ECO 519. Moment Maximal Inequalities for U-processes and Asymptotic Normality of Maximum Rank Correlation Estimator

This handout is a brief compendium of Professor Bob Sherman's papers in Econometrica, Annals of Statistics and Econometric Theory cited in the list of readings.

U-Statistics and U-Processes

Let P be a distribution on a set S, let Z_{1}, \ldots, Z_{n} an iid sample from P. Let f denote a real-valued function defined on $S^{k}=\underbrace{S \otimes S \cdots \otimes S}_{\mathrm{k} \text { factors }}$ with $k \geq 1$. We define the U-statistic of order k by

$$
U_{n, k} f=\left(n_{k}\right)^{-1} \sum_{\mathbb{I}_{k}} f\left(Z_{i_{1}}, \ldots, Z_{i_{k}}\right)
$$

where $(n)_{k}=n \times(n-1) \times \cdots \times(n-k+1)$, and \mathbb{I}_{k} is the set of all $(n)_{k}$ ordered k -tuples of distinct integers from the set $\{1, \ldots, n\}$. We will employ the following functional notation: Take $k=3$, then

$$
f(P, s, t)=E\left[f\left(z_{1}, z_{2}, z_{3}\right) \mid z_{2}=s, z_{3}=t\right] ; \quad f(P, s, P)=E\left[f\left(z_{1}, z_{2}, z_{3}\right) \mid z_{2}=s\right] ; Q f=E\left[f\left(z_{1}, z_{2}, z_{t}\right)\right]
$$

Note that Q is the product measure $Q=\underbrace{P \otimes \cdots \otimes P}_{\text {k factors }}$.
Suppose now that the function f is such that under the product measure $Q=P \otimes \cdots \otimes P$, the conditional expectation of f given any $k-1$ of its k arguments is identically zero. Then we say that f is P-degenerate, and that $U_{n, k} f$ is P -degenerate.

Hoeffding Decomposition

Let f, P and Q be as described above. If $Q f<\infty$, then there exist real-valued functions f_{1}, \ldots, f_{k} such that for each j, f_{j} is P-degenerate on S_{j} and

$$
U_{n, k} f=Q f+P_{n} f_{1}+\sum_{j=2}^{k} U_{n, j} f_{j}
$$

where, for each z in S,

$$
f_{1}(z)=f(z, P, \ldots, P)+f(P, z, P, \ldots, P)+\cdots+f(P, \ldots, P, z)-k Q f
$$

Moment Maximal Inequalities for U-Processes

In a completely analogous way to the one that yields moment maximal inequalities for Empirical Processes based on the properties of their packing and covering numbers, Bob Sherman characterized equivalent results for U-processes. We will only cite two corollaries of his main result here, which are used to prove the asymptotic normality of the MRC estimator:

Lemma 1 Let \mathcal{F} be a class of zero-mean functions f on $S^{k}, k \geq 1$. If \mathcal{F} is Euclidean for a constant envelope, then

$$
\sup _{\mathcal{F}}\left|U_{n, k}\right|=O_{p}(1 / \sqrt{n})
$$

Lemma 2 Let \mathcal{F} be a class of P-degenerate functions on $S^{k}, k \geq 1$. If
(i) \mathcal{F} contains the zero function.
(ii) \mathcal{F} is Euclidean for the constant envelope F, then
(a) $\sup _{\mathcal{F}}\left|n^{k / 2} U_{n, k} f\right|=O_{p}(1)$.
(b) $\sup _{\mathcal{F}}\left|n^{k / 2-\gamma} U_{n, k} f\right| \longrightarrow 0$ almost surely.

Heuristics of Asymptotic Normality of Maximum Rank Correlation (MRC) Estimator

The objective function is

$$
G_{n}(\beta)=(n)_{2}^{-1} \sum_{i \neq j} \mathbb{1}\left\{Y_{i}>Y_{j}\right\} \mathbb{1}\left\{X_{i}^{\prime} \beta>X_{j}^{\prime} \beta\right\}
$$

The maximizer is Han's Maximum Rank Correlation (MRC) estimator. Proving consistency is relatively easy based on the assumptions:
(A1) The distribution of X is continuous.
(A2) The function $F_{0}(\cdot)$ is strictly increasing in the support of $X^{\prime} \beta_{0}$.
(A3) The function $G(\beta)=E\left[G_{n}(\beta)\right]$ is continuous everywhere in the parameter space.
Note that

$$
\begin{aligned}
G(\beta) & =E\left[\mathbb{1}\left\{Y_{i}>Y_{j}\right\} \mathbb{1}\left\{X_{i}^{\prime} \beta>X_{j}^{\prime} \beta\right\}\right] \\
& =E\left[\operatorname{Pr}\left[Y_{i}=1, Y_{j}=0 \mid X_{i}, X_{j}\right] \mathbb{1}\left\{X_{i}^{\prime} \beta>X_{j}^{\prime} \beta\right\}\right] \\
& =E\left[F_{0}\left(X_{i}^{\prime} \beta_{0}\right)\left[1-F_{0}\left(X_{j}^{\prime} \beta_{0}\right)\right] \mathbb{1}\left\{X_{i}^{\prime} \beta>X_{j}^{\prime} \beta\right\}\right] \\
& =\frac{1}{2} E\left[F_{0}\left(X_{i}^{\prime} \beta_{0}\right)\left[1-F_{0}\left(X_{j}^{\prime} \beta_{0}\right)\right] \mathbb{1}\left\{X_{i}^{\prime} \beta>X_{j}^{\prime} \beta\right\}+F_{0}\left(X_{j}^{\prime} \beta_{0}\right)\left[1-F_{0}\left(X_{i}^{\prime} \beta_{0}\right)\right] \mathbb{1}\left\{X_{j}^{\prime} \beta>X_{i}^{\prime} \beta\right\}\right]
\end{aligned}
$$

If we have $\beta=\beta_{0}$, then this becomes

$$
G\left(\beta_{0}\right)=\frac{1}{2} E\left[\operatorname{Max}\left\{F_{0}\left(X_{i}^{\prime} \beta_{0}\right)\left[1-F_{0}\left(X_{j}^{\prime} \beta_{0}\right)\right], F_{0}\left(X_{j}^{\prime} \beta_{0}\right)\left[1-F_{0}\left(X_{i}^{\prime} \beta_{0}\right)\right]\right\}\right]
$$

So $G(\beta)$ is clearly maximized at $\beta=\beta_{0}$. Assumptions (A1)-(A2) ensure that this is the unique maximizer.

To prove asymptotic normality, Sherman first re-expresses (symmetrizes) the objective function with the summands:

$$
\sum_{i<j}\left[\mathbb{1}\left\{Y_{i}>Y_{j}\right\} \mathbb{1}\left\{X_{i}^{\prime} \beta>X_{j}^{\prime} \beta\right\}+\mathbb{1}\left\{Y_{j}>Y_{i}\right\} \mathbb{1}\left\{X_{j}^{\prime} \beta>X_{i}^{\prime} \beta\right\}\right]
$$

define $Z=(X, Y)$ and let

$$
\tau(z, \theta)=E\left[\mathbb{1}\{y>Y\} \mathbb{1}\left\{x^{\prime} \beta>X^{\prime} \beta\right\}\right]+E\left[\mathbb{1}\{Y>y\} \mathbb{1}\left\{X^{\prime} \beta>x^{\prime} \beta\right\}\right] .
$$

Denote the normalized parameter vector by θ. Sherman chooses the normalization:

$$
\beta(\theta)=\left(\theta_{1}, \ldots, \theta_{d-1}, \sqrt{1-\theta_{1}^{2}-\cdots-\theta_{d-1}^{2}}\right)
$$

(i.e, $\|\beta\|=1$). Doing a switch of coordinates (easy), we can normalize the true parameter θ_{0} as $\theta_{0}=0$. Sherman shows that

$$
\sqrt{n}\left(\widehat{\theta}-\theta_{0}\right) \xrightarrow{d} \mathcal{N}\left(0, V^{-1} \Delta V^{-1}\right),
$$

where

$$
V=\frac{1}{2} E\left[\frac{\partial^{2} \tau(Z, 0)}{\partial \theta \partial \theta^{\prime}}\right], \quad \text { and } \quad \Delta=E\left[\frac{\partial \tau(Z, 0)}{\partial \theta} \frac{\partial \tau(Z, 0)^{\prime}}{\partial \theta}\right]
$$

The key is to show that the objective function can be expressed as:

$$
G_{n}(\theta)-G_{n}(0)=\frac{1}{2} \theta^{\prime} V \theta+\frac{1}{\sqrt{n}} \theta^{\prime} W_{n}+o_{p}\left(|\theta|^{2}\right)+o_{p}(1 / n)
$$

and then using the result in our Homework 1, Problem 5.

Re-express

$$
G_{n}(\theta)-G_{n}(0)=\overbrace{G(\theta)-G(0)}^{\text {deterministic component }}+\overbrace{\left[G_{n}(\theta)-G_{n}(0)-G(\theta)+G(0)\right]}^{\text {U-process }}
$$

A Taylor approximation is used to show that the deterministic component $G(\theta)-G(0)$ can be expressed as

$$
G(\theta)-G(0)=\frac{1}{2} \theta^{\prime} V \theta+o\left(|\theta|^{2}\right)
$$

The key is the second component (the random component, U-process). He shows that it can be expressed as

$$
G_{n}(\theta)-G_{n}(0)-G(\theta)+G(0)=\frac{1}{\sqrt{n}} \theta^{\prime} W_{n}+o\left(|\theta|^{2}\right)+o_{p}(1 / n)
$$

uniformly over $o_{p}(1)$ neighborhoods of $\theta=0$, where W_{n} converges to a $\mathcal{N}(0, \Delta)$ random vector.

A sketch of the details is as follows: For each $\theta \in \Theta$ define

$$
f\left(z_{1}, z_{2}, \theta\right)=\mathbb{1}\left\{y_{1}>y_{2}\right\}\left[\mathbb{1}\left\{x_{1}^{\prime} \beta(\theta)>x_{2}^{\prime} \beta(\theta)\right\}-\mathbb{1}\left\{x_{1}^{\prime} \beta(0)>x_{2}^{\prime} \beta(0)\right\}\right]-G(\theta)+G(0) .
$$

Then

$$
G_{n}(\theta)-G_{n}(0)-G(\theta)+G(0)=U_{n, 2} f(\cdot, \cdot, \theta)
$$

Applying the Hoeffding decomposition, we can write

$$
U_{n, 2} f(\cdot, \cdot, \theta)=\frac{1}{n} \sum_{i=1}^{n} \rho\left(Z_{i}, \theta\right)+\underbrace{U_{n, 2} \nu(\cdot, \cdot, \theta)}_{\text {P-degenerate }}
$$

where

$$
\rho(z, \theta)=f(z, P, \theta)+f(P, z, \theta)
$$

where -recall our previously introduced notation- $f(z, P, \theta)=E\left[f\left(z_{1}, z_{2}, \theta\right) \mid z_{1}=z\right]$ and $f(P, z, \theta)=E\left[f\left(z_{1}, z_{2}, \theta\right) \mid z_{2}=z\right]$. The function $\nu(\cdot, \cdot, \theta)$ is defined as

$$
\nu\left(z_{1}, z_{2}, \theta\right)=f\left(z_{1}, z_{2}, \theta\right)-f\left(z_{1}, P, \theta\right)-f\left(P, z_{2}, \theta\right)
$$

Using the definition of $\tau(z, \theta)$ we have

$$
\rho(z, \theta)=\tau(z, \theta)-\tau(z, 0)-2 G(\theta)+2 G(0)
$$

Using a Taylor approximation we have:

$$
\frac{1}{n} \sum_{i=1}^{n} \rho\left(Z_{i}, \theta\right)=\theta^{\prime} \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \tau\left(Z_{i}, 0\right)}{\partial \theta}+\frac{1}{2} \theta^{\prime} \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \frac{\partial^{2} \tau\left(Z_{i}, 0\right)}{\partial \theta \partial \theta^{\prime}}-2 V\right)}_{=o_{p}(1)} \theta+R_{n}(\theta)
$$

notice that $G^{\prime}(0)=0$ since $G(\theta)$ is maximized at $\theta=0$. By assumption, the remainder $R_{n}(\theta)$ satisfies
$R_{n}(\theta) \leq C|\theta|^{3} \underbrace{\frac{1}{n} \sum_{i=1}^{n} M\left(Z_{i}\right)}_{O_{p}(1)}=o_{p}\left(|\theta|^{2}\right)$ (last equality holds uniformly over $o_{p}(1)$ neighborhoods of 0 .)
Therefore, uniformly over $o_{p}(1)$ neighborhoods of $\theta=0$,

$$
\frac{1}{n} \sum_{i=1}^{n} \rho\left(Z_{i}, \theta\right)=\frac{1}{\sqrt{n}} \theta^{\prime} W_{n}+o_{p}\left(|\theta|^{2}\right), \quad \text { where } \quad W_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\partial \tau\left(Z_{i}, 0\right)}{\partial \theta} \xrightarrow{d} \mathcal{N}(0, \Delta)
$$

The result we are after is:

$$
G_{n}(\theta)-G_{n}(0)=\frac{1}{2} \theta^{\prime} V \theta+\frac{1}{\sqrt{n}} \theta^{\prime} W_{n}+o_{p}\left(|\theta|^{2}\right)+o_{p}(1 / n)
$$

in order to immediately apply Problem 5 in Homework 5. Therefore, we only have to show that

$$
U_{n, 2} \nu(\cdot, \cdot, \theta)=o_{p}(1 / n)
$$

This is where Lemma 2 comes into play. A strengthening of Lemma 2 is the following:

Lemma 3 Suppose all the conditions of Lemma 2 hold and suppose that there exists $\theta_{0} \in \Theta$ such that $f\left(\cdot, \theta_{0}\right) \equiv 0$. If the parameterization is $\mathcal{L}^{2}(Q)$-continuous at θ_{0}, that is, if

$$
\int|f(\cdot, \theta)|^{2} d Q \longrightarrow 0 \quad \text { as } \quad \theta \longrightarrow \theta_{0}
$$

then

$$
n^{k / 2} U_{n, k} f(\cdot, \theta)=o_{p}(1)
$$

uniformly over $o_{p}(1)$ neighborhoods of θ_{0}
The previous lemma yields the result $U_{n, 2} \nu(\cdot, \cdot, \theta)=o_{p}(1 / n)$ immediately once we show that the class $\{\nu(\cdot, \cdot, \theta): \theta \in \Theta\}$ is Euclidean:

Consider the class of functions $\mathcal{H}=\{h(\cdot, \cdot, \beta): \beta \in \mathcal{B}\}$ where for each $\left(z_{1}, z_{2}\right) \in \mathbb{S}(Z) \times \mathbb{S}(Z)$ and each $\beta \in \mathcal{B}$,

$$
h\left(z_{1}, z_{2}, \beta\right)=\mathbb{1}\left\{y_{1}>y_{2}\right\} \mathbb{1}\left\{x_{1}^{\prime} \beta>x_{2}^{\prime} \beta\right\}
$$

Then \mathcal{H} is Euclidean for constant envelope $F=1$. To see this, define

$$
g\left(z_{1}, z_{2}, t ; \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}\right)=\gamma_{1} y_{1}+\gamma_{2} y_{2}+\gamma_{3}^{\prime} x_{1}+\gamma_{4}^{\prime} x_{2}+\gamma_{5} t
$$

and the class of functions

$$
\mathcal{G}=\left\{g\left(\cdot, \cdot, \cdot ; \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}\right): \gamma_{1}, \gamma_{2}, \gamma_{5} \in \mathbb{R} \quad \text { and } \quad \gamma_{3}, \gamma_{4} \in \mathbb{R}^{d}\right\}
$$

We use the definition of \mathcal{G} to show that the subgraphs of \mathcal{H} are a class of sets with polynomial discrimination:

$$
\begin{aligned}
s(h(\cdot, \cdot, \beta)) & =\left\{\left(z_{1}, z_{2}, t\right) \in \mathbb{S}(Z) \times \mathbb{S}(Z) \times \mathbb{R}: 0<t<h\left(z_{1}, z_{2}, \beta\right)\right\} \\
& =\left\{\left(z_{1}, z_{2}, t\right) \in \mathbb{S}(Z) \times \mathbb{S}(Z) \times \mathbb{R}:\left\{y_{1}-y_{2}>0\right\},\left\{x_{1}^{\prime} \beta-x_{2}^{\prime} \beta>0\right\},\{t \geq 1\}^{c},\{t>0\}\right\} \\
& =\left\{\left(z_{1}, z_{2}, t\right) \in \mathbb{S}(Z) \times \mathbb{S}(Z) \times \mathbb{R}:\left\{g_{1}>0\right\},\left\{g_{2}>0\right\},\left\{g_{3} \geq 1\right\}^{c},\left\{g_{4}>0\right\}\right\}
\end{aligned}
$$

which is the intersection of four sets, three of which belong to a polynomial class and the fourth is the complement of a set of polynomial class. Therefore $s(h(\cdot, \cdot, \beta))$ is of polynomial class and \mathcal{H} is Euclidean. Note trivially that the zero function is an element of \mathcal{H}. By Lemma 3, we have $U_{n, 2} \nu(\cdot, \cdot, \theta)=o_{p}(1 / n)$. Combined with the previous results this yields

$$
G_{n}(\theta)-G_{n}(0)=\frac{1}{2} \theta^{\prime} V \theta+\frac{1}{\sqrt{n}} \theta^{\prime} W_{n}+o_{p}\left(|\theta|^{2}\right)+o_{p}(1 / n)
$$

and by Problem 5 in Homework 1, we obtain

$$
\sqrt{n}\left(\widehat{\theta}-\theta_{0}\right) \xrightarrow{d} \mathcal{N}\left(0, V^{-1} \Delta V^{-1}\right),
$$

where

$$
V=\frac{1}{2} E\left[\frac{\partial^{2} \tau(Z, 0)}{\partial \theta \partial \theta^{\prime}}\right], \quad \text { and } \quad \Delta=E\left[\frac{\partial \tau(Z, 0)}{\partial \theta} \frac{\partial \tau(Z, 0)^{\prime}}{\partial \theta}\right]
$$

