


>

0 for p = 1, 2. If this condition does not hold, the interaction
parameter αp would not be estimable. The exclusion restrictions in
AssumptionA1 are sufficient for this condition to be satisfied.14 The
next section describes the properties of a consistent specification
test that uses the estimatorθp just described.
4. A consistent specification test

This section describes a consistent specification test which
asymptotically rejects our model if Eq. (1) is violated with nonzero
probability. In the spirit of Fan and Li (1996) and Zheng (1998), our
test-statistic is based on semiparametrically estimated residuals.
To the best of our knowledge, our test is the first of this kind that
involves nonparametric or ‘‘generated’’ regressors. As we will see
the presence of these regressors is nontrivial since we will need to
carefully determine the relative rates of convergence of the various
bandwidths involved in order to ensure an asymptotically pivotal
distribution for our test-statistic under the null hypothesis that the
model is correctly specified. This issue is not present in either Fan
and Li (1996) or Zheng (1998) and, to the best of our knowledge,
has not been documented before in consistent specification tests
of this type. As before, denote Xi ≡ (W1i, V1i,W2i, V2i). Now let

E[Yp|Xi] ≡ µp(Xi) ≡ µpi;

tpi ≡ Wpi + V ′

piγp + αpµ−pi ≡ Wpi + Z ′

piθp;

E[Yp|tpi] ≡ Fp(tpi).

(7)

If our model is correct, Eq. (1) implies that µp(Xi) = Fp(tpi) w.p.1.
Letθp be the estimator we developed above. Let ϕ, φ : RL

→ R+

be a pair of nonnegative trimming functions function which are
nonzero for all X in a compact set X. Take two kernel functions,
Hb : RL

→ R and Hc : R → R and bandwidth sequenceshb,hc .
Use the notation1ψij ≡ ψi − ψj and let

14 See Section 4.1, where we outline how the design of payoffs by the researcher
in experimental settings could potentially allow certain types of inference even if
the exclusion restriction in Assumption A1 fails.
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µp(Xi) ≡ µpi

=
1

NhL
b

N
j=1

YpjHb


1Xjihb


1

NhL
b

N
j=1

Hb


1Xjihb


;

tpi ≡ Wpi + V ′

piγp +αpµ–pi  
≡Wpi+Z ′

pi
θp

;

TpN (tpi) =
1

Nhc

N
j=1

Hc


1tpjihc


ϕ(Xj);

SpN (tpi) =
1

Nhc

N
j=1

YpjHc


1tpjihc


ϕ(Xj);

Fp(tpi) =
SpN (tpi)
TpN (tpi) .

(8)

Finally let H : RL
→ R andb be another kernel function and

bandwidth sequence. Define, for p = 1, 2,εpi ≡ Ypi −Fp(tpi);
UpN ≡


N
2

−1
i<j

εpjεpiφ(Xi)φ(Xj)bL H

1Xijb


. (9)

The bandwidth sequences involved in the construction of our test-
statistic must satisfy very particular relative rates of convergence
(to be detailed in Eqs. (10)–(11), below) in order to achieve an
asymptotic pivotal distribution if the model is correctly specified.
In particular, we will requireb ≠hb ≠hc . Since only two of these
three bandwidths (the first and the third one) would be present
in the general setting of Fan and Li (1996), the conditions in that
paper are not useful to us and there is no known result in the
literature on these type of consistent specification tests that we
can use. We will derive the relevant conditions here. We will use
UpN to construct a test statistic that will become asymptotically
unbounded if Pr


µp(X) ≠ Fp(tp)

 X ∈ X

> 0 for p = 1 or p = 2

(i.e., if Eq. (1) is violatedwith positive probability inX). Conversely,
if the model is correctly specified our test-statistic will have a χ2

2
asymptotic distribution. The following additional conditions will
yield the desired result.

Assumption B1. The trimming functionsϕ(·) andφ(·) are bounded,
nonnegative for all X ∈ RL, strictly positive everywhere inside a
compact set X, and exactly equal to zero for all X ∉ X. The trim-
ming setX is assumed to be in the interior of S(X). In particular,X
is such that ftp(tp), E [ϕ(X)| tp


, and fx(X) are uniformly bounded

away from zero for all X ∈ X.15 In addition, there exists a con-
stant M > L such that the following objects are M-times differen-
tiable with respect to X ∈ RL, with bounded derivatives whenever
X ∈ X: ϕ(X),φ(X),µp(X) (for p = 1, 2), and fx(X). Let tp and Fp(tp)
be as defined in (7) and let ftp(·) denote the density of tp. The fol-
lowing objects are M-times differentiable with respect to tp, with
bounded derivatives whenever X ∈ X16:

Qp(tp) = ∇tp


E

ϕ(X)Zp

 tp ftp(tp) ;
Rp(tp) = ∇tp


E [ϕ(X)| tp


ftp(tp)


;Qp(tp) = ∇tp


E

ϕ(X)Zp

 tp Fp(tp)ftp(tp) ;Rp(tp) = ∇tp


E [ϕ(X)| tp


Fp(tp)ftp(tp)


.

15 Note that tp is a deterministic, real-valued function of X .
16 See footnote 14.
The scalar M can be thought of as a ‘‘measure of smoothness’’ of
the unknown functions involved. Further restrictions involving M
and the rates of convergence of the bandwidthsb,hb andhc will be
described below in Eq. (11).

Assumption B2. Hb(·) and H(·) are bounded, symmetric around
zero, bias-reducing kernels of order M. They also satisfy


H

2
(Ψ )

dΨ < ∞ and


Hb(Ψ )
2dΨ < ∞. In addition, Hb(·) is M-

times differentiable, with bounded derivatives. The kernel Hc is
also symmetric around zero, bounded, bias-reducing of order M.
LikeHb, the kernelHc is alsoM-times differentiablewith bounded
derivatives and satisfies


Hc(ψ)

2dψ < ∞. LetH (1)
c (·) denote the

first derivative of the kernel Hc(·). Then H
(1)
c (·) satisfies

∞

−∞

H (1)
c (ψ)dψ = 0;


∞

−∞

ψH (1)
c (ψ)dψ = −1;

∞

−∞

ψ jH (1)
c (ψ)dψ = 0 for m = 2, . . . ,M − 1,

and


∞

−∞
ψMH

(1)
c (ψ)dψ < ∞. The bandwidthsb → 0,hb → 0

andhc → 0 satisfy

NbL −→ ∞; NhL
b −→ ∞; Nhc −→ ∞;

N1/2bL/2hL
b −→ ∞; N1/2bL/2h2

c −→ ∞. (10)

In addition, there exists a δ > 0 such that

Nδ
bL/2h4

c


−→ 0; Nδ

b1/2h2
b

L

−→ 0;

1
N1−2δ

 bL/2h2L
b
h6

c


−→ 0,

and the ‘‘smoothness measure’’ M is such that
NbL/2
hM

b −→ 0;


NbL/2
hM

c −→ 0;
NbL/2h2

c

bhc

M

−→ 0;


NbL/2hL

b

bhb

M

−→ 0;


NbL/2h4

c

hbhc

2M

−→ 0.

(11)

Eqs. (10)–(11) describe the relative convergence rates among the
bandwidths involved in the construction of our test-statistic. They
provide precise guidelines to extend the asymptotically pivotal
property of the type of test-statistics used in Fan and Li (1996)
to a model where the covariates involved include nonparametric
functions or ‘‘generated regressors’’. The main result is presented
next.

Theorem 2. 1. Let UpN be as defined in (9). Let

Σp =


N
2

−1
i<j

ε2piε2pjφ(Xi)
2φ(Xj)

2

bL H

1Xijb

2

,

Σ1,2 =


N
2

−1
i<j

ε1iε1jε2iε2jφ(Xi)
2φ(Xj)

2bL H

1Xijb

2

,

TpN = NbL/2UpN ,
Σ =

 Σ1 Σ1,2Σ1,2 Σ2


, and

TN = N2bL U1N ,U2N

 Σ−1 U1N ,U2N

′
.
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Suppose our model is correctly specified, so that Eq. (1) is satisfied
w.p.1, and Proposition 1 and Theorem 1 hold. Then if Assumptions B1
and B2 are also satisfied,

TpN
d

−→ N (0, 1) for p = 1, 2, and TN
d

−→χ2
2 .

2. Suppose Pr

µp(X) ≠ Fp(tp)

 X ∈ X

> 0, so Eq. (1) is violated

with positive probability in the set X. Let θ∗
p denote the probability

limit of θp. Let t∗p = Wp + Z ′
pθ

∗
p and

F∗

p (t
∗

p ) =
E

µp(X)ϕ(X)|t∗p


E[ϕ(X)|t∗p ]

.

Rule out the case in which Pr

µp(X) ≠ Fp(tp)

 X ∈ X

> 0, but

Pr

µp(X) = F∗

p (t
∗
p )
 X ∈ X


= 1. Also maintain the exclusion

restriction conditions in Assumption A1 and rule out a perfect
correlation between Y1 − F∗

1 (t
∗

1 ) and Y2 − F∗

2 (t
∗

2 ) conditional on
X ∈ X. Then, the statistic TN diverges w.p.1.

For a prespecified size α, we would reject our model if TN ≥ cα ,
where Pr[χ2

2 ≥ cα] = α. If the model is correct, the size α
will be achieved asymptotically. Otherwise if Eq. (1) is violated
with positive probability in the set X, our test will always reject
the model asymptotically for any size α. If the model is rejected,
the test itself is incapable of determining which assumption
failed. It could be because: (i) The semiparametric assumptions
concerning payoffs and the distributions involved are incorrect,
(ii) our informational assumptions are incorrect, (iii) behavior
does not correspond to BNE, or (iv) the selection mechanism is
not degenerate. It is not difficult to see how our specification
test would detect violations to our assumptions in cases (i)–(iii).
The case where the selection mechanism does not satisfy our
assumptions but all other behavioral assumptions are correct is a
bit subtler. To understand what happens in this case, recall from
our discussion following Assumption A0 that if multiple BNE exist
for Xi, a nondegenerate selection rule would yield

E[Y1i|Xi] =

R(Xi)
r=1

Pr

S = µr(Xi)

 Xi

· F1


X ′

1iβ1 + α1µr
2(Xi)


,

E[Y2i|Xi] =

R(Xi)
r=1

Pr

S = µr(Xi)

 Xi

· F2


X ′

2iβ2 + α2µr
1(Xi)


,

where {µr(Xi)}
R(Xi)
r=1 ≡


(µr

1(Xi),µr
2(Xi))

R(Xi)
r=1 is the collection

of BNE equilibria that corresponds to Xi. In particular, the
above equations show that if there exists multiple BNE with
positive probability in the set X and if the equilibrium selection
mechanism violates our degeneracy assumptions, using the
reparameterization in Section 2.2 we will have E[Ypi|Xi] ≠

Fp(Wpi + V ′

piγp + αpE[Y−pi|Xi]) for at least one of the players.
Therefore if the selection mechanism does not satisfy our
degeneracy assumptions, then with positive probability we will
have

E[Y1i|Xi] ≠ E

Y1i|W1i + V ′

1iγ1 + α1E[Y2i|Xi]

, and/or

E[Y2i|Xi] ≠ E

Y2i|W2i + V ′

2iγ2 + α2E[Y1i|Xi]

.

Our specification test relies on the semiparametrically estimated
residuals

Y1i −E Y1i|W1i + V ′

1iγ1 + α1E[Y2i|Xi]


and

Y2i −E Y2i|W2i + V ′

2iγ2 + α2E[Y1i|Xi]

.

This stands in contrasts with the general setting in Fan and Li
(1996), who use semiparametric residuals that do not include
nonparametric regressors. The various conditions we described
above concerning the construction of the generated regressors
E[Ypi|Xi] are sufficient to guarantee that our test-statistic is able
to capture asymptotically if Eq. (1) is violated with positive
probability or, more generally, if with positive probability we
have E[Ypi|Xi] ≠ E


Ypi
Wpi + V ′

piγp + αpE[Y−pi|Xi]

. From our

discussion above it follows therefore that our test is capable
of detecting not only incorrect parameterizations, incorrect
informational assumptions or departures from Nash equilibrium
behavior, but also violations to our assumptions about equilibrium
selection.

4.1. Some remarks on experimental data set environments

Data generated by experiments allows the researchers full
control over important observable components of the model.
This knowledge can be used to do consistent inference under
weaker versions of our assumptions. To illustrate this consider the
hypothetical experimental design of a 2 × 2 game

PLAYER 2

Y2 = 1 Y2 = 0
PLAYER 1 Y1 = 1 Xa + Xb +11, Xa + Xb +12 Xa + Xb, 0

Y1 = 0 0, Xa + Xb 0, 0

Both Xa and Xb are randomly drawn by the researcher, and their
distributions are such that neither is deterministic conditional on
the other (e.g., they could be mutually independent) and 1p is a
constant chosen by the researcher. Notice that these normal-form
payoffs do not have individual-specific shifters, contradicting the
exclusion restriction in Assumption A1. In some instances, normal-
form payoffs with the above features are appropriate to study
behavior in coordination games. Suppose each pair of subjects
in the experiment observe the realization of this payoff matrix
and simultaneously choose their action. Suppose that the choices
observed in the laboratory correspond to a quantal response
equilibrium (QRE). As in McKelvey and Palfrey (1995), suppose the
payoff shock in the perturbed game is assumed to enter additively.
QRE corresponds to the BNE of the augmented or perturbed game.
Suppose the design of the experiment is such that the labels p = 1
and p = 2 are meaningful. Suppose the goal is to test whether
this BNE satisfies the conditions in Assumption A0 (including those
concerning equilibrium selection). If this is the case Eq. (1) would
hold and

µp(X) = Fp(Xa + Xb +1pµ−p(X)) ≡ Fp(Wp + Xb),

where X ≡ (Xa, Xb),Wp ≡ Xa +1pµ−p(X),

µ1(X) = Pr[Y1 = 1|X] and µ2(X) = Pr[Y2 = 1|X]. A
crucial difference between experimental and non-experimental
data sets is that in the former, the researcher knows the true
value of 1p. Suppose we have a sample of N realizations of this
experiment, and that the distribution Fp is assumed to be the
same for each p across all realizations observed.17 Under these
conditions, our methodology allows consistent testing without
making any parametric assumptions about Fp. Supposewe proceed
by estimating γp in a model parameterized as µp(X) = Fp(Wp +

γpXb) where, as before, we have normalized the coefficient of one
of the payoff covariates−Wp− to 1. Note that since payoffs depend
on both Xa and Xb, neitherWp nor Xb are deterministic conditional
on µp(X). As before let µp(Xi) ≡ µpi. By the same arguments as
in Proposition 1 and the researcher’s precise knowledge of payoffs
we know that E


(Wpi − Wpj)+ (Xbi − Xbj) ·γp2µpi = µpj


is

17 Haile et al. (2008) characterize observable implications of QRE when
payoff disturbances are no longer assumed to be identically distributed across
observations.
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uniquely minimized at γp = γp = 1. We will use this to
estimate γp. Note that Wpi is not exactly known to the researcher
because the functional forms of µ1(·), µ2(·) are unknown, but as
before they can be consistently estimated under our assumptions.
Thus, having exact knowledge of 1p enables the researcher to
consistently estimate Wpi by using Wpi = Xai +1pµ−p(Xi). This is
a very advantageous feature of experimental data sets. Using our
approach we estimate

γp = argmin
b


N
2

−1
i<j

Ka

µpi −µpj

ha


×

(Wpi − Wpj)+


Xbi − Xbj


· b
2
φ(Xi)φ(Xj),

which yields

γp =


−


N
2

−1 1
ha


i<j

Ka

µpi −µpj

ha



×

Xbi − Xbj

2
φ(Xi)φ(Xj)

−1

×


N
2

−1 1
ha


i<j

Ka

µpi −µpj

ha



×

Xbi − Xbj

 Wpi − Wpj

φ(Xi)φ(Xj)


.

The expression for this estimator is a bit different from (5). Still,
its asymptotic distribution18 can be characterized using the same
arguments as those leading to the results in Theorem 1.

Note that the setting considered above is one where all payoff
parameters are fixed and known ex-ante in the experimental
design, yet we proceed to estimate γp (whose true value in the
previous formulation is γp = 1) as if it were unknown. If
we reject the null hypothesis H0 : γp = 1, we would also
reject the behavioral implications of QRE in this simple game. The
specification test from Theorem 2 would provide an even more
powerful test. Identifying which QRE assumption (BNE beliefs, i.i.d
nature of payoff shocks across observations, etc.) is being violated
in the data may not be possible in general, but our methodology
allows a test for the QREmodel which does not require parametric
specification of the unobserved payoff perturbations. It can also
allow us to test QRE under alternative information structures
(i.e., we could test whether agents in the experiment condition
their beliefs only on a specific subset of observable covariates).

5. Extensions

At the beginning of Section 2 we claimed that focusing on a
2×2 gamewas donemainly for illustrative purposes. The approach
and methods described in Sections 3–4 can be generalized and
adapted straightforwardly to various other settings. We describe
some of those extensions here. Section 5.1 studies how to deal
withmore general payoff parameterizations under themaintained
assumption that unobservable shocks enter additively. Section 5.2
describes a way to allow for endogenous payoff covariates. In
Section 5.3 we describe how to estimatemodels withmore actions
or players aswell as asymmetric information. Finally, our approach
can be applied to some non-strategic interaction econometric
models, we discuss this briefly in Section 5.4.

18 Furthermore, the researcher can choose the distribution of X so that all the
assumptions pertaining to it in Theorem 1 are satisfied. Knowing this distribution
can also be used to improve the estimation of standard errors.
5.1. More general payoff functional forms

Additive separability in observables and unobservables in
players’ payoff functions is a crucial assumption for our approach.
However, as long as this restriction is satisfied our methods have
the potential to be extended to more general payoff specifications.
Suppose payoffs are given by

Up(Yp) = Yp ×

πp(Xp, Y−p; θp)− ζp


.

For a given µ ∈ [0, 1] define

Up(Xp, µ; θp) = µ · πp(Xp, 1; θp)+ (1 − µ) · πp(Xp, 0; θp).

If we maintain our general assumptions about ζp, then for a given
x a BNE is any pair µ(x) ≡ (µ1(x),µ2(x)) in [0, 1] × [0, 1] that
satisfies µp(x) = Fp


Up(xp,µ−p(x); θp)


for p = 1, 2. If our

degenerate equilibrium selection assumptions are maintained, we
obtain a more general version of Eq. (1). Namely,

µp(x) = Fp

Up(xp, µ−p(x); θp)


for p = 1, 2, with µp(x) = Pr[Yp = 1|X = x].

Maintain the assumption of an iid sample produced by this model
and keep denotingµp(Xi) ≡ µpi. Our identification and estimation
strategy would once again exploit invertibility of Fp, which implies

µpi = µpj ⇐⇒ Up(Xpi, µ−pi; θp) = Up(Xpj, µ−pj; θp).

Analogously to the reparameterization in Section 2.2, for identi-
fication purposes we need to impose conditions on the distribu-
tion of X and the parameter space Θ that preclude the existence
of an invertible mapping Γ such that Γ


Up(Xp, µ−p(X); θp)


=

Up(Xp, µ−p(X);θp)w.p.1. for some pair θ ≠θ inΘ . In Section 2.2
we saw that when Up(Xp, µ−p(X);θp) is a linear index, we only
need to focus on linear mappings Γ (ψ) = a + bψ and from here,
location and scale normalizations suffice (along with full-rank, ex-
clusion and support conditions). The type of normalizations that
would be required in alternative settingswould depend on the spe-
cific payoff parameterization used for πp(·). Once the parameter
space satisfies this, we would have to impose any additional as-
sumption needed to ensure that

Pr

Up(Xpi, µ−pi;θp) ≠ Up(Xpj, µ−pj;θp)µpi = µpj


> 0

∀θ ∈ Θ :θ ≠ θ (true parameter value).

In the case of linear-index payoffs, once Xp excludes a con-
stant and a scale normalization in performed in Θ , the exclu-
sion restrictions in Assumption A1 and the full-rank condition
on Xp were sufficient for the above condition to hold. Anal-
ogous conditions for non-linear payoffs would depend on the
specific functional form and parameterization used. Once all
these conditions are satisfied we would be able to show that
E


Up(Xpi, µ−pi; b)− Up(Xpj, µ−pj; b)
2µpi = µpj


is uniquely

minimized at b = θp. Accordingly, our proposed estimator would
be of the form

θp = argmin
b


i<j

Ka

µpi −µpj

ha


×

Up(Xpi,µ−pi; b)− Up(Xpj,µ−pj; b)

2
φ(Xi)φ(Xj).

In general θp may no longer have a closed-form expression. As
in the case we studied here, conditions concerning the way in
which the unknown functions involved are estimated and their
resulting asymptotic features, as well as smoothness assumptions
involving unknown functionals would determine the conditions
under which the estimatorθp is√

N-consistent and asymptotically
normal.
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5.2. Conditional invertibility

Here we describe how, under certain conditions, our results
can be extended to settings where there exists endogenous payoff
covariates. Suppose we replace Eq. (1) with the following more
general version

Pr

Yp = 1| X = x


≡ µp(x) = Fp


x′

pβp + αpµ−p(x); δp(x)

,

such that for any fixed δ ∈ S(δp(X)) the transformation Fp(·; δ)
is strictly increasing. That is, for any given δ we have Fp(a; δ) =

Fp(b; δ) ⇐⇒ a = b. This could correspond to a case of
endogeneity which is entirely captured (or controlled) by δp. For
the ith observation in our sample let δp(Xi) ≡ δpi. Suppose δpi can
be expressed as δpi = E[ξpi|Xi] for some observable ξpi ∈ Rℓ and
we have an estimator

δpi =
1

NhL
b

N
j=1

ξpjKb


Xj − Xi

hb


, or

δpi = ξpi if E[ξpi|Xi] = ξpi,

with a linear representation of the type

δpi − δpi =
1

NhL
b

N
j=1


ξpj − δpi


fX (Xi)

Kb


Xj − Xi

hb


+ υN(Xi),

sup
x∈X

∥υN(x)∥ = Op(Nϵ−1h−L
b )

for any ϵ > 0. The setX is the trimming set used previously. Define

Y ∗

pi ≡ (Ypi, ξpi), µ∗

pi ≡ (µpi, δpi), µ∗

pi ≡ (µpi,δpi).
Now let Z∗

pi be the subset of elements in Zpi which are not
deterministic conditional on µ∗

pi. Let θ
∗
p be the subset of elements

in θp that correspond to Z∗
p . This is the subset of parameters that

can be identified under our assumptions. We propose an estimator
for θ∗

p of the form

θ∗

p = argmin
b


N
2

−1
i<j

Ka

µ∗

1i −µ∗

1j

ha


(W1i − W1j)

+
Z∗

1i −
Z∗

1j

′
b
2
φ(Xi)φ(Xj).

Maintain Assumption A1 and consider the followingmodifications
to Assumptions A0 and A2–A5.

Assumption A0*. Maintain Assumption A0 replacing the invert-
ibility of Fp(·)with the conditional invertibility described above.

Assumption A2*. Abbreviate tp ≡ x′
pβp + αpµ−p. Modify

AssumptionA2 to hold for Fp(tp; δp) for its ℓ+1 arguments. Replace
M withM

∗
, which will be characterized in Assumption A4*, below.

Assumption A3*. For a given δ, let F−
p (·; δ) denote the inverse

function of Fp(·; δ). That is, Fp(a; δ) = b ⇔ F−(b; δ) = a. Denote
F−
p (µpi; δpi) ≡ F−

p (µ
∗

pi). Let ∇µ∗F−
p (µ

∗
p) ∈ Rℓ+1 denote its Jaco-

bian. We will assume that
∇µ∗F−

p (µ
∗
p)
 is uniformly bounded in

X. Replace all the statements in Assumption A3 concerning expec-
tations conditional onµp with the same statements conditional on
µ∗

p .

Assumption A4*. The kernels Ka : Rℓ+1
→ R and Kb : RL

→ R
are bias-reducing of order M

∗
. Each one of the ℓ + 1 components

of the Jacobian vector ∇Ka(·) satisfies the conditions described in
Assumption A4 for some d

∗
. Modify (A4.iii) and assume now that

there exists δ
∗
> 0 such that N1/2−δ∗hL

bh
2+ℓ
a → ∞. The constants

d
∗
andM

∗
satisfyN1/2hd∗

a → 0,N1/2hM∗

a → 0,N1/2hM∗

b /h2+ℓ
a → 0.
Assumption A5*. Let fµ∗
p (µ

∗
p) denote the density of µ∗

p . This den-
sity satisfies the smoothness conditions described in Assump-
tions A4–A5 for fµp(µp)with M replaced withM

∗
. Define

D∗

p ≡ E


E[Z∗

p Z
∗
′

p φ(X)|µ
∗

p] · E[φ(X)|µ∗

p]

− E[Z∗

pφ(X)|µ
∗

p]E[Z∗

pφ(X)|µ
∗

p]
′

fµ∗

p (µ
∗

p)

.

Then D∗
p has full rank for p = 1, 2.

Theorem 3. Suppose A0∗, A1∗, A1 and A2∗– A5∗ hold. Let

τ ∗

pi =

Z∗

piE [φ(X)|µ∗

pi


− E


Z∗

pφ(X)
µ∗

pi


×

Y−pi − µ−pi


φ(Xi)

υ∗

pi =

Z∗

piE

φ(X)|µ∗

pi


− E


Z∗

pφ(X)|µ
∗

pi


× fµ∗

p (µ
∗

pi)∇µ∗
p F

−

p (µ
∗

p)
′

Y ∗

pi − µ∗

pi


φ(Xi)

ψ
θ∗
p

i = (D∗

p)
−1

×

τ ∗

piαp + υ∗

pi


; λ

θ∗
p

i = (D∗

p)
−1

× υ∗

pi.

(12)

Then,

(A)− If µ∗

−p ∈ Z∗

p :θ∗

p − θ∗

p =
1
N

N
i=1

ψ
θ∗
p

i + op(N−1/2),

(B)− If µ∗

−p ∉ Z∗

p :θ∗

p − θ∗

p =
1
N

N
i=1

λ
θ∗
p

i + op(N−1/2).

(13)

Theorem 3 is a more general version of Theorem 1. Due to their
similarity, we omit its proof in the Appendix to save space.
Examples of control functions that could arise in the context of
endogeneity can be found for example in Blundell and Powell
(2004) and Imbens and Newey (2002).

5.3. Games with more actions or players and asymmetric information

Suppose now we have p = 1, . . . , P players, each of which
has ℓ = 1, . . . Lp possible choices for his action (e.g., consider a
multiple entry model). Let Ypℓ denote the indicator function that
the ℓth choice was selected for player p’s action. Let Y−pℓ be a
multinomial real-valued random variable indexing the set of all
combinations of possible actions that can be chosen by player
p’s opponents if he chooses the ℓth action. Let Spℓ denote the
vector of signals upon which player p conditions his beliefs about
the distribution of Y−pℓ . If Spℓ is observable, we can extend our
methods to this more general setting. Define

tpℓ = Wpℓ + V ′

pℓβpℓ + α′

−pℓπ−pℓ(Spℓ)

≡ Wpℓ + Z ′

pℓθpℓ , ℓ = 1, . . . , Lp − 1,

where π−pℓ(Spℓ) is the pdf of Y−pℓ |Spℓ . Implicit in this formulation
is the assumption that there exists a payoff shifter with nonzero
coefficient,Wpℓ for each ℓ = 1, . . . , Lwhose slope is normalized to
one. This is a multiple-indexmodel scale normalization needed for
identification. We normalize the expected utility of choosing the
Lpℓ th action to zero, which amounts to fixing tpLp = 0. Define Xpℓ ≡

(Wpℓ , Vpℓ , Spℓ), Xp = (Xp1 , . . . , XpLp−1), tp ≡ (tp1 , . . . , tpLp−1),
µpℓ ≡ Pr(Ypℓ = 1|Xp), and µp

≡ (µp1 , . . . , µpLp−1). We maintain
the degeneracy property of equilibrium selection, leading to

µp
= Fp(tp).
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Suppose we generalize our assumptions about Fp in the 2 × 2 case
so that for any pair of observations i, j of player p,

µpi
= µpj

⇐⇒ tpi
= tpj

.

This type of invertible relation between choice probabilities and
expected utilities is achieved, for instance, in Bajari et al. (2010)
by assuming stochastic independence across actions and agents
of payoff shocks. In their case, the distribution of payoff shocks
is assumed known to the researcher, and therefore the functional
form of this invertible mapping is also known (see Assumption A1
and Eq. (10) in Bajari et al. (2010)). Let Z∗

pℓ ∈ Rkpℓ be the elements
of Zpℓ that are not deterministic conditional onµp

and denote their

coefficients by θ∗
pℓ . Let kp ≡

Lp−1
ℓ=1 kpℓ and

t∗pℓ = Wpℓ + θ∗

pℓZ
∗

pℓ ,

Z∗

p
kp×(Lp−1)

≡


Z∗

p1 0 · · · 0
0 Z∗

p2 · · · 0
...

...
. . .

...
0 · · · · · · Z∗

pLp−1

 ,

W p
(Lp−1)×1

≡

 Wp1
...

WpLp−1

 .
Extending our approach to this setting would lead to an estimator
of the form

θ∗

p =


−


N
2

−1 1

hLp−1
a


i<j

Ka

µpi − µpj
ha



×

Z∗

pi −Z∗

pj
Z∗

pi −Z∗

pj
′

φ(Xi)φ(Xj)

−1

×


N
2

−1 1

hLp−1
a


i<j

Ka

µpi − µpj
ha



×

Z∗

pi −Z∗

pj


W pi − W pj


φ(Xi)φ(Xj)


,

which is a generalized version of the estimator studied here. Its
asymptotic properties can be analyzed using the same type of
conditions and results as in our previous sections. Applying our
approach to a larger game will have computational implications,
but they are not nearly as severe as the ones that would arise in
a procedure that requires the computation of equilibria. Perhaps
the most important computational cost would involve the order
of the kernel needed to achieve

√
N-consistency of our estimator.

This order would increase with the dimension of the (continuously
distributed) signals used by players to construct their beliefs. In a
gamewithmultiple players, wewould expect a larger signal vector
and hence a more complicated set of kernels. We also conjecture
that in larger games, the finite-sample properties of our estimator
would be more sensitive to the choice of bandwidths and kernels.

5.4. Extensions to non-strategic interaction models

Our methodology can be applied to models amenable to
pairwise-differencing estimation with nonparametric regressors.
Take for instance the transformation model studied in Han (1987),
where a binary variable Y ∈ {0, 1} and a covariate vector X
are assumed to satisfy E[Y |X] = G(X ′β) for some unknown
transformation G(·) that is assumed to be strictly increasing
everywhere in the real line. Once again, β can be identified
up to a proportionality scale, and no intercept can be identified.
Once the parameter space has been properly normalized, the
maximum rank correlation estimator (MRC) β suggested in Han
(1987) exploits this monotonicity condition by maximizing the
objective function


i<j 1{Yi > Yj}1{X ′

iβ > X ′

jβ}. Now suppose
one of the regressors is a nonparametric function (e.g., as in
the discrete choice model studied in Ahn and Manski (1993)).
Specifically suppose E[Y |X] = G(W ′β+ E[V |Z] · γ ), where E[V |Z]

is of unknown functional form, but nonparametrically identified.
Let θ ≡ (β, γ ) and suppose the parameter space Θ reflects the
proper location and scale normalizations. Estimating θ by plugging
this generated regressor into the MRC objective function may be
unattractive for applied researchers interested in doing inference
in this model since the asymptotic distribution of
N
2

−1
i<j

1{Yi > Yj}

×

1

W ′

i β +E[Vi|Zi] · γ > W ′

j β +E[Vj|Zj] · γ


−1

W ′

i β + E[Vi|Zi] · γ > W ′

j β + E[Vj|Zj] · γ


can be difficult to characterize due to the discontinuous nature
of this objective function (see Chen et al. (2003)). Our estimation
procedure can be an attractive alternative. We would haveθ = argmax

b1,b2


i<j


(Wi − Wj)

′b1

+ (E[Vi|Zi] −E[Vj|Zj]) · b2
2
φ(Zi)φ(Zj).

As we can see, this is a straightforward extension of our estimator.
The results and conditions in this paper can be readily applied to
the abovemodel and provide researchers with a feasible way to do
inference. In addition to this example, other non-strategic models
that can be studied by extending our results include all examples
examined in AHP where the regressors include nonparametric
functions. As we mentioned before, the asymptotic theory in AHP
does not contemplate such cases. Our paper constitutes the first
instance of a pairwise-difference estimator with nonparametric
control variables and nonparametric regressors.

6. A Monte Carlo study

This section is directed to applied researchers. Our goals are
to: (i) Assess the accuracy of our asymptotic results in finite
samples. (ii) Compare our procedure with a parametric one where
Fp(·) is assumed to be of known functional form. (iii) Evaluate
the performance of our methods when the true distribution Fp is
invertible but relatively flat. We focus on the 2 × 2 game with
payoffs

Yp ×

Wp + Vpβp + αpY−p − ζp


,

Wp and Vp mutually independent, standard normal,
(Wp, Vp) independent of ζp. β1 = β2 = −0.5.

The distributional properties of ζp and the values of αp will vary
in the various experimental designs we analyze here. The above
features will be maintained.

6.1. Experiment designs

As before, denote Xp ≡ (Wp, Vp) and X ≡ (X1, X2). The
realization of X and the true values of the parameters are known
to both players, but ζp is private information. ζ1, ζ2 are mutually
independent and behavior conforms with BNE. We use three
designs.
Design 1A. ζp ∼ logistic, α1 = α2 = −1.
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Fig. 1. Design 1A. Quantile–quantile comparison between the pairwise-difference estimators and the asymptotic representation 1
N

N
i=1 ψ

θ in Theorem 1. Bandwidth
constants and rates used were Cha = 0.39, Chb = 2.37, λha = λhb = 1/5 for non-bias reducing kernels, and Cha = 0.39, Chb = 2.28, λha = 127/2000, λhb = 127/1600 for
the bias-reducing case. Bias reducing kernels Ka , Kb were of order six.
Design 1B. ζp = εp + up, εp ⊥ up, εp ∼ N (0, 1), up ∼ U[0, 1],
α1 = α2 = −1.

Design 1C. Same as 1B, with α1 = α2 = −3.
Designs 1A and 1B have unique BNE equilibrium with

probability one due to the magnitude of |αp|. For the case of
1C, whenever multiple equilibria was observed, a degenerate
selection mechanism was used where the solution closest to
(0, 0) was chosen. Coupled with these equilibrium and selection
mechanism properties, all versions of Design 1 satisfy the
behavioral assumptions of this paper. We refer to the shocks
in designs 1B-C as skewed. Even though the distribution of
unobservable shocks is invertible in all our designs, it is easy
to verify that the skewed distribution is noticeably flatter than
its logistic counterpart in the tails. As a result, the invertibility
property exploited by our methods is more tenuous in design 1A
relative to 1B and 1C. One of our goals here is to explore the impact
of this in the finite-sample properties of our estimator and test-
statistic. The kernels and bandwidths used are discussed in the
appendix. (See Fig. 1.)

6.2. Estimator performance

Unless we explicitly state otherwise, in this sectionwe use θ0 =

(θ10 , θ20) to denote the true payoff parameter values in the various
designs. Unless stated otherwise, all tables and figures referenced
here can be found in Appendix B.
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Table B.1
Simulation results for design 1A.

N Kernels used RMSE |θ − θ0|0.25 |θ − θ0|0.50 |θ − θ0|0.75
θ0.025,θ0.975β1

150 Non-bias red. 0.2080 0.0705 0.1503 0.2486 (−0.7251, −0.0698)
Bias reduc. 0.2177 0.0756 0.1561 0.2629 (−0.7034, −0.0413)

600 Non-bias red. 0.1189 0.0416 0.0865 0.1406 (−0.6344, −0.2469)
Bias reduc. 0.1185 0.0391 0.0846 0.1368 (−0.6592, −0.2485)

1200 Non-bias red. 0.0873 0.0318 0.0624 0.1034 (−0.6078, −0.3174)
Bias reduc. 0.0812 0.0298 0.0574 0.0931 (−0.6302, −0.3293)α1

150 Non-bias red. 1.1842 0.3898 0.8106 1.3617 (−3.1721, 1.2181)
Bias reduc. 1.0295 0.3397 0.7137 1.1814 (−2.6750, 1.0136)

600 Non-bias red. 0.5576 0.1879 0.3764 0.6396 (−2.0621, 0.1173)
Bias reduc. 0.5476 0.1672 0.3579 0.6411 (−2.0510, 0.0878)

1200 Non-bias red. 0.3721 0.1224 0.2652 0.4255 (−1.7113, −0.2876)
Bias reduc. 0.3744 0.1242 0.2613 0.4287 (−1.7487, −0.3156)

Bandwidth constants and rates used were Cha = 0.39, Chb = 2.37, λha = λhb = 1/5 for non-bias reducing kernels, and Cha = 0.39, Chb = 2.28, λha = 127/2000,
λhb = 127/1600 for bias-reducing kernels (of order six). 1000 simulations in every case.
6.2.1. Finite-sample, asymptotic properties and the use of bias
reducing kernels

The use of bias-reducing kernels may have computational
implications, in particular for games with multiple players or
actions (see Section 5.3). Furthermore, even in 2 × 2 models,
the order of the kernels used in Theorem 1 increase with the
dimensionality of observable covariates. A question of interest is
how sensitive our results are to the use of higher order kernels.
Our results (see Tables B.1, B.2 and B.4) suggest that the use of bias-
reducing kernels is more critical for the precision of our results if
the distribution of payoff shocks is relatively flat over a large range
of values. Conversely, if each Fp is strongly monotonic over the
majority of its support, the use of regular kernels has a relatively
minor impact in our results.

6.2.2. Pairwise-differencing vs. logistic MLE
We compared a (normalized) MLE estimator θML

p assuming
logistic payoff shocks against our estimator. If the logistic
parameterization is correct (see Table B.3),θML

p is asymptotically
efficient, but our estimator fares comparatively well. On the other
hand, if the logistic specification is incorrect (see Fig. 2), our
estimator performs considerably better thanθML

p , especially in the
case of the strategic interaction estimator αML

p . The comparative
advantage of our procedure becomes more evident in settings
where the strategic interaction effect (i.e., the absolute magnitude
of α1 · α2) is stronger.

6.3. Specification test statistic TN

As above, here we wanted to investigate the extent to which
the χ2

2 asymptotic approximation of TN differed from its finite
sample properties if: (i) Non-bias reducing kernels were used, and
(ii) if Fp is relatively flat. As we discussed above, invertibility of
Fp is an increasingly weaker feature as we move from designs
1A to 1B and 1C. The asymptotic χ2

2 approximation appears to
be remarkably good when invertibility is a strong feature of the
model such as in Design 1A. As Fig. 3 suggests, the use of bias-
reducing kernels was not crucial to preserve this feature. On the
other hand, if the true functions Fp are invertible but relatively flat
as in Designs 1B and 1C, the asymptotic χ2

2 approximation is less
accurate for finite samples when non-bias reducing kernels are
employed. In particular as Table B.5 shows, the empirical size in
Designs 1B and 1C was greater than the nominal size asymptotic
size. The discrepancy was greater for 1C, the design with the
weakest monotonicity features of all.
7. Concluding remarks

We described a two-step estimation procedure for static
game-theoretic models with incomplete information that relies
only on invertibility properties of the distribution of unobserved
payoff shocks and a degenerate equilibrium selection mechanism
that is otherwise unspecified. The general semiparametric and
behavioral assumptions of our model are compatible with those
made in existing work in the econometrics of static games.
Unlike existing two-step procedures, the methods analyzed here
are the first ones in the literature that make no parametric
assumption at all on the distribution of unobservable shocks.
Section 4 of Aradillas-Lopez (2010) studies the estimation of
static incomplete information games when the distribution of
unobserved payoff shocks is unknown. However, the methods
suggested there are unattractive to applied researchers because
they are computationally demanding even for simple games.
This paper contributes by introducing a two-step pairwise
differencing procedure that is very simple to implement and
is capable of being adapted to a wide variety of extensions
of the original model. The paper contributes to the pairwise-
differencing estimation literature by examining for the first
time a model with nonparametric control functions as well
as nonparametric or ‘‘generated’’ regressors. In particular, we
showed that the asymptotic theory results in Aradillas-Lopez et al.
(2007) (econometrically speaking, the closest to our paper in the
literature) are not valid here. A consistent specification test based
on semiparametric residuals. To our knowledge, this appears to
be the first instance of such a test in a model that includes
nonparametric regressors. We described various extensions of
our methods to other static models, with and without strategic
interaction. We included a Monte Carlo experiment section aimed
at comparing the finite sample performance of our estimator and
specification tests vis-a-vis their asymptotic approximations, as
well as the robustness of our results. That section also described
a particular methodology to select the various bandwidths
and kernels involved in our procedure. The class of strategic
interaction models analyzed here have been used empirically
to analyze an increasing variety of decision-making problems,
including entry/exit, labor participation, firm coordination, social
interaction, recommendations by stock analysts, quantal-response
equilibria in experimental data sets as well as applications in
the political science literature. We hope that applied researchers
will find our methodology to be a computationally convenient
approach to do robust inference in these types of models.

The maintained assumption that payoffs were correctly speci-
fied was key throughout our approach. As Ponomareva and Tamer
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Fig. 2. MLE vs. Pairwise-differencing (non-bias reducing kernels) in Design 1C.
Table B.2
Comparison with asymptotic influence function. Design 1A.

N Std. dev Median 25%-quantile 75%-quantile

150 1
N

N
i=1 ψ

β1
i 0.2318 0.0034 −0.1486 0.1587

(β1 − β10)
Non-bias red 0.1668 0.1240 0.0215 0.2351

(β1 − β10)
Biasreduc 0.1638 0.1432 0.0376 0.2541

1
N

N
i=1 ψ

α1
i 1.0143 −0.0409 −0.7250 0.6682

(α1 − α10)
Non-bias red 1.1705 0.2054 −0.5815 0.4661

(α1 − α10)
Biasreduc 0.9500 0.4344 −0.1988 1.0381

600 1
N

N
i=1 ψ

β1
i 0.1158 0.0015 −0.0759 0.0788

(β1 − β10)
Non-bias red 0.0961 0.0711 0.0104 0.1352

(β1 − β10)
Biasreduc 0.1031 0.0629 0.0046 0.1259

1
N

N
i=1 ψ

α1
i 0.4945 −0.0124 −0.3265 0.3248

(α1 − α10)
Non-bias red 0.5564 0.0534 −0.3438 0.4045

(α1 − α10)
Biasreduc 0.5451 0.0424 −0.2841 0.4296

1200 1
N

N
i=1 ψ

β1
i 0.0796 −0.0008 −0.0501 0.0529

(β1 − β10)
Non-bias red 0.0733 0.0522 −0.0018 0.0996

(β1 − β10)
Biasreduc 0.0766 0.0327 −0.0243 0.0779

1
N

N
i=1 ψ

α1
i 0.3580 −0.0004 −0.2483 0.2504

(α1 − α10)
Non-bias red 0.3716 0.0309 −0.2466 0.2857

(α1 − α10)
Biasreduc 0.3842 0.0669 −0.2645 0.2538

Bandwidths as described in Table B.1. 1000 simulations in every case.
(2011) show (see Section 3.3 there), payoffmisspecification in sim-
ple 2 × 2 games can have important consequences even in par-
tially identified models. There is evidence of a tradeoff between
a nonparametric specification for: (i) the distribution of shocks,
and (ii) normal-form payoffs. Except in experimental-like settings
where payoff parameterizations are set and known ex-ante by the
researcher, it is not immediately obvious which robustness direc-
tion is better. This question would depend on the specific prob-
lem at hand. Finally, while we have shown that estimation and in-
ference can be performed under our semiparametric conditions,
we note that performing counterfactual analysis cannot be done
without additional assumptions. In general, while our payoff esti-
mates are robust to misspecification of payoff distributions, coun-
terfactual analysis would involve plugging these estimates into a
specific payoff distribution. Other types of pairwise-differencing
procedures have been used to examine dynamic choice models in
non-strategic interaction settings (Hong and Shum, 2010). An in-
teresting area for future research is the extent to which a variation
of our methodology can be used to estimate dynamic models of
strategic interaction and investigate the extent to which the main
robustness features of our inferential procedures in static games
can be preserved in those settings.
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Table B.3
Simulation results for Design 1A. Non-bias reducing kernels.

n θ RMSE Bias |θ − θ0|0.25 |θ − θ0|0.50 |θ − θ0|0.75
θ0.025,θ0.975

150 βML
1 0.2232 −0.0141 0.0696 0.1426 0.2383 (−1.0171, −0.1449)αML
1 1.1054 −0.0799 0.2792 0.5908 1.1045 (−3.6417, 0.6338)βPW
1 0.2080 0.1241 0.0705 0.1503 0.2486 (−0.7251, −0.0698)αPW
1 1.1842 0.1790 0.3898 0.8106 1.3617 (−3.1721, 1.2181)

600 βML
1 0.1024 −0.0021 0.0312 0.0677 0.1198 (−0.7088, −0.3173)αML
1 0.4748 −0.0218 0.1478 0.3057 0.5417 (−2.0177, −0.1472)βPW
1 0.1189 0.0701 0.0416 0.0865 0.1406 (−0.6344, −0.2469)αPW
1 0.5576 0.0365 0.1879 0.3764 0.6396 (−2.0621, 0.1173)

1200 βML
1 0.0695 −0.0009 0.0221 0.0454 0.0785 (−0.6511, −0.3732)αML
1 0.3184 −0.0121 0.0995 0.2245 0.3708 (−1.6693, −0.4300)βPW
1 0.0873 0.0474 0.0318 0.0624 0.1039 (−0.6078, −0.3174)αPW
1 0.3721 0.0186 0.1224 0.2652 0.4255 (−1.7113, −0.2876)

Bandwidth rates were λha = λhb = 1/5. Proportionality constants were Cha = 0.39 and Chb = 2.37. 1000 simulations in every case.
Fig. 3. Quantile–quantile comparison between the test-statistic TN without bias reduction, and a χ2
2 random variable for Designs 1A, 1B and 1C. All bandwidth rates used

λ = 1/5. The bandwidth proportionality constants for Design 1A were: Cha = 0.39, Chb = 2.37, Chb = Cb = 3.8, Chc = 0.9. For Design 1B: Cha = 0.50, Chb = 2.35,
Chb = Cb = 3.5, Chc = 0.4. For Design 1C: Cha = 0.50, Chb = 3.00, Chb = Cb = 0.32, Chc = 0.28.
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Appendix A. Mathematical appendix

A.1. Proof of Theorem 1

We will focus onθ1, the proofs forθ2 are identical in nature. As
before, θ1 will denote the true value of the parameter. Using the
invertibility properties of F1(·), after rearranging we can expressθ1 − θ1 as given in (A.1) in Box I, Before proceeding, we state the
next result:

Proposition 2. If X is absolutely continuouswith respect to Lebesgue
measure and if Assumption A2 is satisfied along with the properties
about Kb(·) and hb stated in A4, then for any compact set X ⊂

int (S(X)), any δ > 0 and for p = 1, 2,
(Nδ−1hL
b)

1/2 sup
x∈X

µp(x)− µp(x)
 = Op(1)

µp(x)− µp(x) =
1

NhL
b

N
i=1


Ypi − µp(x)


fX (x)

Kb


Xi − x
hb


+ ξN(x)

with (N1−δhL
b) supx∈X |ξN(x)| = Op(1).

Given the assumptions of the proposition, its proof follows from
Theorem A-1 in Aradillas-Lopez (2010). Alternatively, Lemma 3 in
CollombandHardle (1986) could beused. Fromhereweproceedby
analyzing the term BN in (A.1). FromProposition 2, Assumptions A2
and A4 we can express BN as

BN =


N
2

−1 1
ha


i<j

Ka


µ1i − µ1j

ha

 
Z1i − Z1j


×
Z1i − Z1i


−
Z1j − Z1j

′
θ1φ(Xi)φ(Xj)+ op(N−1/2).

Note thatZ1i − Z1i = (0, . . . , 0,µ2i − µ2i)
′. We will examine the

first component of BN . Let S ≡ (X, Y1, Y2, µ1, µ2) and define
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Table B.4
Simulation results for Designs 1B and 1C. Non-bias reducing kernels.

n θ RMSE Bias |θ − θ0|0.25 |θ − θ0|0.50 |θ − θ0|0.75
θ0.025,θ0.975

Design 1B

150 βPW
1 0.1639 0.0752 0.0516 0.1125 0.1937 (−0.7076, −0.1464)αPW
1 0.7828 −0.0959 0.2677 0.5154 0.8646 (−2.6468, 0.4892)

300 βPW
1 0.1177 0.0513 0.0395 0.0837 0.1331 (−0.6720, −0.2539)αPW
1 0.5641 −0.0891 0.1809 0.3814 0.6413 (−2.2730, −0.0651)

600 βPW
1 0.0867 0.0414 0.0273 0.0608 0.1012 (−0.6129, −0.3037)αPW
1 0.3507 −0.0655 0.1112 0.2468 0.4177 (−1.7108, −0.4172)

1200 βPW
1 0.0645 0.0328 0.0219 0.0441 0.0761 (−0.5844, −0.3594)αPW
1 0.2498 −0.0499 0.0791 0.1666 0.2934 (−1.5267, −0.6093)

Design 1C

150 βPW
1 0.1800 0.0557 0.0583 0.1204 0.2104 (−0.7963, −0.1285)αPW
1 1.4321 −0.5181 1.5580 2.4856 3.3217 (−6.4779,−1.10963)

300 βPW
1 0.1307 0.0433 0.0421 0.0897 0.1523 (−0.7228, −0.2379)αPW
1 1.0032 −0.4717 1.8873 2.4181 2.9864 (−5.4380, −1.9204)

600 βPW
1 0.0955 0.0308 0.0316 0.0639 0.1101 (−0.6563, −0.2955)αPW
1 0.5996 −0.2234 1.8464 2.1902 2.5837 (−4.3789, −2.2340)

1200 βPW
1 0.0733 0.0350 0.0250 0.0491 0.0855 (−0.5965, −0.3373)αPW
1 0.3840 −0.0218 1.7598 1.9988 2.2750 (−3.8187, −2.3206)

All bandwidth rates used λ = 1/5. The bandwidth proportionality constants were given by: Design 1B.—Cha = 0.50, Chb = 2.35. Design 1C.—Cha = 0.50, Chb = 3.00. 1000
simulations in every case.
Table B.5
Simulation results for τN for designs 1A, B and C with non-bias reducing kernels.

n Design 1A Design 1B Design 1C

Empirical size 95% quantile Empirical size 95% quantile Empirical size 95% quantile

150 0.015 5.004 0.038 5.555 0.203 8.368
300 0.025 5.198 0.049 5.872 0.197 8.613
600 0.044 5.781 0.063 6.190 0.249 9.314

1200 0.051 5.982 0.111 8.287 0.232 9.987

Empirical size is defined as Pr(TN ≥ 5.99). Nominal size with a χ2
2 approximation is 0.05. All bandwidth rates used λ = 1/5. The bandwidth proportionality constants were

given by: Design 1A.—Cha = 0.39, Chb = 2.37, Chb = Cb = 3.8, Chc = 0.9. Design 1B.—Cha = 0.50, Chb = 2.35, Chb = Cb = 3.50, Chc = 0.40. Design 1C.—Cha = 0.50,
Chb = 3.00, Chb = Cb = 0.32, Chc = 0.28. 1000 simulations in every case.
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Now let pN(Si, Sj, Sk) =


CvN(Si, Sj, Sk), where C is the set
{(i, j, k), (i, k, j), (j, k, i)}. Note thatpN(Si, Sj, Sk) is symmetric with
respect to its arguments. Using Proposition 2, Assumptions A2 and
A4 we have
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×
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where
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i<j<k(·) denotes the sum over all combinations of three
elements (i, j, k) out of 1, . . . ,N . For a ∈ RL1 and b ∈ R define
11(a, b)  
(L1×1)

= E [(a − Z1)φ(X)|µ1 = b] .

By Assumptions A0–A3, 11(a, b) is M-times differentiable with
respect to b, with bounded derivatives.19 Adding Assumption A4,
an M-th order Taylor approximation yields
E
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≡ 2 (Z1iE [φ(X)|µ1 = µ1i] − E [Z1φ(X)|µ1 = µ1i])
× (Y2i − µ2i) φ(Xi)+ op(N−1/2).

Iterated expectations yields E
pN(Si, Sj, Sk) = op(N−1/2). Using

Assumptions A2 and A4.(iii), we have E[∥pN(Si, Sj,
Sk)∥2

] = O(N). Therefore Lemma A.3 in Ahn and Powell (1993)
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Next we examine the term AN in Eq. (A.1) (see Box II).
We start with A1N . If Assumptions A0–A4 are satisfied, anM-th

order Taylor expansion and Lemma A3 in Ahn and Powell (1993)
yield the equation given in Box III.
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and define pN(Si, Sj, Sk) =


C vN(Si, Sj, Sk), where C is the set
{(i, j, k), (i, k, j), (j, k, i)}. An argument identical to the one used
above to examine BN can be used to show that we can express
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19 Note the importance of having Var(µ2i|µ1i) ≠ 0with positive probability.With
positive probability, we must have that conditional on µ2i , µ1i is not deterministic.
See the paragraph following Assumption A1.
Again, Lemma A.3 in Ahn and Powell (1993) and our assumptions

yield, via a Taylor approximation:

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op(N−1/2). These two results together yield A1N = op(N−1/2). Now
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

C vN(Si, Sj, Sk), where C is the set
{(i, j, k), (i, k, j), (j, k, i)} (note that pN(Si, Sj, Sk) is symmetric.20)
Using Proposition 2, (A2) and (A4) we obtain21
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Assumptions A0–A4 imply that E
vN(Si, Sj, Sk)2 = O(h−3

a h−L
b ).

The existence of δ > 0 such that N1/2−δhL
bh

2
a → ∞ by implies

NhL
bh

3
a → ∞. Combined, these results yield E

pN(Si, Sj, Sk)2 =

O(N). An M-th order Taylor approximation and our assumptions
yield22

E

pN(Si, Sj, Sk)|Si


=

211(Z1i, µ1i)fµ1(µ1i)φ(Xi)

F ′

1(W1i + Z ′

1iθ1)

× (Y1i − µ1i)+ op(N−1/2).

Finally, Lemma A.3 in Ahn and Powell (1993) yields

A2N =
2
N

N
i=1

11(Z1i, µ1i)fµ1 (µ1i)φ(Xi)

F ′

1(W1i + Z ′

1iθ1)
(Y1i − µ1i)+ op(N−1/2)

≡
2
N

N
i=1

(Z1iE [φ(X)|µ1 = µ1i] − E [Z1φ(X)|µ1 = µ1i]) fµ1 (µ1i)φ(Xi)

F ′

1(W1i + Z ′

1iθ1)

× (Y1i − µ1i)+ op(N−1/2)

= AN ,

where the last line follows from A1N = op(N−1/2).
Finally, we analyze the matrix DN . Given our assumptions
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22 The properties about K (1)a (·) are crucial here.
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Using the previous condition about the bandwidths, taking
expectations and using the assumption that E
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∥Z∥

4 < ∞,
Lemma A.3 in Ahn and Powell (1993) yields
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This completes the proof of Theorem 1. �

A.2. Proof of Theorem 2

For reasons of space, we present here a summary of the
proof. A detailed step-by-step derivation can be found in
the technical appendix supplement at http://www.ssc.wisc.edu/
∼aaradill/suppl_pwinfo.pdf or it can be made readily available
upon request. The key to the proof is to show that UpN can be
expressed as
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BIII
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d
→ 3Y, where Y can be expressed as a linear combina-

tion (corresponding to the general structure described in Lemma
5.1.4.A in Serfling (1980)) of independent χ2

1 random variables.
The proof of (A.2) uses asymptotically linear representation results
like those in Thoerem A-1 of Aradillas-Lopez (2010) or Lemma 3
in Collomb and Hardle (1986), as well as Hoeffding decomposition
properties of (i) nondegenerate U-statistics such as those studied
in Ahn and Powell (1993), (ii) degenerateU-statistics such as those
in Lemma5.1.4.A in Serfling (1980) and (iii) degenerateU-statistics
such as those in Theorem 1 of Hall (1984). Once this is established,
the bandwidth conditions in Assumption B2 imply
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Next, we use Theorem 1 in Hall (1984) to show that
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From here, the Cramer–Wold device and the properties of the
normal distribution imply
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Note that Σ is invertible under the conditions of Theorem 2
which implies (via the continuous mapping theorem) that
N2bL(U1N ,U2N )Σ

−1(U1N ,U2N )
′

d
−→χ2

2 . Moreover, under the con-
ditions of Theorem 2 the estimator Σ described there is consistent
forΣ . This yields part 1 of the theorem. Namely, if themodel is cor-
rectly specified, TN ≡ N2bL U1N , U2N
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To prove part 2 of Theorem 2, we let
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Given our assumptions, a dominated convergence argument easily
yieldsθp p

−→ −D−1
p Cp ≡ θ∗

p .

Under the conditions of part 2 of Theorem 2, θ∗
p is well-defined

even if the model is incorrect and Eq. (1) is violated with positive
probability. Conversely, if themodel is correctly specifiedwe know
that Wp = F−1

p (µp) − Z ′
pθp and θ∗

p = θp (the true structural
parameter value). Let t∗pi = Wpi + Z ′

piθ
∗
p . Given our assumptions,

conditional on Xj we have23
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Moreover, this convergence is uniform over X. This yields
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Suppose Eq. (1) is violated with positive probability for player p
in the set X and
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
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
ϕ(Xi) | t∗pi


≠ E


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
> 0.

Then, under the conditions of part 2 of Theorem 2 we would have
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Consequently, E
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2
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2

> 0. It follows that if Eq.

(1) is violated with positive probability,
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
NbL/2 UpN
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
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for any sequence of scalars such thatmN/(NbL/2) −→ 0.

If the exclusion restriction in Assumption A1 is satisfied and if
Y1 −F∗

1 (t
∗

1 ) and Y2 −F∗

2 (t
∗

2 ) are not perfectly correlated conditional
onX ∈ X (as it is assumed in part 2 of Theorem2), it is easy to show
that Σ−1 has a well-defined probability-limit. Combined with the
previous result, this yields

Pr (|TN | > mN) −→ 1
for any sequence of scalars such thatmN/


N2bL −→ 0.

Therefore TN diverges w.p.1. This concludes the proof. �

Appendix B. Monte Carlo experiment results

Kernels and bandwidths used
For a random variable ψ let R(ψ) denote the ‘‘rule of thumb’’

proportionality constant in Silverman (1986, Eq. (3.31)). We used
covariate-specific bandwidths of the form hb(Wp) = Chb

R(Wp) ·

N−λhb , hb(Vp) = Chb
R(Vp) · N−λhb ,hb(Wp) = Chb R(Wp) · N−λhb ,hb(Vp) = Chb R(Vp) · N−λhb ,b(Wp) = CbR(Wp) · N−λb ,b(Vp) =

CbR(Vp) · N−λb , ha(µp) = Cha
R(µp) · N−λha , andhc(tp) = ChcR(tp) · N−λhc . The exponents λhb , . . . , λb were chosen to

satisfy the convergence rates in our bandwidth assumptions. To
determine the proportionality constants Chb , etc., we employed
a procedure based on the asymptotic approximations of our
estimator and specification test-statistic. The details of the
procedure used can be found in the supplement to this paper, at

23 We use the notation µpi and µp(Xi) interchangeably.
http://www.ssc.wisc.edu/~aaradill/suppl_pwinfo.pdf. The results
below show the actual values for the proportionality constants
used. Bias-reducing kernels used were of the form K(ψ) =
a0 + a1ψ2

+ a2ψ4
+ · · · + apψ2p


φ(ψ), whereφ is the Standard

Normal density function, and the polynomial coefficients were
selected to achieve the kernel requirements in the paper. Non-bias
reducing kernels (as indicated in the tables below) were simply
equal to φ(·). In what follows, for p = 1, 2 we let ψβp and ψαp
denote the asymptotic influence functions (see Theorem 1) of βp
andαp.
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