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Abstract

A number of normal-form games with parametric payoff functions have the feature
that all solutions can be characterized by a collection of (semi)parametric functions
that contain information about the payoff parameters and serve as sufficient statistics.
Under additional exclusion restrictions involving selection mechanisms, these games
can be expressed as semiparametric multiple index models and payoff parameters can
be estimated using existing methods.

Keywords: Estimation of games, uncertain behavior, multiple solutions, multiple in-
dex models.
JEL classification: C1, C14, C57.

1 Introduction

A solution in a strategic-interaction model is associated with a distribution of outcomes

conditional on state variables. In many examples of normal-form games with parametric

payoff functions, the distribution of outcomes associated with each solution can be char-

acterized by a collection of (semi)parametric functions of observables that serve effectively

as sufficient statistics. If we impose additional exclusion restrictions on the otherwise un-

known solution-selection mechanisms, point-identification and estimation of payoff pa-

rameters can proceed by using these sufficient statistics as control functions and applying

existing methods for multiple index models. The approach described here allows for the

existence of multiple solutions and multiple candidate behavioral models.

2 Basic general features of our model

We will describe the general features of the type of models we have in mind, and we will

present some examples of well-known models that fit this description. Our focus here will
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be normal-form games with a discrete action space.

2.1 Normal-form description of the game

We have a collection of players, p = 1, . . . ,P , each making a discrete choice within a finite

action space Yp. The joint action space is Y ≡ Y1 × · · · ×YP . Each player p is equipped with

a parameterized payoff function up(y;Xp, εp,θp0
), where y ≡ (y1, . . . , yP ) is a particular ac-

tion profile, Xp and εp denote observable and unobservable (to the econometrician) payoff
shifters, and θp0

denotes a finite-dimensional parameter. We will let Y ≡ (Y1, . . . ,YP ) de-

note the outcome of the game. The parameter of interest is θ0 ≡ ∪Pp=1θp0
in a setting where

the joint distribution of ε ≡ ∪Pp=1εp is unknown. Grouping X ≡ ∪Pp=1Xp, we will assume

that the researcher observes a random sample (Yi ,Xi)
n
i=1 produced by a model with the

features we will describe below.

2.2 A collection of candidate behavioral models

We will focus on a setting where the researcher is uncertain about the true behavioral

model (e.g, complete-information Nash equilibrium, rationalizability, Nash bargaining,

Bayesian Nash equilibrium, etc.), but has pre-specified a collection of candidate behavioral

models, indexed as b = 1, . . . ,B. We allow for the possibility that different observations

in the sample are produced by different behavioral models, or that every observation is

produced by the same behavioral model. Each behavioral model b is described by the

following features.

2.2.1 Characterization of solutions

The solutions (e.g, Nash equilibria) produced by behavioral model b can be character-

ized by partitioning Supp(ε) into Rb mutually exclusive regions, which we will denote as

Rb,1(X,θ0), . . . ,Rb,Rb (X,θ0). Each region can be described (semi)parametrically from our

normal-form parameterization and the behavioral features of model b. We will index these

regions by rb = 1, . . . ,Rb. If ε ∈ Rb,rb(X,θ0), the behavioral model has Sb,rb ≥ 1 solutions (e.g,

Nash equilibria), which we will index as srb = 1, . . . ,Sb,rb . Each solution srb produces a condi-

tional distribution for Y |(X,ε), denoted by σ
srb
b,rb

(Y |X,ε,θ0), so σ
srb
b,rb

(y|X,ε,θ0) describes the

probability P r(Y = y|X,ε) produced by solution srb . Each σ
srb
b,rb

(·|X,ε,θ0) can be described

(semi)parametrically from our normal-form parameterization and the behavioral features

of model b.
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2.2.2 A collection of sufficient statistics

For each behavioral model b, there exists a collection of functions gb(X,θ0) ∈ Rdb , which

can be described (semi)parametrically from our normal-form parameterization and the

behavioral features of the model, such that,

Rb,rb(X,θ0) =Rb,rb (gb(X,θ0)) ∀ rb = 1, . . . ,Rb.

σ
srb
b,rb

(Y |X,ε,θ0) = σ
srb
b,rb

(Y |gb(X,θ0), ε) ∀ rb = 1, . . . ,Rb, srb = 1, . . . ,Sb,rb .
(1)

Thus, the functions gb(X,θ0) serve as sufficient statistics for X in the characterization of the

solutions produced by behavioral model b.

3 Examples

Consider the following parameterized 2× 2 normal-form game,

Y2 = 1 Y2 = 0

Y1 = 1 W ′1γ10 +Z ′1∆10 − ε1, W ′2γ20 +Z ′2∆20 − ε2 W ′1γ10 − ε1, 0

Y1 = 0 0, W ′2γ20 − ε2 0, 0

Group X ≡ (W1,Z1,W2,Z2) and ε ≡ (ε1, ε2). Let θ0 ≡ (γ10,∆10,γ20,∆20). For illustration,

suppose the strategic interaction effects satisfy Z ′1∆10 ≤ 0, Z ′2∆20 ≤ 0, so we have a game

of strategic substitutes. The distribution of ε is nonparametrically specified, but we will

maintain that ε|X has an absolutely continuous distribution with respect to Lebesgue mea-

sure. Consider the following collection of possible behavioral models.

3.1 Complete-information Nash equilibrium

Suppose players have complete information (i.e, observe the realization of payoffs in the 2×
2 payoff matrix) and that they play Nash equilibrium (NE) strategies, allowing for mixed-

strategies. Denote this as behavioral model b = 1. The regions, outcome probabilities and

sufficient statistics described in equation (1) are given as follows.
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3.1.1 Regions

There are five relevant regions, given as follows.

R1,1(X,θ0) ≡
{
(ε1, ε2) ∈R2: ε1 ≤W ′1γ10 +Z ′1∆10 , ε2 >W

′
2γ20 +Z ′2∆20

}
∪

{
(ε1, ε2) ∈R2: W ′1γ10 +Z ′1∆10 < ε1 ≤W ′1γ10 , ε2 >W

′
2γ20

}
,

R1,2(X,θ0) ≡
{
(ε1, ε2) ∈R2: ε1 >W

′
1γ10 , ε2 >W

′
2γ20

}
,

R1,3(X,θ0) ≡
{
(ε1, ε2) ∈R2: ε1 >W

′
1γ10 , ε2 ≤W ′2γ20

}
∪

{
(ε1, ε2) ∈R2: W ′1γ10 +Z ′1∆10 < ε1 ≤W ′1γ10 , ε2 ≤W ′2γ20 +Z ′2∆20

}
,

R1,4(X,θ0) ≡
{
(ε1, ε2) ∈R2: ε1 ≤W ′1γ10 +Z ′1∆10 , ε2 ≤W ′2γ20 +Z ′20∆20

}
,

R1,5(X,θ0) ≡
{
(ε1, ε2) ∈R2: W ′1γ10 +Z ′1∆10 < ε1 ≤W ′1γ10 , W ′2γ20 +Z ′2∆20 < ε2 ≤W ′2γ20

}
.

Since the boundaries of these regions have Lebesgue measure zero, the distinction between

weak and strict inequalities in their descriptions is not relevant.

3.1.2 Solutions, outcome distributions and sufficient statistics

Regions R1,1(X,θ0), R1,2(X,θ0), R1,3(X,θ0) and R1,4(X,θ0) have a unique pure-strategy

Nash equilibrium (PSNE) each, given by {(1,0)}, {(0,0)}, {(0,1)} and {(1,1)}, respectively.

RegionR1,5(X,θ0) has three solutions: PSNE {(0,1), (1,0)} and a mixed-strategy Nash equi-

librium (MSNE) with mixing probabilities P r(Y1 = 1) = (ε2 −W ′2γ20)/Z ′2∆20 and P r(Y2 =

1) = (ε1 −W ′1γ10)/Z ′1∆10. The outcome distributions for each solution in this region are

σ1
1,5(y|X,ε,θ0) = 1{y = (0,1)}, σ2

1,5(y|X,ε,θ0) = 1{y = (1,0)} and,

σ3
1,5(y|X,ε,θ0) =

(
ε2 −W ′2γ20

Z ′2∆20

)y1

·
(
1−

ε2 −W ′2γ20

Z ′2∆20

)1−y1

·
(
ε1 −W ′1γ10

Z ′1∆10

)y2

·
(
1−

ε1 −W ′1γ10

Z ′1∆10

)1−y2

By inspection of the regions and solution distributions, a collection of sufficient statistics

that satisfy (1) are g1(X,θ0) = (W ′1γ10, Z ′1∆10, W ′2γ20, Z ′2∆20).

3.2 Rationalizability with pure strategies and complete information

Suppose players choose pure strategies with the only restriction that they are rationaliz-

able, and let us refer to this as behavioral model b = 2. Using iterated dominance, it is easy

to find the relevant regions and the predicted solutions for this game.
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3.2.1 Regions, solutions, outcome distributions and sufficient statistics

The relevant regions are the same as those of Nash equilibrium. Furthermore, rational-

izability has the same solutions and outcome distributions as Nash equilibrium for re-

gions r = 1,2,3,4. Rationalizability has four solutions in the multiple-equilibrium re-

gion R2,5(X,θ0), given by {(0,1), (1,0), (0,0), (1,1)} (every outcome of the game is ratio-

nalizable there). Thus, the outcome distributions for the solutions in this region are

σ1
2,5(y|X,ε,θ0) = 1{y = (0,1)}, σ2

2,5(y|X,ε,θ0) = 1{y = (1,0)}, σ3
2,5(y|X,ε,θ0) = 1{y = (0,0)},

σ4
2,5(y|X,ε,θ0) = 1{y = (1,1)}. This model has the same sufficient statistics as Nash equilib-

rium, so g2(X,θ0) = (W ′1γ10, Z ′1∆10, W ′2γ20, Z ′2∆20).

3.3 Nash bargaining with transferable utility

Suppose behavioral model b = 3 assumes cooperative behavior characterized by transfer-

able utility and Nash bargaining. Efficiency predicts then that players choose the outcome

Y that maximizes total value (i.e, the sum of players’ payoffs).

3.3.1 Regions

This behavioral model has four relevant regions.

R3,1(X,θ0) ≡
{
(ε1, ε2) ∈R2: ε1 ≤W ′1γ10 +Z ′1∆10 +Z ′2∆20 , ε2 >W

′
2γ20 +Z ′1∆10 +Z ′2∆20

}
∪

{
(ε1, ε2) ∈R2: W ′1γ10 +Z ′1∆10 +Z ′2∆20 < ε1 ≤W ′1γ10 , ε2 >W

′
2γ20 −W ′1γ10 + ε1

}
,

R3,2(X,θ0) ≡
{
(ε1, ε2) ∈R2: ε1 >W

′
1γ10 , ε2 >W

′
2γ20

}
,

R3,3(X,θ0) ≡
{
(ε1, ε2) ∈R2: ε1 >W

′
1γ10 , ε2 ≤W ′2γ20

}
∪

{
(ε1, ε2) ∈R2: W ′1γ10 +Z ′1∆10 +Z ′2∆20 < ε1 ≤W ′1γ10 , ε2 ≤W ′2γ20 −W ′1γ10 + ε1

}
,

R3,4(X,θ0) ≡
{
(ε1, ε2) ∈R2: ε1 ≤W ′1γ10 +Z ′1∆10 +Z ′2∆20 , , ε2 ≤W ′2γ20 +Z ′1∆10 +Z ′2∆20

}
3.3.2 Solutions, outcome distributions and sufficient statistics

This behavioral model produces a unique solution for each region. Region R3,1(X,θ0)

predicts Y = (1,0), so σ1
3,1(y|X,ε,θ0) = 1{y = (1,0)}. Region R3,2(X,θ0) predicts Y = (0,0),

and σ1
3,2(y|X,ε,θ0) = 1{y = (0,0)}. The unique solution in region R3,3(X,θ0) is Y = (0,1),

yielding σ3,3(y|X,ε,θ0) = 1{y = (0,1)}. The unique solution in region R3,4(X,θ0) is (1,1),

so σ3,4(y|X,ε,θ0) = 1{y = (1,1)}. The strategic interaction effects are only relevant here

through the combined effect Z ′1∆10 + Z ′2∆20. The requirements in (1) are satisfied in this

model by the collection of sufficient statistics g3(X,θ0) = (W ′1γ10, W ′2γ20, Z ′1∆10 +Z ′2∆20).
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3.4 Incomplete-information Bayesian Nash equilibrium

Suppose behavioral model b = 4 assumes that X is observed by both players, but (ε1, ε2) are

private information. Suppose player p conditions her beliefs on X and on the event that

Yp = 1, and that beliefs solve Bayesian Nash equilibrium (BNE) self-consistency conditions.

As shown in Aradillas-López (2010), assuming that p conditions her beliefs on the event

Yp = 1 rather than directly on the realization of εp allows for the joint distribution of (ε1, ε2)

to be left nonparametrically specified. For a given X, let {(π∗1s(X,θ0),π∗2s(X,θ0)}S denote all

S ≥ 1 solutions for BNE subjective beliefs for P r(Y1 = 1|X,Y2 = 1) and P r(Y2 = 1|X,Y1 = 1),

respectively. For each BNE solution s, let gsp(X,θ0) ≡W ′pγp0 + (Z ′p∆p0) ·π∗−ps(X,θ0). If BNE

s is selected, player p’s behavior would be described as Yp = 1{gsp(X,θ0)− εp ≥ 0}.

3.4.1 Regions, solutions, outcome distributions and sufficient statistics

For any X, the relevant region is simply R2, and the outcome distribution for solution s is

σ s4,1(y|X,ε,θ0) =
∏2
p=11{gsp(X,θ0)−εp ≥ 0}yp×1{gsp(X,θ0)−εp < 0}(1−yp). Grouping gs(X,θ0) ≡

(gs1(X,θ0), gs2(X,θ0)), this model’s sufficient statistics are g(X,θ0) ≡ {gs(X,θ0)}Ss=1, which can

be estimated semiparametrically as shown in Aradillas-López (2010).

4 Testable implications with multiple candidate solutions

Instead of assuming a single behavioral model, we pre-specify a collection of candidate

behavioral models, b = 1, . . .B, and group their sufficient statistics g(X,θ0) ≡ ∪Bb=1gb(X,θ0).

4.1 Introducing behavioral and solution-selection mechanisms

There is an unobserved behavior selection mechanism ξ ∈ {1, . . . ,B}, where ξ = b indi-

cates that behavioral model b has been selected before players make their choices. For

each behavioral model b, if ξ = b and ε ∈ Rb,rb(gb(X,θ0)), a solution selection mecha-

nism λb,rb selects one among the existing solutions inside region Rb,rb (gb(X,θ0)). Thus,

λb,rb ∈ {1, . . . ,Sb,rb }, where λb,rb = srb indicates that solution srb has been selected. For any

y ∈ Y , our model then yields,

1{Y = y} =
B∑
b=1

1{ξ = b}
Rb∑
rb=1

1{ε ∈ Rb,rb(g(X,θ0))}
Sb,rb∑
srb=1

1{λb,rb = srb } ·1{Y(srb ) = y}, (2)

where Y(srb ) is the (potential) outcome of solution srb

6



4.2 An exclusion restriction that yields a multiple index model

Group λ ≡ {λb,rb : b = 1, . . . ,B, rb = 1, . . . ,Rb}. While the the structural properties of the

game depend on X only through g(X,θ0), to obtain testable implications we will assume

that g(X,θ0) is also a sufficient statistic for the distribution of (ε,ξ,λ)|X.

Restriction R1 (an exclusion restriction) The distribution of (ε,ξ,λ)|X is unknown, but

it satisfies the following exclusion restrictions. ε|(ξ,X) ∼ ε|g(X,θ0), ξ |X ∼ ξ |g(X,θ0), and

λ|(ξ,ε,X) ∼ λ|(ξ,g(X,θ0)).

The next result follows from Restriction R1 and the structure of our general model.

Proposition 1 Let ω
srb
b,rb

(g(X,θ0)) ≡ P r
(
ξ = b, λb,rb = srb | g(X,θ0)

)
, and for any y ∈ Y , let

η
srb
b,rb

(y|g(X,θ0)) ≡ E[1{ε ∈ Rb,rb (g(X,θ0))} · σ
srb
b,rb

(y|gb(X,θ0), ε) | g(X,θ0)]

In a model satisfying the structural properties in Section 2 and Restriction R1,

P r(Y = y|X) = P r(Y = y|g(X,θ0)) =
B∑
b=1

Rb∑
rb=1

Sb,rb∑
srb=1

ω
srb
b,rb

(g(X,θ0)) · η
srb
b,rb

(y|g(X,θ0)) ∀ y ∈ Y

(3)

The proof follows by using iterated expectations and equations (1) and (2).

4.2.1 A weaker version of Restriction R1

We can assume that the exclusion restrictions described hold conditional on an observable

“instrument” Z in addition to our sufficient statistics. In the end, this would modify (3) to

P r(Y = y|X,Z) = P r(Y = y|g(X,θ0),Z).

5 Identification and estimation of θ0θ0θ0

Once we arrive at the result in (3), ours becomes a special case of a semiparametric mul-

tiple index model. As such, identification and estimation of θ0 can be approached us-

ing a number of existing methods, including semiparametric least squares (Ichimura and

Lee (1991), Ichimura (1993), Donkers and Schafgans (2008)) or pairwise-difference meth-

ods (Honoré and Powell (1994), Honoré and Powell (2005), Aradillas-López, Honoré, and

Powell (2007), Aradillas-López (2012)).
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5.1 Identifiability of θ0θ0θ0

Like any other multiple index model, the exclusion restriction in (3) may not be enough to

identify θ0 if any of our candidate behavioral models b is such that E[gb(X,θ0)|gb(X,θ)] =

gb(X,θ0) w.p.1 for some θ , θ0. In this case, our first step would be to restrict the param-

eter space Θ. This is equivalent to the well known location and scale normalizations in

semiparametric linear index models. A restriction of Θ is a transformation (reparameteri-

zation) β(·) that maps each θ ∈Θ to a lower-dimensional parameter β(θ) ≡ β. Following the

reparameterization, our sufficient statistics are g(X,β(θ)) ≡ ∪Bb=1gb(X,β(θ)). Local identi-

fiability of β0 ≡ β(θ0) would require that, ∀ θ ∈ Θ, ∃ ε > 0 such that, for each candidate

behavioral model b,

P r
(
E[gb(X,β(θ))|gb(X,β(θ′))] , gb(X,β(θ))

)
> 0 ∀ θ′ , θ: ‖θ −θ′‖ < ε. (4)

If we maintain that a subset of candidate behavioral models occur with strictly positive

probability in the data, (4) would only need to be satisfied for this subset, which could

potentially allow us to identify more features of θ0. Inspecting the sufficient statistics of

the behavioral examples in Section 3, we can see that assuming that BNE occurs in the data

with strictly positive probability can potentially identify more features about θ0, such as

a constant strategic-interaction effects.

5.2 Estimation

Following any necessary reparameterization and denoting β(θ) ≡ β, estimation of β0 ≡
β(θ0) can proceed applying a number of existing estimation methods suited for semipara-

metric multiple index models (cited above). The indices in this case are the the sufficient

statistics of each candidate behavioral model, which are semiparametrically estimable for

any β, and given by ĝ(X,β) ≡ ∪Bb=1ĝb(X,β). Consistent specification tests can be pursued

adapting methods suited for multiple index models, which include Fan and Li (1996),

Zheng (1996) and Aradillas-López (2012, Section 4).

6 Concluding remarks

The structure of a fairly general class of parameterized normal-form games, combined

with testable exclusion restrictions involving unobserved selection mechanisms, allow us

to treat their estimation as that of a multiple index model while remaining robust to the

existence of multiple solutions and multiple candidate behavioral models.
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Honoré, B. and J. Powell (1994). Pairwise difference estimators of censored and trun-

cated regression models. Journal of Econometrics 64(2), 241–278.
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