ECO 519. Moment Maximal Inequalities for U-processes and Asymptotic Normality of Maximum Rank Correlation Estimator

This handout is a brief compendium of Professor Bob Sherman's papers in Econometrica, Annals of Statistics and Econometric Theory cited in the list of readings.

U-Statistics and U-Processes

Let *P* be a distribution on a set *S*, let Z_1, \ldots, Z_n an iid sample from *P*. Let *f* denote a real-valued function defined on $S^k = \underbrace{S \otimes S \cdots \otimes S}_{k \text{ factors}}$ with $k \ge 1$. We define the **U-statistic**

of order k by

$$U_{n,k}f = (n_k)^{-1} \sum_{\mathbb{I}_k} f(Z_{i_1}, \dots, Z_{i_k})$$

where $(n)_k = n \times (n-1) \times \cdots \times (n-k+1)$, and \mathbb{I}_k is the set of all $(n)_k$ ordered k-tuples of distinct integers from the set $\{1, \ldots, n\}$. We will employ the following functional notation: Take k = 3, then

$$f(P, s, t) = E[f(z_1, z_2, z_3) | z_2 = s, z_3 = t]; \quad f(P, s, P) = E[f(z_1, z_2, z_3) | z_2 = s]; Qf = E[f(z_1, z_2, z_t)]$$

Note that Q is the product measure $Q = P \otimes \cdots \otimes P$.

k factors

Suppose now that the function f is such that under the product measure $Q = P \otimes \cdots \otimes P$, the conditional expectation of f given any k-1 of its k arguments is identically zero. Then we say that f is **P-degenerate**, and that $U_{n,k}f$ is **P-degenerate**.

Hoeffding Decomposition

Let f, P and Q be as described above. If $Qf < \infty$, then there exist real-valued functions f_1, \ldots, f_k such that for each j, f_j is P-degenerate on S_j and

$$U_{n,k}f = Qf + P_nf_1 + \sum_{j=2}^{k} U_{n,j}f_j$$

where, for each z in S,

$$f_1(z) = f(z, P, \dots, P) + f(P, z, P, \dots, P) + \dots + f(P, \dots, P, z) - kQf$$

Moment Maximal Inequalities for U-Processes

In a completely analogous way to the one that yields moment maximal inequalities for Empirical Processes based on the properties of their packing and covering numbers, Bob Sherman characterized equivalent results for U-processes. We will only cite two corollaries of his main result here, which are used to prove the asymptotic normality of the MRC estimator:

Lemma 1 Let \mathcal{F} be a class of zero-mean functions f on S^k , $k \ge 1$. If \mathcal{F} is Euclidean for a constant envelope, then

$$\sup_{\mathcal{F}} \left| U_{n,k} \right| = O_p(1/\sqrt{n})$$

Lemma 2 Let \mathcal{F} be a class of P-degenerate functions on $S^k, k \geq 1$. If

- (i) \mathcal{F} contains the zero function.
- (ii) \mathcal{F} is Euclidean for the constant envelope F,

then

- (a) $\sup_{\mathcal{F}} \left| n^{k/2} U_{n,k} f \right| = O_p(1).$
- (b) $\sup_{\mathcal{F}} \left| n^{k/2-\gamma} U_{n,k} f \right| \longrightarrow 0$ almost surely.

Heuristics of Asymptotic Normality of Maximum Rank Correlation (MRC) Estimator

The objective function is

$$G_n(\beta) = (n)_2^{-1} \sum_{i \neq j} \mathbb{1}\{Y_i > Y_j\} \mathbb{1}\{X'_i\beta > X'_j\beta\}$$

The maximizer is Han's Maximum Rank Correlation (MRC) estimator. Proving consistency is relatively easy based on the assumptions:

- (A1) The distribution of X is continuous.
- (A2) The function $F_0(\cdot)$ is strictly increasing in the support of $X'\beta_0$.

(A3) The function $G(\beta) = E[G_n(\beta)]$ is continuous everywhere in the parameter space.

Note that

$$\begin{split} G(\beta) &= E \Big[\mathbbm{1} \{ Y_i > Y_j \} \mathbbm{1} \{ X'_i \beta > X'_j \beta \} \Big] \\ &= E \Big[\Pr[Y_i = 1, Y_j = 0 | X_i, X_j] \mathbbm{1} \{ X'_i \beta > X'_j \beta \} \Big] \\ &= E \Big[F_0(X'_i \beta_0) [\mathbbm{1} - F_0(X'_j \beta_0)] \mathbbm{1} \{ X'_i \beta > X'_j \beta \} \Big] \\ &= \frac{1}{2} E \Big[F_0(X'_i \beta_0) [\mathbbm{1} - F_0(X'_j \beta_0)] \mathbbm{1} \{ X'_i \beta > X'_j \beta \} + F_0(X'_j \beta_0) [\mathbbm{1} - F_0(X'_i \beta_0)] \mathbbm{1} \{ X'_j \beta > X'_i \beta \} \Big] \end{split}$$

If we have $\beta = \beta_0$, then this becomes

$$G(\beta_0) = \frac{1}{2} E \Big[\max \Big\{ F_0(X'_i \beta_0) [1 - F_0(X'_j \beta_0)], F_0(X'_j \beta_0) [1 - F_0(X'_i \beta_0)] \Big\} \Big]$$

So $G(\beta)$ is clearly maximized at $\beta = \beta_0$. Assumptions (A1)-(A2) ensure that this is the unique maximizer.

To prove asymptotic normality, Sherman first re-expresses (symmetrizes) the objective function with the summands:

$$\sum_{i < j} \left[\mathbb{1}\left\{ Y_i > Y_j \right\} \mathbb{1}\left\{ X'_i \beta > X'_j \beta \right\} + \mathbb{1}\left\{ Y_j > Y_i \right\} \mathbb{1}\left\{ X'_j \beta > X'_i \beta \right\} \right]$$

define Z = (X, Y) and let

$$\tau(z,\theta) = E\big[\mathbb{1}\big\{y > Y\big\}\mathbb{1}\big\{x'\beta > X'\beta\big\}\big] + E\big[\mathbb{1}\big\{Y > y\big\}\mathbb{1}\big\{X'\beta > x'\beta\big\}\big].$$

Denote the normalized parameter vector by θ . Sherman chooses the normalization:

$$\beta(\theta) = (\theta_1, \dots, \theta_{d-1}, \sqrt{1 - \theta_1^2 - \dots - \theta_{d-1}^2})$$

(i.e, $\|\beta\| = 1$). Doing a switch of coordinates (easy), we can normalize the true parameter θ_0 as $\theta_0 = 0$. Sherman shows that

$$\sqrt{n}(\widehat{\theta} - \theta_0) \xrightarrow{d} \mathcal{N}(0, V^{-1}\Delta V^{-1}),$$

where

$$V = \frac{1}{2} E\left[\frac{\partial^2 \tau(Z,0)}{\partial \theta \partial \theta'}\right], \quad \text{and} \quad \Delta = E\left[\frac{\partial \tau(Z,0)}{\partial \theta}\frac{\partial \tau(Z,0)'}{\partial \theta}\right]$$

The key is to show that the objective function can be expressed as:

$$G_n(\theta) - G_n(0) = \frac{1}{2}\theta' V\theta + \frac{1}{\sqrt{n}}\theta' W_n + o_p(|\theta|^2) + o_p(1/n)$$

and then using the result in our Homework 1, Problem 5.

Re-express

$$G_n(\theta) - G_n(0) = \underbrace{\overbrace{G(\theta) - G(0)}^{\text{deterministic component}}}_{\overline{G(\theta) - G(0)}} + \underbrace{\overbrace{G_n(\theta) - G_n(0) - G(\theta) + G(0)}^{\text{U-process}}}_{\overline{G(\theta) - G(\theta) - G(\theta) + G(0)}}$$

A Taylor approximation is used to show that the deterministic component $G(\theta) - G(0)$ can be expressed as

$$G(\theta) - G(0) = \frac{1}{2}\theta' V\theta + o(|\theta|^2).$$

The key is the second component (the random component, U-process). He shows that it can be expressed as

$$G_n(\theta) - G_n(0) - G(\theta) + G(0) = \frac{1}{\sqrt{n}} \theta' W_n + o(|\theta|^2) + o_p(1/n)$$

uniformly over $o_p(1)$ neighborhoods of $\theta = 0$, where W_n converges to a $\mathcal{N}(0, \Delta)$ random vector.

A sketch of the details is as follows: For each $\theta \in \Theta$ define

$$f(z_1, z_2, \theta) = \mathbb{1}\{y_1 > y_2\} \Big[\mathbb{1}\{x_1'\beta(\theta) > x_2'\beta(\theta)\} - \mathbb{1}\{x_1'\beta(0) > x_2'\beta(0)\} \Big] - G(\theta) + G(0).$$

Then

$$G_n(\theta) - G_n(0) - G(\theta) + G(0) = U_{n,2}f(\cdot, \cdot, \theta).$$

Applying the Hoeffding decomposition, we can write

$$U_{n,2}f(\cdot,\cdot,\theta) = \frac{1}{n} \sum_{i=1}^{n} \rho(Z_i,\theta) + \underbrace{U_{n,2}\nu(\cdot,\cdot,\theta)}_{\text{P-degenerate}}$$

where

$$\rho(z,\theta) = f(z,P,\theta) + f(P,z,\theta)$$

where —recall our previously introduced notation— $f(z, P, \theta) = E[f(z_1, z_2, \theta) | z_1 = z]$ and $f(P, z, \theta) = E[f(z_1, z_2, \theta) | z_2 = z]$. The function $\nu(\cdot, \cdot, \theta)$ is defined as

$$\nu(z_1, z_2, \theta) = f(z_1, z_2, \theta) - f(z_1, P, \theta) - f(P, z_2, \theta)$$

Using the definition of $\tau(z, \theta)$ we have

$$\rho(z,\theta) = \tau(z,\theta) - \tau(z,0) - 2G(\theta) + 2G(0)$$

Using a Taylor approximation we have:

$$\frac{1}{n}\sum_{i=1}^{n}\rho(Z_{i},\theta) = \theta'\frac{1}{n}\sum_{i=1}^{n}\frac{\partial\tau(Z_{i},0)}{\partial\theta} + \frac{1}{2}\theta'\underbrace{\left(\frac{1}{n}\sum_{i=1}^{n}\frac{\partial^{2}\tau(Z_{i},0)}{\partial\theta\partial\theta'} - 2V\right)}_{=o_{p}(1)}\theta + R_{n}(\theta)$$

notice that G'(0) = 0 since $G(\theta)$ is maximized at $\theta = 0$. By assumption, the remainder $R_n(\theta)$ satisfies

 $R_n(\theta) \le C|\theta|^3 \underbrace{\frac{1}{n} \sum_{i=1}^n M(Z_i)}_{O_p(1)} = o_p(|\theta|^2) \text{ (last equality holds uniformly over } o_p(1) \text{ neighborhoods of } 0.)$

Therefore, uniformly over $o_p(1)$ neighborhoods of $\theta = 0$,

$$\frac{1}{n}\sum_{i=1}^{n}\rho(Z_{i},\theta) = \frac{1}{\sqrt{n}}\theta'W_{n} + o_{p}(|\theta|^{2}), \quad \text{where} \quad W_{n} = \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\frac{\partial\tau(Z_{i},0)}{\partial\theta} \stackrel{d}{\longrightarrow} \mathcal{N}(0,\Delta)$$

The result we are after is:

$$G_n(\theta) - G_n(0) = \frac{1}{2}\theta' V\theta + \frac{1}{\sqrt{n}}\theta' W_n + o_p(|\theta|^2) + o_p(1/n)$$

in order to immediately apply Problem 5 in Homework 5. Therefore, we only have to show that

$$U_{n,2}\nu(\cdot,\cdot,\theta) = o_p(1/n).$$

This is where Lemma 2 comes into play. A strengthening of Lemma 2 is the following:

Lemma 3 Suppose all the conditions of Lemma 2 hold and suppose that there exists $\theta_0 \in \Theta$ such that $f(\cdot, \theta_0) \equiv 0$. If the parameterization is $\mathcal{L}^2(Q)$ -continuous at θ_0 , that is, if

$$\int |f(\cdot,\theta)|^2 dQ \longrightarrow 0 \quad as \quad \theta \longrightarrow \theta_0$$

then

$$n^{k/2}U_{n,k}f(\cdot,\theta) = o_p(1)$$

uniformly over $o_p(1)$ neighborhoods of θ_0

The previous lemma yields the result $U_{n,2}\nu(\cdot, \cdot, \theta) = o_p(1/n)$ immediately once we show that the class $\{\nu(\cdot, \cdot, \theta) : \theta \in \Theta\}$ is Euclidean:

Consider the class of functions $\mathcal{H} = \{h(\cdot, \cdot, \beta) : \beta \in \mathcal{B}\}$ where for each $(z_1, z_2) \in \mathbb{S}(Z) \times \mathbb{S}(Z)$ and each $\beta \in \mathcal{B}$,

$$h(z_1, z_2, \beta) = 1 \{ y_1 > y_2 \} 1 \{ x'_1 \beta > x'_2 \beta \}$$

Then \mathcal{H} is Euclidean for constant envelope F = 1. To see this, define

$$g(z_1, z_2, t; \gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5) = \gamma_1 y_1 + \gamma_2 y_2 + \gamma'_3 x_1 + \gamma'_4 x_2 + \gamma_5 t_3 x_1 + \gamma'_4 x_2 + \gamma_5 t_3 x_3 + \gamma_4 x_3 + \gamma_5 t_3 + \gamma_5 + \gamma_5 t_3 + \gamma_5 + \gamma_5$$

and the class of functions

$$\mathcal{G} = \left\{ g(\cdot, \cdot, \cdot; \gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5) : \gamma_1, \gamma_2, \gamma_5 \in \mathbb{R} \quad \text{and} \quad \gamma_3, \gamma_4 \in \mathbb{R}^d \right\}$$

We use the definition of \mathcal{G} to show that the subgraphs of \mathcal{H} are a class of sets with polynomial discrimination:

$$s(h(\cdot, \cdot, \beta)) = \{(z_1, z_2, t) \in \mathbb{S}(Z) \times \mathbb{S}(Z) \times \mathbb{R} : 0 < t < h(z_1, z_2, \beta)\}$$

= $\{(z_1, z_2, t) \in \mathbb{S}(Z) \times \mathbb{S}(Z) \times \mathbb{R} : \{y_1 - y_2 > 0\}, \{x_1'\beta - x_2'\beta > 0\}, \{t \ge 1\}^c, \{t > 0\}\}$
= $\{(z_1, z_2, t) \in \mathbb{S}(Z) \times \mathbb{S}(Z) \times \mathbb{R} : \{g_1 > 0\}, \{g_2 > 0\}, \{g_3 \ge 1\}^c, \{g_4 > 0\}\}$

which is the intersection of four sets, three of which belong to a polynomial class and the fourth is the complement of a set of polynomial class. Therefore $s(h(\cdot, \cdot, \beta))$ is of polynomial class and \mathcal{H} is Euclidean. Note trivially that the zero function is an element of \mathcal{H} . By Lemma 3, we have $U_{n,2}\nu(\cdot, \cdot, \theta) = o_p(1/n)$. Combined with the previous results this yields

$$G_n(\theta) - G_n(0) = \frac{1}{2}\theta' V\theta + \frac{1}{\sqrt{n}}\theta' W_n + o_p(|\theta|^2) + o_p(1/n)$$

and by Problem 5 in Homework 1, we obtain

$$\sqrt{n} (\widehat{\theta} - \theta_0) \xrightarrow{d} \mathcal{N}(0, V^{-1} \Delta V^{-1}),$$

where

$$V = \frac{1}{2} E \left[\frac{\partial^2 \tau(Z, 0)}{\partial \theta \partial \theta'} \right], \quad \text{and} \quad \Delta = E \left[\frac{\partial \tau(Z, 0)}{\partial \theta} \frac{\partial \tau(Z, 0)'}{\partial \theta} \right]$$