ECO 519. Handout on Quantile Regression

1 Setup

The classic reference is Koenker and Basset (1978). We start by noting the result that suppose a random variable z_{i} has distribution given by $F_{z}(\cdot)$. Take $\tau \in(0,1)$, then the solution to the problem

$$
\underset{b}{\operatorname{Minimize}} E\left[\tau \cdot\left|z_{i}-b\right| \mathbb{1}\left\{z_{i}-b \geq 0\right\}+(1-\tau) \cdot\left|z_{i}-b\right| \mathbb{1}\left\{z_{i}-b<0\right\}\right]
$$

is given by $b=F_{z}^{-1}(\tau)$, or the $\tau^{t h}$ quantile of z_{i}. We can show this immediately if we assume that z_{i} has a continuous distribution:
$E\left[\tau \cdot\left|z_{i}-b\right| \mathbb{1}\left\{z_{i}-b \geq 0\right\}+(1-\tau) \cdot\left|z_{i}-b\right| \mathbb{1}\left\{z_{i}-b<0\right\}\right]=\tau \int_{b}^{\infty}(z-b) f_{z}(z) d z-(1-\tau) \int_{-\infty}^{b}(z-b) f_{z}(z) d z$ and taking first order conditions with respect to b yields (via Leibniz' Rule) $F_{z}(b)=\tau$, or $b=F_{z}^{-1}(\tau)$. Now consider the linear model

$$
y_{i}=\beta_{0}^{\prime} x_{i}+u_{i},
$$

where $u_{i} \sim F_{u}(\cdot)$ is continuously distributed and independent of x_{i}. The $\tau^{\text {th }}$-quantile of u_{i} is given by $F_{u}^{-1}(\tau)$ independently of x_{i}. Suppose from the onset that x_{i} includes a constant (i.e, an intercept). Consider now the problem

$$
\underset{\beta}{\operatorname{Minimize}} E\left[\tau \cdot\left|y_{i}-x_{i}^{\prime} \beta\right| \mathbb{1}\left\{y_{i}-x_{i}^{\prime} \beta \geq 0\right\}+(1-\tau) \cdot\left|y_{i}-x_{i}^{\prime} \beta\right| \mathbb{1}\left\{y_{i}-x_{i}^{\prime} \beta<0\right\} \mid x_{i}\right] .
$$

This is simply
$\underset{\beta}{\operatorname{Min}} E\left[\tau \cdot\left|u_{i}-x_{i}^{\prime}\left(\beta-\beta_{0}\right)\right| \mathbb{1}\left\{u_{i}-x_{i}^{\prime}\left(\beta-\beta_{0}\right) \geq 0\right\}+(1-\tau) \cdot\left|u_{i}-x_{i}^{\prime}\left(\beta-\beta_{0}\right)\right| \mathbb{1}\left\{u_{i}-x_{i}^{\prime}\left(\beta-\beta_{0}\right)<0\right\} \mid x_{i}\right]$.
As we saw above, the solution to this problem must be the conditional $\tau^{t h}$-quantile of u_{i} given x_{i}. That is, for all x_{i} we must have

$$
x_{i}^{\prime}\left(\beta-\beta_{0}\right)=F_{u}^{-1}(\tau) \Rightarrow x_{i}^{\prime} \beta=x_{i}^{\prime} \beta_{0}+F_{u}^{-1}(\tau)
$$

which (given the fact that x_{i} includes an intercept) is solved by using $\beta=\beta_{0}+\iota F_{u}^{-1}(\tau)$, where $\iota=(1,0, \ldots, 0)$. We denote this shortly by $\beta(\tau)$ and assume that it is the unique
solution (think about the usual full-rank assumption). Note that if the $\tau^{t h}$ quantile of u_{i} is zero, then $\beta(\tau)=\beta_{0}$ and most importantly, notice that $\beta(\tau)$ and β_{0} differ only in the intercept. Notice that all the action takes place in the intercept.

2 Estimation

Using the analogy principle, we can estimate $\beta(\tau)$ by solving

$$
\operatorname{Min}_{\beta} \frac{1}{N} \sum_{i=1}^{N}\left(\tau \cdot\left|y_{i}-x_{i}^{\prime} \beta\right| \mathbb{1}\left\{y_{i}-x_{i}^{\prime} \beta \geq 0\right\}+(1-\tau) \cdot\left|y_{i}-x_{i}^{\prime} \beta\right| \mathbb{1}\left\{y_{i}-x_{i}^{\prime} \beta<0\right\}\right),
$$

which can be simplified to

$$
\operatorname{Min}_{\beta} \frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-x_{i}^{\prime} \beta\right| \cdot\left[\tau+(1-2 \tau) \mathbb{1}\left\{y_{i}-x_{i}^{\prime} \beta<0\right\}\right]
$$

After minor simplification, the left-partial derivative with respect to β_{ℓ} is easily given by

$$
S_{N, \ell}(\beta) \equiv \frac{1}{N} \sum_{i=1}^{N} x_{i, \ell}\left(\mathbb{1}\left\{y_{i}<x_{i}^{\prime} \beta\right\}-\tau\right)
$$

Now remember the key argument we used when discussing Powell's Censored LAD. Since $\widehat{\beta}$ is minimizing the objective function, it must be case that for any $\delta>0$:

$$
S_{N, \ell}\left(\widehat{\beta}_{\ell}-\delta, \widehat{\beta}_{-\ell}\right) \leq S_{N, \ell}(\widehat{\beta}) \leq S_{N, \ell}\left(\widehat{\beta}_{\ell}+\delta, \widehat{\beta}_{-\ell}\right) \Rightarrow\left|S_{N, \ell}(\widehat{\beta})\right| \leq\left|S_{N, \ell}\left(\widehat{\beta}_{\ell}+\delta, \widehat{\beta}_{-\ell}\right)-S_{N, \ell}\left(\widehat{\beta}_{\ell}-\delta, \widehat{\beta}_{-\ell}\right)\right|
$$

and this holds for all $\ell=q, \ldots, K \equiv \operatorname{dim}(\beta)$. This implies that

$$
\begin{aligned}
\left|S_{N, \ell}(\widehat{\beta})\right| & \leq \frac{1}{N} \sum_{i=1}^{N}\left|x_{i, \ell}\left(\mathbb{1}\left\{y_{i}<x_{i}^{\prime} \widehat{\beta}+x_{i, \ell}\right\}-\mathbb{1}\left\{y_{i}<x_{i}^{\prime} \widehat{\beta}-x_{i, \ell}\right\}\right)\right| \\
& =\frac{1}{N} \sum_{i=1}^{N}\left|x_{i, \ell}\right| \cdot \mathbb{1}\left\{x_{i}^{\prime} \widehat{\beta}-\left|x_{i, \ell}\right| \delta<y_{i}<x_{i}^{\prime} \widehat{\beta}+\left|x_{i, \ell}\right| \delta\right\}
\end{aligned}
$$

Since this holds for any $\delta>0$, letting $\delta \rightarrow 0$ we get

$$
\sqrt{N}\left|S_{N, \ell}(\widehat{\beta})\right| \leq \operatorname{Max}_{i=1, \ldots, N}\left|x_{i, \ell}\right| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \mathbb{1}\left\{y_{i}=x_{i}^{\prime} \widehat{\beta}\right\}=\operatorname{Max}_{i=1, \ldots, N}\left|x_{i, \ell}\right| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \mathbb{1}\left\{u_{i}=x_{i}^{\prime}\left(\widehat{\beta}-\beta_{0}\right)\right\}
$$

If we assume that $\left\|x_{i}\right\|$ is well-behaved in the sense for example that there exists a random variable z_{i} such that $\left\|x_{i}\right\| \leq z_{i}$ w.p.1, and $E\left|z_{i}\right|<\infty$, then $S_{N}(\beta)$ is easily uniformly bounded
by $\frac{1}{N} \sum_{i=1}^{N} z_{i}$. This yields uniform convergence of $S_{N}(\beta)$ to $E\left[x_{i}\left(F_{u}\left(x_{i}^{\prime}\left(\beta-\beta_{0}\right)-\tau\right)\right)\right]$, which is uniquely minimized at $\beta(\tau)$. The continuously-distributed nature of u_{i} and the fact that $\widehat{\beta} \xrightarrow{p} \beta(\tau)$ yields $\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \mathbb{1}\left\{u_{i}=x_{i}^{\prime}\left(\widehat{\beta}-\beta_{0}\right)\right\}=o_{p}(1)$. Therefore

$$
\underbrace{\operatorname{Max}_{i=1, \ldots, N}\left|x_{i, \ell}\right|}_{=O_{p}(1)} \underbrace{\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \mathbb{1}\left\{u_{i}=x_{i}^{\prime}\left(\widehat{\beta}-\beta_{0}\right)\right\}}_{=o_{p}(1)}=o_{p}(1)
$$

and therefore $\sqrt{N} S_{N, \ell}(\widehat{\beta})=o_{p}(1)$. To find the asymptotic distribution of $\sqrt{N}(\widehat{\beta}-\beta(\tau))$, the best and fastest thing to do is to analyze the empirical process:

$$
\nu_{N}(\beta)=\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left[x_{i}\left(\mathbb{1}\left\{y_{i}<x_{i}^{\prime} \beta\right\}-\tau\right)-E\left[x_{i}\left(\mathbb{1}\left\{y_{i}<x_{i}^{\prime} \beta\right\}-\tau\right)\right]\right] .
$$

This is easily a vector-valued empirical process spanned by Type-I functions (Andrews, pp.2270).
In addition, the empirical process $\nu_{N}(\beta)$ has envelope z_{i}, so if we assume $E\left[z_{i}^{2+\delta}\right]<\infty$ for some $\delta>0$, then all the assumptions in Theorem 1 in Andrews. Therefore $\nu_{N}(\beta)$ is stochastically equicontinuous. Therefore, the asymptotic distribution of $\sqrt{N}(\widehat{\beta}-\beta(\tau))$ can be immediately derived as in Section 3.2 in Andrews.

