
ECO 519. Moment Maximal Inequalities for U-processes and

Asymptotic Normality of Maximum Rank Correlation Estimator

This handout is a brief compendium of Professor Bob Sherman’s papers in Econometrica,

Annals of Statistics and Econometric Theory cited in the list of readings.

U-Statistics and U-Processes

Let P be a distribution on a set S, let Z1, . . . , Zn an iid sample from P . Let f denote a

real-valued function defined on Sk = S ⊗ S · · · ⊗ S︸ ︷︷ ︸
k factors

with k ≥ 1. We define the U-statistic

of order kkk by

Un,kf = (nk)
−1

∑

Ik

f(Zi1 , . . . , Zik)

where (n)k = n× (n− 1)× · · · × (n− k + 1), and Ik is the set of all (n)k ordered k-tuples of

distinct integers from the set {1, . . . , n}. We will employ the following functional notation:

Take k = 3, then

f(P, s, t) = E
[
f(z1, z2, z3)

∣∣z2 = s, z3 = t
]
; f(P, s, P ) = E

[
f(z1, z2, z3)

∣∣z2 = s
]
; Qf = E

[
f(z1, z2, zt)

]

Note that Q is the product measure Q = P ⊗ · · · ⊗ P︸ ︷︷ ︸
k factors

.

Suppose now that the function f is such that under the product measure Q = P ⊗ · · · ⊗ P ,

the conditional expectation of f given any k− 1 of its k arguments is identically zero. Then

we say that f is PPP -degenerate, and that Un,kfUn,kfUn,kf is P-degenerate.

Hoeffding Decomposition

Let f , P and Q be as described above. If Qf < ∞, then there exist real-valued functions

f1, . . . , fk such that for each j, fj is P−degenerate on Sj and

Un,kf = Qf + Pnf1 +
k∑

j=2

Un,jfj

where, for each z in S,

f1(z) = f(z, P, . . . , P ) + f(P, z, P, . . . , P ) + · · ·+ f(P, . . . , P, z)− kQf
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Moment Maximal Inequalities for U-Processes

In a completely analogous way to the one that yields moment maximal inequalities for

Empirical Processes based on the properties of their packing and covering numbers, Bob

Sherman characterized equivalent results for U-processes. We will only cite two corollaries

of his main result here, which are used to prove the asymptotic normality of the MRC

estimator:

Lemma 1 Let F be a class of zero-mean functions f on Sk, k ≥ 1. If F is Euclidean for a

constant envelope, then

sup
F

∣∣Un,k

∣∣ = Op(1/
√

n)

Lemma 2 Let F be a class of P -degenerate functions on Sk, k ≥ 1. If

(i) F contains the zero function.

(ii) F is Euclidean for the constant envelope F ,

then

(a) supF
∣∣nk/2Un,kf

∣∣ = Op(1).

(b) supF
∣∣nk/2−γUn,kf

∣∣ −→ 0 almost surely.

Heuristics of Asymptotic Normality of Maximum Rank Correlation (MRC)

Estimator

The objective function is

Gn(β) = (n)−1
2

∑

i6=j

1l
{
Yi > Yj

}
1l
{
X ′

iβ > X ′
jβ

}

The maximizer is Han’s Maximum Rank Correlation (MRC) estimator. Proving consistency

is relatively easy based on the assumptions:

(A1) The distribution of X is continuous.

(A2) The function F0(·) is strictly increasing in the support of X ′β0.
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(A3) The function G(β) = E
[
Gn(β)

]
is continuous everywhere in the parameter space.

Note that

G(β) = E
[
1l
{
Yi > Yj

}
1l
{
X ′

iβ > X ′
jβ

}]

= E
[
Pr

[
Yi = 1, Yj = 0|Xi, Xj

]
1l
{
X ′

iβ > X ′
jβ

}]

= E
[
F0(X

′
iβ0)[1− F0(X

′
jβ0)]1l

{
X ′

iβ > X ′
jβ

}]

=
1

2
E

[
F0(X

′
iβ0)[1− F0(X

′
jβ0)]1l

{
X ′

iβ > X ′
jβ

}
+ F0(X

′
jβ0)[1− F0(X

′
iβ0)]1l

{
X ′

jβ > X ′
iβ

}]

If we have β = β0, then this becomes

G(β0) =
1

2
E

[
Max

{
F0(X

′
iβ0)[1− F0(X

′
jβ0)], F0(X

′
jβ0)[1− F0(X

′
iβ0)]

}]

So G(β) is clearly maximized at β = β0. Assumptions (A1)-(A2) ensure that this is the

unique maximizer.

To prove asymptotic normality, Sherman first re-expresses (symmetrizes) the objective

function with the summands:

∑
i<j

[
1l
{
Yi > Yj

}
1l
{
X ′

iβ > X ′
jβ

}
+ 1l

{
Yj > Yi

}
1l
{
X ′

jβ > X ′
iβ

}]

define Z = (X,Y ) and let

τ(z, θ) = E
[
1l
{
y > Y

}
1l
{
x′β > X ′β

}]
+ E

[
1l
{
Y > y

}
1l
{
X ′β > x′β

}]
.

Denote the normalized parameter vector by θ. Sherman chooses the normalization:

β(θ) = (θ1, . . . , θd−1,
√

1− θ2
1 − · · · − θ2

d−1)

(i.e, ‖β‖ = 1). Doing a switch of coordinates (easy), we can normalize the true parameter

θ0 as θ0 = 0. Sherman shows that

√
n
(
θ̂ − θ0)

d−→ N (0, V −1∆V −1),

where

V =
1

2
E

[
∂2τ(Z, 0)

∂θ∂θ′

]
, and ∆ = E

[
∂τ(Z, 0)

∂θ

∂τ(Z, 0)

∂θ

′]
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The key is to show that the objective function can be expressed as:

Gn(θ)−Gn(0) =
1

2
θ′V θ +

1√
n

θ′Wn + op

(|θ|2) + op(1/n)

and then using the result in our Homework 1, Problem 5.

Re-express

Gn(θ)−Gn(0) =

deterministic component︷ ︸︸ ︷
G(θ)−G(0) +

U-process︷ ︸︸ ︷[
Gn(θ)−Gn(0)−G(θ) + G(0)

]

A Taylor approximation is used to show that the deterministic component G(θ)−G(0) can

be expressed as

G(θ)−G(0) =
1

2
θ′V θ + o(|θ|2).

The key is the second component (the random component, U-process). He shows that it can

be expressed as

Gn(θ)−Gn(0)−G(θ) + G(0) =
1√
n

θ′Wn + o(|θ|2) + op(1/n)

uniformly over op(1) neighborhoods of θ = 0, where Wn converges to a N (0, ∆) random

vector.

A sketch of the details is as follows: For each θ ∈ Θ define

f(z1, z2, θ) = 1l{y1 > y2}
[
1l{x′1β(θ) > x′2β(θ)} − 1l{x′1β(0) > x′2β(0)}

]
−G(θ) + G(0).

Then

Gn(θ)−Gn(0)−G(θ) + G(0) = Un,2f(·, ·, θ).

Applying the Hoeffding decomposition, we can write

Un,2f(·, ·, θ) =
1

n

n∑
i=1

ρ(Zi, θ) + Un,2ν(·, ·, θ)︸ ︷︷ ︸
P-degenerate

where

ρ(z, θ) = f(z, P, θ) + f(P, z, θ)
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where —recall our previously introduced notation— f(z, P, θ) = E
[
f(z1, z2, θ)

∣∣z1 = z
]

and

f(P, z, θ) = E
[
f(z1, z2, θ)

∣∣z2 = z
]
. The function ν(·, ·, θ) is defined as

ν(z1, z2, θ) = f(z1, z2, θ)− f(z1, P, θ)− f(P, z2, θ)

Using the definition of τ(z, θ) we have

ρ(z, θ) = τ(z, θ)− τ(z, 0)− 2G(θ) + 2G(0)

Using a Taylor approximation we have:

1

n

n∑
i=1

ρ(Zi, θ) = θ′
1

n

n∑
i=1

∂τ(Zi, 0)

∂θ
+

1

2
θ′

(
1

n

n∑
i=1

∂2τ(Zi, 0)

∂θ∂θ′
− 2V

)

︸ ︷︷ ︸
=op(1)

θ + Rn(θ)

notice that G′(0) = 0 since G(θ) is maximized at θ = 0. By assumption, the remainder

Rn(θ) satisfies

Rn(θ) ≤ C|θ|3 1

n

n∑
i=1

M(Zi)

︸ ︷︷ ︸
Op(1)

= op(|θ|2) (last equality holds uniformly over op(1) neighborhoods of 0.)

Therefore, uniformly over op(1) neighborhoods of θ = 0,

1

n

n∑
i=1

ρ(Zi, θ) =
1√
n

θ′Wn + op(|θ|2), where Wn =
1√
n

n∑
i=1

∂τ(Zi, 0)

∂θ

d−→ N (0, ∆)

The result we are after is:

Gn(θ)−Gn(0) =
1

2
θ′V θ +

1√
n

θ′Wn + op

(|θ|2) + op(1/n)

in order to immediately apply Problem 5 in Homework 5. Therefore, we only have to show

that

Un,2ν(·, ·, θ) = op(1/n).

This is where Lemma 2 comes into play. A strengthening of Lemma 2 is the following:

Lemma 3 Suppose all the conditions of Lemma 2 hold and suppose that there exists θ0 ∈ Θ

such that f(·, θ0) ≡ 0. If the parameterization is L2(Q)-continuous at θ0, that is, if
∫ ∣∣f(·, θ)

∣∣2dQ −→ 0 as θ −→ θ0
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then

nk/2Un,kf(·, θ) = op(1)

uniformly over op(1) neighborhoods of θ0

The previous lemma yields the result Un,2ν(·, ·, θ) = op(1/n) immediately once we show that

the class
{
ν(·, ·, θ) : θ ∈ Θ

}
is Euclidean:

Consider the class of functions H =
{
h(·, ·, β) : β ∈ B}

where for each (z1, z2) ∈ S(Z)×S(Z)

and each β ∈ B,

h(z1, z2, β) = 1l{y1 > y2}1l{x′1β > x′2β}

Then H is Euclidean for constant envelope F = 1. To see this, define

g(z1, z2, t; γ1, γ2, γ3, γ4, γ5) = γ1y1 + γ2y2 + γ′3x1 + γ′4x2 + γ5t

and the class of functions

G =
{
g(·, ·, ·; γ1, γ2, γ3, γ4, γ5) : γ1, γ2, γ5 ∈ R and γ3, γ4 ∈ Rd

}

We use the definition of G to show that the subgraphs ofH are a class of sets with polynomial

discrimination:

s(h(·, ·, β)) = {(z1, z2, t) ∈ S(Z)× S(Z)× R : 0 < t < h(z1, z2, β)}
=

{
(z1, z2, t) ∈ S(Z)× S(Z)× R : {y1 − y2 > 0}, {x′1β − x′2β > 0}, {t ≥ 1}c, {t > 0}}

=
{
(z1, z2, t) ∈ S(Z)× S(Z)× R : {g1 > 0}, {g2 > 0}, {g3 ≥ 1}c, {g4 > 0}}

which is the intersection of four sets, three of which belong to a polynomial class and the

fourth is the complement of a set of polynomial class. Therefore s(h(·, ·, β)) is of polynomial

class and H is Euclidean. Note trivially that the zero function is an element of H. By

Lemma 3, we have Un,2ν(·, ·, θ) = op(1/n). Combined with the previous results this yields

Gn(θ)−Gn(0) =
1

2
θ′V θ +

1√
n

θ′Wn + op

(|θ|2) + op(1/n)

and by Problem 5 in Homework 1, we obtain

√
n
(
θ̂ − θ0)

d−→ N (0, V −1∆V −1),
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where

V =
1

2
E

[
∂2τ(Z, 0)

∂θ∂θ′

]
, and ∆ = E

[
∂τ(Z, 0)

∂θ

∂τ(Z, 0)

∂θ

′]
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