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a b s t r a c t

This paper studies the problem of estimating the normal-form payoff parameters of a simultaneous,
discrete game where the realization of such payoffs is not common knowledge. The paper contributes
to the existing literature in two ways. First, by making a comparison with the complete information case
it formally describes a set of conditions underwhich allowing for private information in payoffs facilitates
the identification of various features of the game. Second, focusing on the incomplete information case
it presents an estimation procedure based on the equilibrium properties of the game that relies on
weak semiparametric assumptions and relatively flexible information structures which allow players
to condition their beliefs on signals whose exact distribution function is unknown to the researcher.
The proposed estimators recover unobserved beliefs by solving a semiparametric sample analog of the
population Bayesian–Nash equilibrium conditions. The asymptotic features of such estimators are studied
for the case in which the distribution of unobserved shocks is known and the case in which it is unknown.
In both instances equilibriumuniqueness is assumed to hold only in a neighborhood of the true parameter
value and for a subset Z of realizations of the signals. Multiple equilibria are allowed elsewhere in the
parameter space and no equilibrium selection theory is involved. Extensions to games where beliefs are
conditioned on unobservables as well as general games withmany players and actions are also discussed.
An empirical application of a simple capital investment game is included.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Recently, much attention has been devoted to the problem of
econometric estimation of game-theoretic models with multiple
equilibria. It has been argued Morris and Shin (2003) that multiple
equilibria are often the result of assuming that agents have
complete knowledge about the primitives of the model. The effect
of these assumptions is to generate the type of coordinating
behavior that results in multiple equilibria. The general issues that
motivate this paper are addressedby revisiting a 2×2game studied
by Bresnahan and Reiss (1990), Bresnahan and Reiss (1991) and
Tamer (2003). Such game-theoretic models were first considered
in an econometric context in the pioneering work by Bjorn and
Vuong (1984). If players have complete information and play
pure strategies, their Nash equilibrium choices are described by a
simultaneous discrete response model (see the thorough analysis
by Heckman (1978)). We depart from a complete information
structure and assume an incomplete information environment
in which players observe a noisy signal of the game’s normal-
form payoffs before making their choices simultaneously. Some
examples of estimationmethods for static incomplete-information
game-theoretic models include Brock and Durlauf (2001), Seim
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(2006), Sweeting (2010), Pesendorfer and Schmidt-Dengler (2008),
and Bajari et al. (forthcoming).1
This paper contributes to the existing literature on estimation of

simultaneous incomplete-information games in three ways. First,
we assume a flexible information structure. Instead of confining
the source of private information exclusively to the realization of
unobservable shocks that are independent of all other variables
in the model, we allow players to condition their beliefs on a
vector of ‘‘signals’’ which are statistically related to the players’
private information. We allow for some payoff covariates to be
privately observed by the players when the game is played,
but observable to the econometrician afterwards. Throughout,
we allow interdependence between players’ private information.
Second, we propose estimation procedures that are based entirely
on the Bayesian–Nash equilibrium (BNE) properties of the game.
Finally, by comparing it to the complete information case, the
paper illustrates the sense in which the presence of private
information allows us to point-identifymore features of themodel,
such as the conditional probabilities for each of the individual
outcomes of the game.

1 We focus exclusively on static games of incomplete information whose
Bayesian–Nash equilibrium properties are directly comparable to those in this
paper. We will not revisit, for example, the increasingly vast literature on the
estimation dynamic games and auctions.
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Players here are not required to have exact knowledge about
all parameters and distributional properties of the variables in
the model. Instead, they are only assumed to be capable of
predicting – in the spirit of Aumann (1987) – the distribution of
equilibrium outcomes conditional on the realization of the vector
of signals. Players’ posterior beliefs are based on this conditional
distribution. Players’ beliefs are assumed to be unobserved by
the econometrician, who also ignores the true distribution of
the players’ private information and the signals used. As a
result, equilibrium beliefs have an unknown functional form and
the estimation problem becomes semiparametric. The proposal
will be to estimate equilibrium beliefs and payoff parameters
simultaneously by solving a well-defined sample analog to the
population equilibrium conditions and plugging the solution into a
trimmed-likelihood function. We will characterize the asymptotic
properties of such a procedure in two cases: (a) when the
distribution of players’ unobservable shocks is known up to
a finite parameter value, and (b) when such a distribution is
unknown. In both cases, we will enumerate conditions for

√
N-

consistency and we will show that the efficiency of the proposed
estimator is tied to the ability of the signals to explain the
variation in the players’ private information. To the best of our
knowledge, this paper constitutes the first effort to simultaneously
estimate beliefs and payoff parameters under explicitly weak
semiparametric assumptions. It is also the first paper to illustrate
explicitly the sense in which strategic interaction models with
incomplete information are easier to identify than those with
complete information.
The paper is organized as follows. Section 2 describes and

analyzes the equilibrium properties of the game in question.
Section 3 deals with estimation when the distribution of players’
unobserved shocks is assumed to be known. The case in which
such distribution is unknown is presented in Section 4. Section 5
discusses extensions to more general games. A simple empirical
example of capital investment is included in Section 6. Concluding
remarks are provided in Section 7. All proofs are included in the
Appendix.

2. Properties of the game

Take (X1, ε1) ∈ Rk1 × R and (X2, ε2) ∈ Rk2 × R, and denote
X ≡ (X1, X2), ε ≡ (ε1, ε2) and k ≡ k1+k2. Consider a simultaneous
game with the following normal-form

Player 2
Y2 = 1 Y2 = 0

PLAYER 1 Y1 = 1 X ′1β1 − ε1 + α1,
X ′2β2 − ε2 + α2

X ′1β1 − ε1, 0

Y1 = 0 0, X ′2β2 − ε2 0, 0

Upper case letters will be used to denote random variables, and
lower case to denote particular realizations. S(U) will denote
the support of a random variable U . Subscript p ∈ {1, 2} will
denote a particular player, and −p will denote his opponent. We
refer to (α1, α2) ∈ R2 as the strategic interaction parameters,
which summarize the interaction effect between players’ actions.
Linearity of the index X ′pβp is not essential to our results.
Identification with an alternative functional form would require
Assumption A4(i) (full rank) below to bemodified accordingly. The
exclusion restriction between X1 and X2 in Assumption B1 would
still need to be satisfied. The strategic interaction effect could also
depend on (observable) covariates, and we explore this in the
empirical example of Section 6. The Bayesian–Nash equilibrium
analysis in Sections 2.2–2.4 hinges on the additive separability
between Xp and εp. We leave the non-additively separable case for
future research.
2.1. Players’ information and optimal actions

We begin with the following assumption.

Assumption A1 (Information Structure and Beliefs).
(i) Player p observes the realization of (Xp, εp). The realization
of εp is only privately observed by player p. We allow the
possibility that the realization of some of the elements in X are
only privately observedwhen the game is played, andwe allow
for the existence of a publicly observed vector of ‘‘signals’’ Z
which is informative about X . If X is publicly observed then
Z = X . Otherwise, Z 6= X .

(ii) Once Z is revealed, each player constructs a subjective
assessment of Pr(Y1, Y2|Z), the joint distribution of optimal
choices conditional on Z . As in Savage (1972), both players
are assumed to be Bayesian expected utility maximizers given
their beliefs, and this is assumed to be common knowledge.2

Our framework allows statistical interdependence between play-
ers’ private information, and in particular between ε1 and ε2. How-
ever, players are not required or assumed to have exact knowledge
about the distributions involved. Instead, as (A1(ii)) states, play-
ers are only assumed to be capable of predicting the distribution
of equilibrium outcomes conditional on Z . As in Aumann (1987),
players do not condition their beliefs on their choices per-se, but on
all the substantive information that leads them to make those choices.
The statistical interdependence between their private information
is enclosed therein. In equilibrium, each player will choose a def-
inite pure strategy by following a simple threshold-crossing deci-
sion rule. The apparent randomnature of players’ actions is a result
of payoffs not being common knowledge.

Assumption A2 (Distributional Properties of ε1 and ε2).
(i) (ε1, ε2) are jointly continuously distributed random variables
with unbounded support conditional on each other. They are
allowed to be correlated, but are assumed to be independent
of all other variables in the model. The conditional support
S(εp|ε−p), is assumed to be unbounded for p = 1, 2, for any
possible realization of ε−p.

(ii) The scale of εp is normalized to 1. From now on, the parameter
vector (βp, αp)will be interpreted as relative to the scale of εp.
We will denote the marginal distribution of εp by Gp(εp), with
density gp(εp). The joint distribution of (ε1, ε2) is given by

G1,2 (ε1, ε2; ρ) = C(G1(ε1),G2(ε2); ρ),

with corresponding joint density denoted by g1,2(ε1, ε2; ρ). By
Sklar’s Theorem (Sklar (1959) and Nelsen (2006) Chapter 2.3),
C is interpreted as a copula functionwhich depends on a finite-
dimensional parameter ρ which summarizes the dependence
between ε1 and ε2. Wewill focus on the case inwhich ρ is one-
dimensional and denote θ = (β1, α1, β2, α2, ρ) ∈ Rk+3.

We normalize the scale of εp for identification purposes, since
player’s optimal actions will be given by threshold-crossing rules.
Our results can potentially be extended to the case where ρ
is vector-valued. Depending on the specific copula family a
normalization of the vector ρ may be required.

2.2. Equilibrium beliefs and actions

Given the normal-formof the game andA1–A2, players’ optimal
actions are given by

2 An event is considered common knowledge here if it is known to both players,
it is known to both players that it is known to both players and so on ad infinitum.
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Y1 = 1{X ′1β1 + α1 Pr1(Y2 = 1|Y1 = 1, Z)︸ ︷︷ ︸
Player 1′s beliefs.

−ε1 ≥ 0}

Y2 = 1{X ′2β2 + α2 Pr2(Y1 = 1|Y2 = 1, Z)︸ ︷︷ ︸
Player 2′s beliefs.

−ε2 ≥ 0}.
(1)

Each player uses a pure-strategy based on (1).3 We will carefully
examine conditions underwhich there exist a pair of self-consistent
equilibriumbeliefs that satisfy (1). Take any pair of scalarsπ1, π2 ∈
R2 and define

ϕ1(π1, π2; θ, Z)

= π1 −
E
[
G1,2(X ′1β1 + α1π2, X

′

2β2 + α2π1; ρ)|Z
]

E
[
G2(X ′2β2 + α2π1)|Z

] ,

ϕ2(π1, π2; θ, Z)

= π2 −
E
[
G1,2(X ′1β1 + α1π2, X

′

2β2 + α2π1; ρ)|Z
]

E
[
G1(X ′1β1 + α1π2)|Z

]
ϕ(π1, π2; θ, Z) = (ϕ1(π1, π2; θ, Z), ϕ2(π1, π2; θ, Z)) .

(2)

Proposition 1. Fix a realization z ∈ S(Z) and a value of θ . For
these fixed values we can view ϕ(π1, π2; θ, z) as a function of
(π1, π2). If Assumptions A1 and A2 are satisfied, players’ beliefs
are deterministic given z and any pair of self-consistent beliefs that
satisfy (1)must solve for (π1, π2) the system

ϕ(π1, π2; θ, z) = 0. (3)

From now on, we will say that ‘‘there exists an equilibrium’’ for a
given z and θ if there exists a pair (π1, π2) that solves (3). If there
is more than one solution, we will say that there exist multiple
equilibria. Conditions for existence and uniqueness of a solution to
(3) will be crucial to our analysis. The following section addresses
these issues in detail.

2.3. Existence of equilibria

Fix a realization z ∈ S(Z) and a value of θ . We will let [0, 1]2
denote the unit-square in R2. For (π1, π2) ∈ [0, 1]2, consider the
mapping4 Ψ : [0, 1]2 → [0, 1]2 given by

Ψ (π1, π2; θ, z)

=

(
E
[
G1,2(X ′1β1 + α1π2, X

′

2β2 + α2π1; ρ)|Z = z
]

E
[
G2(X ′2β2 + α2π1)|Z = z

] ,

E
[
G1,2(X ′1β1 + α1π2, X

′

2β2 + α2π1; ρ)|Z = z
]

E
[
G1(X ′1β1 + α1π2)|Z = z

] )′
. (4)

Given A2, Ψ satisfies the requirements of Brouwer’s Fixed Point
Theorem5 and there exists (π∗1 , π

∗

2 ) ≡ π∗ ∈ (0, 1)2 such that
π∗ = Ψ (π∗; θ, z). By construction, π∗ solves (3).

2.4. Cardinality of equilibria

2.4.1. Uniqueness via Jacobian restrictions
Denote the Jacobian matrix

3 Incomplete information makes it impossible for players to randomize in a way
that makes their opponent exactly indifferent between Y = 1 and Y = 0.
4 We ignore values of π1, π2 6∈ [0, 1]2 since all solutions to (3) belong inside
[0, 1]2 .
5 The unit square [0, 1]2 satisfies the remaining requirements for Brouwer’s Fixed
Point Theorem.
J(π1, π2; θ, z)
2×2

= ∇πϕ(π1, π2; θ, z)

=

(
∇π1ϕ1(π1, π2; θ, z) ∇π2ϕ1(π1, π2; θ, z)
∇π1ϕ2(π1, π2; θ, z) ∇π2ϕ2(π1, π2; θ, z)

)
. (5)

Definition 1. Fix z ∈ S(Z) and θ and suppose (π ′1, π
′

2) solves (3).
We will say that this solution is locally unique if there exists a
neighborhoodN around (π ′1, π

′

2) such that no other (π1, π2) ∈ N

solves (3).Wewill say it is unique if no other pair (π1, π2) ∈ [0, 1]2
solves (3).Wewill say that it is regular if J(π ′1, π

′

2; θ, z) is invertible
and critical otherwise.

Using Theorem 7 in Gale and Nikaido (1965) we obtain the
following uniqueness result:

Proposition 2. Fix z ∈ S(Z) and a value of θ . If none of the principal
minors of J(π1, π2; θ, z) vanishes in the set (π1, π2) ∈ [0, 1]2, the
solution to (3) is unique.

If Proposition 2 holds, ϕ(π1, π2; θ, z) is a one-to-one mapping
everywhere6 in (π1, π2) ∈ [0, 1]2. Since S(ε) = R2, the conditions
of Proposition 2 are satisfied only if

∇π1ϕ1(π1, π2; θ, z) > 0, and ∇π2ϕ2(π1, π2; θ, z) > 0

for all (π1, π2) ∈ [0, 1]2. (6)

In Appendix A.4 of the Appendix we show that if (6) holds, we can
represent the loci ϕ1(π1, π2; θ, z) = 0 and ϕ2(π1, π2; θ, z) = 0 as
continuous, monotonic curves in [0, 1]2. The signs of their slopes
are equal to the signs of α1 and α2, respectively.
Fig. 1 presents four graphical examples. All points of intersec-

tion between the two curves are solutions to (3) and therefore can-
didate equilibrium beliefs. As (A) shows, uniqueness will follow
whenever α1α2 ≤ 0. (B) shows that uniqueness is also possible
if α1α2 > 0. Critical equilibria occur at points of tangency between
these curves. Let π∗(s) denote the equilibrium that has the smallest
value for the π1 component. If π∗(s) is regular, then J(π

∗

(s); θ, z) is
positive-definite, otherwise there must be a second equilibrium. It
follows that if the Jacobian is positive definite at all equilibria, there
can only be one equilibrium.

Proposition 3. Fix z ∈ S(Z) and θ . If (6) holds and if J(π1, π2; θ, z)
is positive definite evaluated at all solutions to (3), then the solution
to (3) is unique.

If the support of X ′pβp is concentrated around large absolute values
for certain realizations of Z , the conditions in Proposition 3 will be
satisfied there. We explore this issue next.

2.4.2. Uniqueness of equilibrium when signals are informative
As we can see in Fig. 1, multiple solutions to (3) arise only

if the curves ϕ1(π1, π2; θ, z) = 0 and ϕ2(π1, π2; θ, z) = 0
have enough variability in the interval (π1, π2) ∈ [0, 1]2. In
a number of cases, the conditional support of Xp|Z may be rich
enough that it includes regions of S(Z) where the variability
needed to producemultiple equilibria is suppressed. Identification
strategies involving some formof extreme support conditions have
been widely used in microeconometrics. A few examples include
Manski (1988), Heckman (1990), Heckman and Honoré (1990),
Heckman and Honoré (1989), Matzkin (1992), Matzkin (1993),
Lewbel (2000), Taber (2000), Carneiro et al. (2003) and, more

6 This result can be generalized to discrete games with more players or actions.
Uniqueness would require all the principal minors of the Jacobian to be positive.
Gale and Nikaido (1965) refer to such matrices as P-matrices.
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(A) α1 > 0, α2 < 0. (B) α1 > 0, α2 > 0.

B

A

C

B

A

(C) α1 > 0, α2 > 0. (D) α1 > 0, α2 > 0.

Fig. 1. Examples of the loci ϕ1(π1, π2; θ, z) = 0 and ϕ2(π1, π2; θ, z) = 0 assuming (6) holds. Each case corresponds to a fixed value of z and θ . Points of intersection are
solutions to (3).
recently, Heckman and Navarro (2007). A thorough study of the
implications of support conditions on identification and rates of
convergence can be found in Khan and Tamer (2009). In the context
of discrete choice models, extreme support assumptions imply the
existence of realizations of observables where the agents’ set of
choices is essentially reduced. The general idea has been studied
in psychological contexts, for example, in Thurstone (1959) and
Falmagne (1985). In our case canceling out choices is not necessary
to counteract the effect of multiple equilibria on identification.
It would suffice if for each p there exists a region Z ⊆ S(Z)
such that the support of X ′pβp (but not of X

′
−pβp) is concentrated

around large absolute values whenever Z ∈ Z. In such regions, the
Jacobian described in (5) would be approximately diagonal and the
Gale–Nikaido conditions for a unique BNE would be satisfied.

3. Estimation when the distribution of (ε1, ε2) is known

This section assumes that G1,2(·, ·; ρ) is known up to the scalar
parameter ρ.

3.1. Identification conditions

Henceforth, if there exists a unique solution to the equilibrium
system (3) for a given z and θ , we will denote it by π∗(θ, z) ≡
(π∗1 (θ, z), π

∗

2 (θ, z)).

Assumption A3. The parameter space Θ ⊂ Rk+3 is compact, Z is
absolutely continuous with respect to Lebesguemeasure and there
exists a compact set Z ∈ S(Z) such that inf z ∈ ZfZ (z) > f > 0.
The set Z and the parameter spaceΘ are such that:

(i) (Regularity of equilibria) For every θ ∈ Θ and for almost
every z ∈ Z, all solutions to (3) are regular. In particular,
let π∗(s)(θ, z) ≡ (π∗(s1)(θ, z), π

∗

(s2)
(θ, z)) be the solution to (3)

that has the smallest value for the π1 component. There exists
M < ∞ such that sup θ∈Θ

z∈Z
‖J(π∗(s)(θ, z); θ, z)

−1
‖ < M , where

J(π; θ, z) is the Jacobian described in (5).
(ii) (Uniqueness of equilibrium) Let θ0 ∈ Θ denote the true value
of the parameter θ . There exists a neighborhood Nθ ⊆ Θ

that contains θ0 such that each (θ, z) ∈ Nθ × Z has a unique
solution to the equilibrium conditions (3).

Take the Jacobian Dϕ(π; θ, z)
2×(k+5)

=

(
∇πϕ(π; θ, z)

2×2
,∇θϕ(π; θ, z)

2×(k+3)

)
.

Using the Transversality Theorem,7 a sufficient condition for the
almost-sure regularity condition in (i) to hold is if for every (θ, z) ∈
Θ × Z, the rank of Dϕ(π; θ, z) is equal to 2 when π is evaluated
at any solution to (3).8 Going back to Fig. 1, π∗(s)(θ, z) defined
in the second part of (i) is simply the first equilibrium along
the horizontal axis. We assume all those equilibria to be regular,
uniformly in Θ × Z. Part (ii), asserts that we will only assume

7 See Mas-Collel et al. (1995), Theorem M.E.2.
8 See Assumption A4.
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uniqueness of equilibrium at the true parameter value θ0, and in a
neighborhood Nθ containing it. It would be sufficient to assume
that Proposition 3 holds everywhere in (θ, z) ∈ Nθ × Z. By
construction, π∗(s)(θ, z) ≡ π∗(θ, z) everywhere in Nθ × Z. Our
proposal will be to construct an estimator for players’ beliefs that
converges to π∗(s)(θ, z) uniformly inΘ × Z.
A candidate setZ could be found by relying on the relationship

between Z and (X ′1β10 , X
′

2β20) predicted by economic theory. From
our previous discussion, each z ∈ Z should be such that the
support of either X ′1β10 or X

′

2β20 (but not both) is concentrated
around relatively large absolute values conditional on Z = z. This
is feasible, for instance, when each Xp includes a publicly observed
covariate whose coefficient has a known sign ex-ante, has rich
support conditional on all other covariates and is excluded in X−p.
We can evaluate the validity of any candidate set Z by looking at
nonparametric estimates of the Jacobian of(
E [E [Y1|X1, E[Y1|Z], E[Y2|Z], Y2 = 1] |Z] ,

E [E [Y2|X2, E[Y1|Z], E[Y2|Z], Y1 = 1] |Z]
)′

with respect to E[Y1|Z] and E[Y2|Z]. The principal minors of
this Jacobian should not vanish in any set Z that satisfies
Assumption A3.
Computing the equilibrium π∗(s)(θ, z)
For a given (θ, z), finding the equilibrium π∗(s)(θ, z) described

in Assumption A3 is computationally simple. Let ϕ1, ϕ2 and ϕ be
as defined in Eq. (2) and consider the following iterative procedure

Step 0.—Fix a value π02 ∈ [0, 1].

Step 1.—Take π02 from Step 0,

and let π11 be the solution to ϕ1(π1, π
0
2 ; θ, z) = 0.

Step 2.—Take π11 from Step 1,

and let π22 be the solution to ϕ2(π
1
1 , π2; θ, z) = 0.

Step k.—Continue iteratively.

(7)

For a given starting value, the solution in each one of the
steps 2, . . . is unique because both ϕ1(π1, π2; θ, z) = 0 and
ϕ2(π1, π2; θ, z) = 0 are monotonic curves. This monotonicity is
shown inAppendix A.4. If the BNE equilibrium is unique for z and θ ,
this procedure will converge to π∗(s)(θ, z) (the unique equilibrium)
regardless of the starting values. Otherwise, depending on the signs
of α1 and α2, the appropriate starting values are: (i) π02 = 1 if
α1 < 0 and α2 < 0. (ii) π02 = 0 if α1 > 0 and α2 > 0. (iii)
Any π02 ∈ [0, 1] if α1α2 ≤ 0.
Given the previous conditions, the following assumptionwill be

sufficient for identification.

Assumption A4. (i) (Full rank) Xp has full column rank with
positive probability conditional on Z ∈ Z.

(ii) (Invertibility) The joint distribution G1,2(·; ρ) is an invertible
function of ρ with positive probability in a region R ⊆ R2 of
realizations of (ε1, ε2), and this region is such that
Pr
[(
X ′1β1 + α1π2, X

′

2β2 + α2π1
)
∈ R|Z ∈ Z

]
> 0

∀β1, β2, α1, α2 ∈ Θ, ∀π1, π2 ∈ [0, 1]2.

Combining Assumptions A2 and A3 and A4(i), we have that for all
θ 6= θ0,

Pr
(
X ′1β1 + α1π

∗

(s2)(θ, Z) 6= X
′

1β10 + α10π
∗

2 (θ0, Z)|Z ∈ Z
)
> 0

Pr
(
X ′2β2 + α2π

∗

(s1)(θ, Z) 6= X
′

2β20 + α20π
∗

1 (θ0, Z)|Z ∈ Z
)
> 0,

(8)

where π∗(s)(·) is as defined in Assumption A3. We point out that
(8) is not an artifact of the nonlinear nature9 of π∗(s)(θ, ·). Suppose

9 This nonlinearity is a consequence of the unbounded support assumption of εp .
X = Z and εp ∼ U[−1, 1]. Then (3) becomes a linear system in X .
In this case (8) is satisfied if there exist X1` ∈ X1 and X2` ∈ X2 with
nonzero coefficients and Pr(X1` 6= X2`) > 0.

3.2. Estimation of equilibrium beliefs

As we mentioned before, we assume that players use self-
consistent equilibrium beliefs according to (1). We will introduce
the following assumption.

Assumption A5 (Researcher). The econometrician has access to an
i.i.d. sample of N games described by Assumptions A1–A4, and
observes (Wn)Nn=1 ≡ (Yn, Xn, Zn)Nn=1. The econometrician knows
the functional form of Gp(·) and G1,2(·, ·; ρ) up to the value of ρ.
Henceforth, Lwill denote the number of elements in Z that are not
in X .
For illustrative purposes, we will focus on the case in which all
elements in X are privately observed, and Z ∩ X = ∅. The case
in which beliefs are conditioned on unobservables is addressed in
Section 5.1. We will then explain how to adapt the methodology
in the more general case. We will employ a kernel function K :
RL → R and a bandwidth sequence h → 0. For any ψ ∈ RL, we
denote Kh(ψ) ≡ K(ψ/h). For a given θ ∈ Rk+3, take z ∈ RL and
let f̂ (z) = (NhL)−1

∑N
n=1 Kh(Zn − z). Now take (π1, π2) ≡ π ∈ R2

and define

δ̂1,2(π; θ, z) =
(
NhL̂f (z)

)−1 N∑
n=1

G1,2(X ′1nβ1

+α1π2, X ′2nβ2 + α2π1; ρ)Kh(Zn − z)

δ̂p(π; θ, z) =
(
NhL̂f (z)

)−1 N∑
n=1

Gp(X ′pnβp + αpπ−p)Kh(Zn − z)

for p = 1, 2,

ϕ̂1(π; θ, z) = π1 −
δ̂1,2(π; θ, z)

δ̂2(π; θ, z)
,

ϕ̂2(π; θ, z) = π2 −
δ̂1,2(π; θ, z)

δ̂1(π; θ, z)
ϕ̂(π; θ, z),= (̂ϕ1(π; θ, z), ϕ̂2(π; θ, z))′ ,

Q̂ (π; θ, z) = −ϕ̂(π; θ, z)′ϕ̂(π; θ, z).

(9)

IfX1` were publicly observed and therefore included in Z , wewould
replace X1`n with x1` , its realization in z. If the entire vector X were
publicly observed, we would have δ̂1,2(π; θ, z) = G1,2(x′1β1 +
α1π2, x′2β2 + α2π1; ρ) and δ̂p(π; θ, z) = Gp(x

′
pβp + αpπ−p), and

the estimation problem would be entirely parametric. Next, consider
the following problem,

Max
π∈[0,1]2

Q̂ (π; θ, z), (10)

and let π̂(θ, z) = Solution to (10) with the smallest value for
the π1 component. (11)

We will use π̂(θ, z) as the estimator of players’ beliefs. In the
Appendix we carefully characterize the uniform (in [0, 1]2 ×
Z × Θ) convergence properties of these objects defined in (9)
to their population counterparts. Given this, the computational
implementation of finding (11) would be undertaken using the
iterative procedure described in Eq. (7), with the starting points
mentioned there.

Assumption A6. There exists anM ≥ L+ 1 such that:
(i) (Smoothness) Gp(·) and G1,2(·) areM-times differentiable with
bounded derivatives. The conditional density fX |Z (x|z) is M-
times differentiable with bounded derivatives with respect to
all the elements in Z not included in X . In addition, E[‖XX ′‖2|Z]
is a bounded, continuous function of Z , and E[‖XX ′‖4] <∞.
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(ii) (Kernel and bandwidth) The kernel K(·) is symmetric, Lipschitz-
continuous, bounded andM-times differentiablewith bounded
derivatives. DenoteΨ = (ψ1, . . . , ψL). The kernel K(·) is bias-
reducing of orderM:

∫
K(Ψ )dΨ = 1,

∫
ψ
q1
1 · · ·ψ

qL
L K(Ψ )dΨ =

0 for all (q`)L`=1 ∈ N such that 1 ≤ q1 + · · · + qL ≤ M − 1, and∫
‖Ψ ‖M |K(Ψ )|dΨ < ∞. As N → ∞, the bandwidth h satis-
fies: h → 0, NhL+2 → ∞, Nh2M → 0, and there exists δ > 0
such that N1−δh2L →∞.

The existence-of-moments condition in part (i) could be replaced
with the more restrictive assumption that S(X) is compact. It
is shown in the Appendix that if Assumptions A3, A5 and A6
are satisfied, then sup θ∈Θ

z∈Z
‖π̂(θ, z) − π∗(s)(θ, z)‖

p
−→ 0. If

Assumptions A1, A2 and A4 are also satisfied, then π̂(θ0, z)
converges to the players’ equilibrium beliefs uniformly in Z. Next,
we show how we use π̂(θ, ·) to estimate θ .

3.3. Estimation of θ

Take any given value of the parameter vector θ . For two
constants (π1, π2) ≡ π ∈ R2 define t1 = X ′1β1 + α1π2 and
t2 = X ′2β2 + α2π1. Let

10

P1,1(X, θ, π) =
∫ t1

−∞

∫ t2

−∞

g1,2(ε1, ε2; ρ)dε2dε1,

P1,0(X, θ, π) =
∫ t1

−∞

∫
∞

t2
g1,2(ε1, ε2; ρ)dε2dε1,

P0,1(X, θ, π) =
∫
∞

t1

∫ t2

−∞

g1,2(ε1, ε2; ρ)dε2dε1,

P0,0(X, θ, π) =
∫
∞

t1

∫
∞

t2
g1,2(ε1, ε2; ρ)dε2dε1.

(12)

Denote `1,1(X, θ, π) = log P1,1(X, θ, π) and so on for the
remaining probabilities. As before, letW ≡ (Y , X, Z) and define
`(W , θ, π) = Y1Y2`1,1 (X, θ, π)+ (1− Y1)Y2`0,1 (X, θ, π)

+ Y1(1− Y2)`1,0 (X, θ, π)
+ (1− Y1)(1− Y2)`0,0 (X, θ, π) , and

`Z(W , θ, π) = `(W , θ, π)1{Z ∈ Z}. (13)
If Z ∈ Z, then `Z(W , θ0, π∗(θ0, Z)) is the conditional log-
likelihood of Y given (X, Z). We will let ∇θ`Z(W , θ, π) and
∇π`Z(W , θ, π)denote the vector of partial derivatives of `Z(W , θ,
π)with respect to θ and π , respectively. For all θ ∈ Nθ , we have
∂`Z (W , θ, π∗(θ, Z))

∂θ
≡ SθZ(W , θ)

= ∇θ`Z

(
W , θ, π∗(θ, Z)

)
+∇θπ

∗(θ, Z)′∇π`Z

(
W , θ, π∗(θ, Z)

)
. (14)

The score function of `Z(W , θ0, π∗(θ0, Z)) is given by SθZ(W , θ0).

Assumption A7 (Technical). θ0 is an interior point of Θ . Let
Py1,y2(X, Z, θ, π) be as defined in (12). There exists a random
variable U such that E[U2] < ∞ and with probability one,
sup π∈[0,1]2

θ∈Θ

[Py1,y2(X, Z, θ, π)
−1
] ≤ U for (y1, y2) ∈ {(1, 1), (1, 0),

(0, 1), (0, 0)}. Let SθZ(W , θ) be as defined in (14) and let =Z =

E
[
SθZ(W , θ0)SθZ(W , θ0)

′
]
, then =Z is invertible.

The second part of A7 would be redundant if S(X) were
compact. Coupled with our previous assumptions, it yields

10 We take π1, π2 as constant here because we will eventually replace them with
players’ beliefs, which are deterministic conditional on Z , and Z is assumed to be
independent of (ε1, ε2).
uniform convergence of objects like 1N
∑N
n=1 ∇θ`Z(Wn, θ, π) and

1
N

∑N
n=1 ∇π`Z(Wn, θ, π) inΘ×[0, 1]2. In the Appendix, we show

that an information-identity result holds and

E
[
∂2`Z(W , θ, π∗(θ, Z))

∂θθ ′

]∣∣∣∣
θ=θ0

= −=Z.

Finally, we define the terms in Eq. (15), shown in Box I, which we
will require in the following.
We estimate θ by solving Maxθ∈Θ 1N

∑N
n=1 `Z(Wn, θ, π̂(θ, Zn)).

Theorem 1 presents the asymptotic properties of our estimator.

Theorem 1. Let SθπZ(Wn, θ0)
(k+3)×2

denote the partial derivative of

SθZ(Wn, θ0) with respect to π
∗(θ0, Zn) – see (14) –. Let D(Z, θ0) =

J(π∗(θ0, Z); θ0)−1V (Z), where J(·) and V (·) are as defined in (5) and
(15), respectively. Define RZ(Zn, θ0) = E[SθπZ(Wn, θ0)|Zn]D(Zn, θ0)
and

AZ(Xn, Zn, θ0) = RZ(Zn, θ0)
[
E [B(Yn)|Xn, Zn]− E [B(Yn)|Zn]

]
,

with B(·) as in (15). Let π̂(θ, z) be as defined in (11) and let θ̂ be the
solution to

Max
θ∈Θ

1
N

N∑
n=1

`Z (Wn, θ, π̂(θ, Zn)) ,

where `Z(·) is defined in (13). If Assumptions A1–A7 are satisfied,
then

θ̂ − θ0 = =
−1
Z ×

1
N

N∑
n=1

[
SθZ (Wn, θ0)+ AZ(Xn, Zn, θ0)

]
+ op(N−1/2) (16)

and therefore
√
N (̂θ − θ0)

d
−→ N (0,=−1Z + =

−1
Z ΩZ=

−1
Z ), where

ΩZ = E
[
RZ(Z, θ0)Var [E[B(Y )|X, Z]|Z] RZ(Z, θ0)′

]
.

The structure of the asymptotic variance of θ̂ resembles that of Ahn
and Manski (1993), who estimate a discrete-choice model with
nonparametric conditional expectations among the regressors but
no strategic interaction. The matrix =−1Z is the semiparametric
efficiency bound when Gp(·) and G1,2(·) are known and players’
beliefs are observed.11 The term ΩZ reflects the loss in efficiency
vis-a-vis the case in which fx|z(·) is known and equilibrium beliefs
can be exactly computed. The specific structure ofΩZ results from
the asymptotically linear representation of π̂(·) – see Eq. (A.9) in
the Appendix. Define t(θ0) = (X ′1β10 + α10π

∗

2 (θ0, Z), X
′

2β20 +
α20π

∗

1 (θ0, Z))
′. Then E[B(Y )|X, Z] = E[B(Y )|t(θ0)] and the

magnitude of the efficiency loss would depend on the behavior of
E[B(Y )|t(θ0)]−E[B(Y )|Z]. If Z is a perfect predictor for X , wewould
haveΩZ = 0. In such a case, the only effective source of incomplete
information is εp.12 We also haveΩZ = 0 if αp0 = 0 for p = 1, 2,
since SθπZ(Wn, θ0) = 0 in this case.

3.4. Incomplete information and coherency of the econometric model.
A comparison with the complete-information case

There has been considerable effort devoted to the study of
endogeneity in discrete and limited dependent variable models

11 That is, the efficiency bound that corresponds to the trimmed MLE that uses Z
as the trimming set.
12 See the paragraph following Eq. (9).
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5)
V (Z)
2×3
=


1

Pr(Y2 = 1|Z)
0 −

Pr(Y1 = 1|Y2 = 1, Z)
Pr(Y2 = 1|Z)

1
Pr(Y1 = 1|Z)

−
Pr(Y2 = 1|Y1 = 1, Z)
Pr(Y1 = 1|Z)

0

 , B(Y )
3×1
= (Y1Y2, Y1, Y2)′ (1

Box I.
in settings not necessarily motivated by game theory or strategic
interaction. A partial list of examples includes Heckman (1978),
Sickles and Schmidt (1978), Gourieroux et al. (1980), Blundell
and Smith (1986), Blundell and Smith (1989), Sickles (1989),
Blundell and Smith (1994), Dagenais (1999), Blundell and Powell
(2004), Vytlacil and Yildiz (2007), Lewbel (2007), Chesher (2007),
Abrevaya et al. (2007) and Klein and Vella (2009). Following
the notation in Lewbel (2007), structural models of this type
can be generically expressed as Y = H(Y ,W ), where Y is a
vector of endogenous variables and W includes observable and
unobservable covariates and parameters. A model of this type is
coherent (see Gourieroux et al. (1980)) if there exists a mapping
G(·) such that we can write Y = G(W ) for eachW . Pure-strategy
Nash equilibrium behavior with complete information in the 2×2
game dictates optimal decision rules of the type
Yp = 1{X ′pβp + αp · Y−p − εp ≥ 0} for p = 1, 2.
Optimal choices depend on the actual ex-post action of the
opponent. This is the source of endogeneity and it results from
the definition of a complete-information pure strategy Nash
equilibrium. If the support of the unobservable shock εp is assumed
to be unbounded, the resulting model will be coherent and
complete if and only if α1 · α2 ≤ 0 and mixed-strategies are
allowed. If α1 · α2 > 0 and only pure-strategies are considered,
the model produces a unique prediction for Y1 + Y2 for any given
realization of observables and a given value of payoff parameters
(see, e.g., Bresnahan and Reiss (1991), Bresnahan and Reiss (1990),
Berry (1992) and Tamer (2003)). In an incomplete information
setting, for realizations of Z that produce a unique Bayesian–Nash
equilibrium or, more generally, if the underlying equilibrium
selection mechanism is degenerate, optimal decision rules are of
the form
Yp = 1

{
X ′pβp + αp · Pr(Y−p = 1|Z, Yp = 1)− εp ≥ 0

}
.

Thus, if Z is observable and independent of εp, incomplete
information can naturally produce a coherent model.

4. Estimation when the distribution of ε is unknown

We now drop the assumption that G1,2(·, ·; ρ) is known to the
researcher.

4.1. Identification conditions

Under Assumptions A1–A2, the relationship between Y and
(X, Z) is described by a double-index model. Thus, we can
design an estimation procedure that relies only on this exclusion
restriction. A few related examples include Han (1987), Powell
et al. (1989), Ichimura and Lee (1991) and Stoker (1991).13 In
each instance, identification and estimation relies on some form
of index exclusion restriction combined with either invertibility or
smoothness assumptions concerning some functional (in our case,
conditional choice probabilities). We will use a semiparametric
likelihood-based procedure along the lines of Klein and Spady
(1993) (KS). As before, we will rely on semiparametric analog BNE
conditions.

13 In the context of incomplete-information games, Aradillas-Lopez (2007)
proposes a pairwise-difference estimation procedure based on a double-index
model.
Assumption B1 (Exclusion Restriction and Parameter Normaliza-
tion). Normalize any intercept in βp to zero for p = 1, 2. There
exist two random variables X01 ∈ X1 and X

0
2 ∈ X2 with nonzero

coefficients such that both X01 and X
0
2 are privately observed by

each player, Pr(X01 6= X
0
2 ) > 0, and (X

0
1 , X

0
2 , Z) is a continuously

distributed random vector conditional on all other variables. We
will partition Xp = (X0p , X

∗
p ). Let β

0
p be the coefficient of X

0
p and let

γp ≡ βp/β
0
p , ηp ≡ (1, γp)′ and σp ≡ αp/β

0
p . We will normalize

X ′pβp = X
0
p + X

∗
′

p γp ≡ X
′
pηp. Let γp ≡ (ηp, σp)

′ and γ ≡ (γ1, γ2)′.
The parameter of interest will now be γ ∈ Rk with parameter
space Γ ⊂ Rk, assumed to be compact. Note that the strategic in-
teraction parameters are now denoted by σ1, σ2.

Exclusion restrictions similar to B1 are common in multiple-index
and relatedmodels. We require X01 and X

0
2 to be privately observed

in order to make B1 compatible with Assumption B2 below. The
parameter ρ is no longer identified, and the dimension of the
identifiable parameter is now k instead of k + 3. When Gp(·)
and G1,2(·) were known, we were able to use this knowledge to
estimate π∗(θ, z), the unique solution to (3) when θ, z ∈ Nθ ×

Z. This is no longer possible. However, the self-consistent nature
of players’ equilibrium beliefs will allow us to work around this
difficulty.14 Define

t1(γ1) = X ′1η1 + σ1 Pr(Y2 = 1|Y1 = 1, Z),

t2(γ2) = X ′2η2 + σ2 Pr(Y1 = 1|Y2 = 1, Z),
(17)

and let t(γ ) = (t1(γ1), t2(γ2))′. We add the following assumption:

Assumption B2 (Distributional Properties of t(γ )). Let M > L + 1
be the constant described in B4, below. Then:

(i) S(X, Z) is compact. ∃ f > 0 such that fX,Z (x, z) ≥ f for all
(x, z) ∈ S(X, Z).

(ii) The randomvector (t(γ ), Z) is jointly continuously distributed
for all γ ∈ Γ . We will let ft(t; γ ) and ft,z(t, z; γ ) denote
the marginal and joint densities of t(γ ) and Z evaluated at
t(γ ) = t and Z = z. Both are M times differentiable with
respect to t and z with bounded derivatives for all γ ∈ Γ . The
conditional densities of t(γ ) given Z , and Z given t(γ ) will be
denoted by ft|z(t|z; γ ) and fz|t(t|z; γ ), respectively. Define

µY1Y2(t, z; γ ) = E [Y1Y2|t(γ ) = t, Z = z] ,

µYp(t, z; γ ) = E
[
Yp|t(γ ) = t, Z = z

]
.

(18)

ThenµY1Y2(t, z; γ ) andµYp(t, z; γ ) areM times differentiable
with respect to t and z, with bounded derivatives for all γ ∈ Γ .
Let PZ(t; γ ) = Pr(Z ∈ Z|t(γ ) = t). Then PZ(·) > 0 and is
M times differentiable with bounded derivatives uniformly in
Γ × S(X, Z).

Estimation will now take place through nested semi-parametric
procedures. Assumption B2 implies that the density ft(t; γ ) is
bounded away from zero uniformly over γ ∈ Γ and t ∈ S(t(γ )).

14 Self-consistency of beliefs implies that Prp(Y−p = 1|Yp = 1, Z) = Pr(Y−p =
1|Yp = 1, Z) for p = 1, 2.
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This avoids the need to do trimming in order to stay away from
realizations of observables where the said density is arbitrarily
close to zero. Trimming will now be done exclusively out of
equilibrium considerations15 to remain in the set Z. Fix τ ∈ R2
and define

PY |t(1, 1|τ ; γ ) = E[Y1Y2|t(γ ) = τ ],
PYp|t(1|τ ; γ ) = E[Yp|t(γ ) = τ ], for p = 1, 2.

(19)

Take two scalars π1, π2 ∈ R and let

ϕ1|t(π1, π2; γ , Z)

= π1 −
E
[
PY |t(1, 1|X ′1η1 + σ1π2, X

′

2η2 + σ2π1; γ )|Z
]

E
[
PY2|t(1|X

′

1η1 + σ1π2, X
′

2η2 + σ2π1; γ )|Z
]

ϕ2|t(π1, π2; γ , Z)

= π2 −
E
[
PY |t(1, 1|X ′1η1 + σ1π2, X

′

2η2 + σ2π1; γ )|Z
]

E
[
PY1|t(1|X

′

1η1 + σ1π2, X
′

2η2 + σ2π1; γ )|Z
] ,

and ϕt(π1, π2; γ , Z) = (ϕ1|t(π1, π2; γ , Z), ϕ2|t(π1, π2; γ , Z))′.
For z ∈ S(Z) and γ ∈ Γ , consider a solution for π1, π2 to

ϕt(π1, π2; γ , z) = 0. (20)

For γ 6= γ0, a solution to (20) does not solve the equilibrium
system (3). However, both solutions coincide when γ = γ0 for any
z ∈ Z. We will exploit this property, and estimate players’ beliefs
using a sequence of solutions to (20). We explain the details in the
following section.

4.2. Estimation of equilibrium beliefs

From now on, if (20) has a unique solution for the pair (γ , z),
we will denote it by π∗t (γ , z). Note that π

∗
t (γ0, z) = π∗(γ0, z)

(players’ equilibrium beliefs) for all z ∈ Z.

Assumption B3 (Regularity of Solutions to (20)). The uniform
regularity conditions described in A3(i) hold for system (20), for
the set Z, the new parameter space Γ and a neighborhood Nγ ⊆

Γ that contains γ0, the true parameter value. π∗t(s)(γ , z) will be
analogous to π∗(s)(θ, z). Assumption A3(ii) is also maintained.

Let H : RL → R be a kernel, and b → 0 a bandwidth
sequence. Let Hb(ψ) ≡ H(ψ/b). Take z ∈ RL and let f Z (z) =
(NbL)−1

∑N
m=1 Hb(Zm − z). Take the nonparametric estimators

P(Y1 = 1, Y2 = 1|Z = z) = (NbLf Z (z))−1
∑N
m=1 Y1mY2mHb(Zm−z)

and P(Yp = 1|Z = z) = (NbLf Z (z))−1
∑N
m=1 YpmHb(Zm − z), and

define

π1(z) =
P(Y1 = 1, Y2 = 1|Z = z)

P(Y2 = 1|Z = z)
,

π2(z) =
P(Y1 = 1, Y2 = 1|Z = z)

P(Y1 = 1|Z = z)
.

(21)

We will use the following sample analogs of (17) for the mth
observation

t1m(γ1) = X ′1mη1 + σ1π2(Zm) and
t2m(γ2) = X ′2mη2 + σ2π1(Zm),

with tm(γ ) = (t1m(γ1), t2m(γ2))′. We will use a second set of
kernel and bandwidth, given by K : R2 → R and h → 0,

15 Unknown densities were allowed to be arbitrarily close to zero in Section 3.
Trimming in that case was done both to bound the density of Z uniformly away
from zero, and to remain in the region Z where BNE equilibria was assumed to
possess the features studied in Sections 2.3 and 2.4.
with Kh(ψ) ≡ K(ψ/h). Fix a value τ ∈ R2, let f t(τ ; γ ) =
(Nh2)−1

∑N
m=1 Kh(tm(γ )− τ) and define

PY |t(1, 1|τ ; γ ) =
(
Nh2f t(τ ; γ )

)−1 N∑
m=1

Y1mY2mKh
(
tm(γ )− τ

)
PYp|t(1|τ ; γ ) =

(
Nh2f t(τ ; γ )

)−1 N∑
m=1

YpmKh
(
tm(γ )− τ

)
for p = 1, 2.

(22)

We are finally ready to describe the semiparametric sample analog
to (20). Take z ∈ RL and let f̂Z (z) = 1

NbL
∑N
n=1 Hb(Zn− z). Now take

π ≡ (π1, π2) ∈ R2 and define

δ1,2|t(π; γ , z) =
(
NbL̂fZ (z)

)−1 N∑
n=1

PY |t
(
1, 1|X ′1nη1

+ σ1π2, X ′2nη2 + σ2π1; γ
)
Hb(Zn − z),

δp|t(π; γ , z) =
(
NbL̂fZ (z)

)−1 N∑
n=1

PYp|t
(
1|X ′1nη1

+ σ1π2, X ′2nη2 + σ2π1; γ
)
Hb(Zn − z),

ϕ1|t(π; γ , z) = π1 −
δ1,2|t(π; γ , z)

δ2|t(π; γ , z)
,

ϕ2|t(π; γ , z) = π2 −
δ1,2|t(π; γ , z)

δ1|t(π; γ , z)
,

ϕt(π; γ , z) =
(
ϕ1|t(π; γ , z), ϕ2|t(π; γ , z)

)′
,

Q t(π; γ , z) = −ϕt(π; γ , z)
′ϕt(π; γ , z).

(23)

Consider the following problem

Max
π∈[0,1]2

Q t(π; γ , z), (24)

and define π t(γ , z) = Solution to (24) with the smallest
value for the π1 component. (25)

In the Appendix we carefully characterize the uniform (in [0, 1]2×
Z × Θ) convergence properties of the objects in (23) to
their population counterparts. Given this, and Assumption B3,
the computational implementation of finding (25) would be
undertaken using the iterative procedure described in Eq. (7),
with the starting points mentioned there. We will use π t(γ , z)
to estimate players’ beliefs. In Section 3.2, knowledge of Gp(·)
and G1,2(·) allowed us to estimate beliefs in one step. Now,
the analogous procedure took us three steps and two sets of
kernels and bandwidths, which must now satisfy Assumption B4,
described below.

4.3. Estimation of γ

Let π∗(s)(·) and π
∗
t(s)
(·) be as defined in Assumptions A3 and B3.

Define two new indices

t∗1 (γ ) = X
′

1η1 + σ1π
∗

2t(s)
(γ , Z),

t∗2 (γ ) = X
′

2η2 + σ2π
∗

1t(s)
(γ , Z), t∗(γ ) =

(
t∗1 (γ ), t

∗

2 (γ )
)
.
(26)

We will exploit the fact that if z ∈ Z, then
∂π∗
(s)(γ ,z)

∂γ

∣∣∣∣
γ=γ0

=

∂π∗(γ ,z)
∂γ

∣∣∣∣
γ=γ0

, where π∗(γ0, z) is pair of equilibrium beliefs that

uniquely solve (3). For y ∈ {(0, 0), (0, 1), (1, 0), (0, 0)} and
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τ ≡ (τ1, τ2) ∈ R2 define P(y|τ) in the following way: P(1, 1|τ) =
Pr(ε1 ≤ τ1, ε2 ≤ τ2), P(0, 1|τ) = Pr(ε1 > τ1, ε2 ≤ τ2),
P(1, 0|τ) = Pr(ε1 ≤ τ1, ε2 > τ2), and P(0, 0|τ) = Pr(ε1 >
τ1, ε2 > τ2). Given our assumptions, if Z ∈ Z, then Pr(Y =
y|X, Z) = P(y|t∗(γ0)). Define
PY |t∗Z(y|τ ; γ ) = Pr(Y = y|t

∗(γ ) = τ , Z ∈ Z),

∂P(y|t∗(γ0))
∂γ

≡

[
∇τP(y|t∗(γ ))

∂t∗(γ )
∂γ

]
γ=γ0

.

Let Ft∗Z(·|τ , γ ) be the distribution of (X, Z) given {t
∗(γ ) =

τ , Z ∈ Z}. Let A(γ ) = t∗(γ0) − t∗(γ ). Adding and subtracting
t∗(γ ) and noting that A(γ0) = 0, we get
∂PY |t∗Z(y|t

∗(γ ); γ )

∂γ

∣∣∣∣
γ=γ0

=
∂

∂γ

[∫
P(y|A(γ )+ t∗(γ ))dFt∗Z(x, z|t

∗(γ ), γ )

]
γ=γ0

=
∂

∂γ

{[
P(y|t∗(γ ))

∫
dFt∗Z(x, z|t

∗(γ ), γ )︸ ︷︷ ︸
=1

]

+

[∫
P(y|A(γ )+ t∗(γ0))dFt∗Z(x, z|t

∗(γ0), γ0)

]}
γ=γ0

=
∂P(y|t∗(γ0))

∂γ
− E

[
∂P(y|t∗(γ0))

∂γ

∣∣∣∣t∗(γ0), Z ∈ Z

]
. (27)

This parallels the change-of-variable technique in Eqs. (40)–(42) in
KS. As before, letW ≡ (Y , X, Z) and define

`tZ(W , γ , π
∗

t(s)
(γ , Z)) =

[
Y1Y2 log PY |t∗Z(1, 1|t

∗(γ ); γ )

+ (1− Y1)Y2 log PY |t∗Z(1, 0|t
∗(γ ); γ )

+ Y1(1− Y2) log PY |t∗Z(1, 0|t
∗(γ ); γ )

+ (1− Y1)(1− Y2) log PY |t∗Z(0, 0|t
∗(γ ); γ )

]
1{Z ∈ Z},

SγZ(W , γ0) =
∂`
f
Z(W , γ , π

∗
t (γ , Z))

∂γ

∣∣∣∣
γ=γ0

.

(28)

SγZ(W , γ0) can be derived directly from (27), which also yields
E[SγZ(W , γ0)] = 0. Take γ ∈ Γ and let be π t(·) as in (25). Define
t̂1m(γ1) = X ′1mη1 + σ1π2t (γ , Zm),
t̂2m(γ2) = X ′2mη2 + σ2π1t (γ , Zm),

t̂m(γ ) =
(̂
t1m(γ1), t̂2m(γ2)

)
.

Take K(·), h as in (22). Fix τ ∈ R2, f̂tZ(τ ; γ ) = (Nh2)−1
∑N
m=1 Kh

(̂tm(γ )− τ)1{Zm ∈ Z}, and let

P̂Y |t∗Z(1, 1|τ ; γ ) =
(
Nh2̂ftZ(τ ; γ )

)−1 N∑
m=1

Y1mY2mKh

×
(̂
tm(γ )− τ

)
1{Zm ∈ Z}

P̂Y |t∗Z(0, 1|τ ; γ ) =
(
Nh2̂ftZ(τ ; γ )

)−1 N∑
m=1

(1− Y1m)Y2mKh

×
(̂
tm(γ )− τ

)
1{Zm ∈ Z}

P̂Y |t∗Z(1, 0|τ ; γ ) =
(
Nh2̂ftZ(τ ; γ )

)−1 N∑
m=1

Y1m(1− Y2m)

× Kh
(̂
tm(γ )− τ

)
1{Zm ∈ Z}

P̂Y |t∗Z(0, 0|τ ; γ ) =
(
Nh2̂ftZ(τ ; γ )

)−1 N∑
m=1

(1− Y1m)(1− Y2m)

× Kh
(̂
tm(γ )− τ

)
1{Zm ∈ Z}.
If the logarithms exist for the nth observation, let

̂̀t
Z (Wn, γ , π t(γ , Zn)) =

[
Y1nY2n log P̂Y |t∗Z(1, 1|̂tn(γ ); γ )

+ (1− Y1n)Y2n log P̂Y |t∗Z(0, 1|̂tn(γ ); γ )

+ Y1n(1− Y2n) log P̂Y |t∗Z(1, 0|̂tn(γ ); γ )

+ (1− Y1n)(1− Y2n) log P̂Y |t∗Z(0, 0|̂tn(γ ); γ )
]
1{Zn ∈ Z}, (29)

and let ̂̀tZ(Wn, γ , π t(γ , Zn)) be zero otherwise.
Assumption B4 (Kernels and Bandwidths). N1/2−̃δbLh6 → ∞,

N1/2
(
b/h4

)M
→ 0, N1/2hM/bL → 0. K(·) isM-times differentiable

with bounded derivatives. Both K(·) and H(·) are symmetric,
Lipschitz-continuous, bias-reducing kernels of orderM .

Assumption B4 describes the relative difference in the rates of
convergence to zero for the bandwidths b and h that will be
required to achieve

√
N-consistency of the estimator γ̂ . Going back

to B2, M plays the same role as M in Assumption A6. They both
indicate the degree of smoothness required from the distributions
involved. It is clear from B4 thatM > M .

Assumption B5 (Technical). γ0 is an interior point of Γ . The dom-
inance condition in Assumption A7 is maintained. Let SγZ(W , γ0)
be as defined in Eq. (28). Let IZ = E[SγZ(W , γ0)SγZ(W , γ0)

′
]. Then

IZ is invertible.

We estimate γ by solving Maxγ∈Γ 1N
∑N
n=1

̂̀t
Z(Wn, γ , π t(γ , Zn)).

Consistencywill followbecause supγ∈Γ |
1
N

∑N
n=1

̂̀t
Z(Wn, γ , π t(γ ,

Zn))−E[`t(W , γ , π∗t(s)(γ , Z))]|
p
−→ 0, and E[`t(W , γ , π∗t(s)(γ , Z))]

is uniquely maximized at γ = γ0, when it is equal to
E[`(W , γ0, π∗(γ0, Z))], the expected value of the trimmed condi-
tional log-likelihood of Y given X, Z . Asymptotic normality follows
from a linear representation of 1N

∑N
n=1

̂̀t
Z(Wn, γ , π t(γ , Zn)) that

holds uniformly up to a op(N−1/2) term inNγ , and the usual Taylor
approximation around γ0.

Theorem 2. Define Ψ (Y , Z) as given in Box II.
Let SγπZ(Wn, γ0)

k×2
denote the partial derivative of SγZ(Wn, γ0) with

respect to π∗(γ0, Zn). Let D(Z, γ0) be as in Theorem 1, with θ0
replaced by γ0. Let B(·) and t∗(γ0) be as defined in (15) and (26),
respectively. Let ∇π

3×2
E[B(Y )|t∗(γ0)] denote the partial derivative of

E[B(Y )|t∗(γ0)] with respect to π∗(γ0, Z). Let IZ be as defined in
Assumption B5. Denote:

ξZ(W , γ0) = E
[
SγπZ(W , γ0)|t

∗(γ0)
]
− E

[
SγπZ(W , γ0)|Z

]
,

AZ(Xn, Zn, γ0) = E [ξZ(W , γ0)|Z = Zn]D(Zn, γ0)
× [E [B(Yn)|Xn, Zn]− E [B(Yn)|Zn]] ,

BZ(Wn, γ0) = E
[
E [ξZ(W , γ0)|Z]D(Z, γ0)|t∗(γ0) = t∗n (γ0)

]
× [E [B(Yn)|Xn, Zn]− B(Yn)] ,

CZ(Wn, γ0) = E
[
E
[
E [ξZ(W , γ0)|Z]D(Z, γ0)|t∗(γ0)

]
∇π

× E
[
B(Y )|t∗(γ0)

]
|Z = Zn

]
Ψ (Yn, Zn; γ0).

Let ̂̀tZ(Wn, γ , π t(γ , Zn)) be as defined in (29) and let γ̂ be the
solution to

Max
γ∈Γ

1
N

N∑
n=1

̂̀t
Z (Wn, γ , π t(γ , Zn)) .
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Define Ψ (Y , Z) =


Pr(Y1 = 1|Y2 = 1, Z) [Y2 − Pr(Y2 = 1|Z)]− [Y1Y2 − Pr(Y1 = 1, Y2 = 1|Z)]

Pr(Y2 = 1|Z)
Pr(Y2 = 1|Y1 = 1, Z) [Y1 − Pr(Y1 = 1|Z)]− [Y1Y2 − Pr(Y1 = 1, Y2 = 1|Z)]

Pr(Y1 = 1|Z)


Box II.
If Assumptions A1–A2 hold, and Assumptions A3–A7 are modified or
replaced according to B1–B5, then

γ̂ − γ0 = I−1Z ×
1
N

N∑
n=1

[
SγZ(W , γ0)+ AZ(Xn, Zn, γ0)

+ BZ(Wn, γ0)+ CZ(Wn, γ0)
]
+ op(N−1/2).

As in Theorem 1, ignoring the exact functional form of equilibrium
beliefs impacts the asymptotic variance of our estimator. If
these beliefs were of known functional form, I−1Z would be
the semiparametric efficiency bound (see Chamberlain (1986),
Cosslett (1987) and Newey (1990), Eq. (28) or KS, Eq. (50)). See
Aradillas-Lopez (2007) for efficiency bounds and efficient influence
functions in models with strategic interaction and incomplete
information. The term AZ(Xn, Zn, γ0) in the influence function of
γ̂ is analogous to AZ(Xn, Zn, θ0) in Eq. (16). The term BZ(Wn, γ0)
appears due to the lack of knowledge about Gp(·) and G1,2(·)
in the estimation of players’ equilibrium beliefs. The use of the
nonparametric estimators defined in (21) as plug-ins in (22) is the
reason why the term CZ(Wn, γ0) appears. Analogously to the case
of θ̂ , the relative magnitude of these terms depends on the ability
of signals Z to predict private information.

5. Extensions

5.1. Beliefs conditioned on unobservables

Suppose Player p conditions his beliefs on Z and εp, which
is unobserved by the econometrician. In a recent paper, Grieco
(2010) has described inferential methods for games where beliefs
are conditioned on unobservables. However, the results there
specialize to the case where X = Z . We will outline how to extend
our methodology to the case where beliefs are conditioned on
unobservables while allowing for X 6= Z . Let g1|2(ε1|ε2; ρ) denote
the conditional pdf of ε1 given ε2 and denote its counterpart by
g2|1(ε2|ε1; ρ). Players’ optimal choices are now given by
Y1 = 1{X ′1β1 + α1π

∗

2 (Z, ε1; θ)− ε1 ≥ 0} and
Y2 = 1{X ′2β2 + α2π

∗

1 (Z, ε2; θ)− ε2 ≥ 0}.
We maintain the assumption that X, Z are independent of εp. This
yields

π∗1 (Z, ε2; θ) =
∫ [∫

1
{
X ′1β1 + α1π

∗

2 (Z, ε1; θ)− ε1 ≥ 0
}

× g1|2(ε1|ε2; ρ)dε1

]
f (X1|Z)dX1,

π∗2 (Z, ε1; θ) =
∫ [∫

1
{
X ′2β2 + α2π

∗

1 (Z, ε2; θ)− ε2 ≥ 0
}

× g2|1(ε2|ε1; ρ)dε2

]
f (X2|Z)dX2.

(30)

The equilibrium analysis in Sections 2.3 and 2.4 can be extended
to this case. Furthermore, a solution can be found through an
iterative procedure along the lines of Eq. (7). For a pair of real-
valued, measurable functions φA : S(Z) × S(ε1) → [0, 1] and
φB : S(Z)× S(ε2)→ [0, 1], define

ζ1 (X1, φA(Z, ·), ε2; θ) =
∫

1
{
X ′1β1 + α1φA(Z, ε1)− ε1 ≥ 0

}
× g1|2(ε1|ε2; ρ)dε1,

ζ2 (X2, φB(Z, ·), ε1; θ) =
∫

1
{
X ′2β2 + α2φB(Z, ε2)− ε2 ≥ 0

}
× g2|1(ε2|ε1; ρ)dε2.

Choose a starting function π02 : S(Z)× S(ε1)→ [0, 1], and let

π11 (Z, ε2; θ) = E
[
ζ1
(
X1, π02 (Z, ·), ε2; θ

)
|Z, ε2

]
π22 (Z, ε1; θ) = E

[
ζ2
(
X2, π11 (Z, ·; θ), ε1; θ

)
|Z, ε1

]
π31 (Z, ε2; θ) = E

[
ζ1
(
X1, π22 (Z, ·; θ), ε2; θ

)
|Z, ε2

]
π42 (Z, ε1; θ) = E

[
ζ2
(
X2, π31 (Z, ·; θ), ε1; θ

)
|Z, ε1

]
....

(31)

This procedure converges to a solution to (30) for a given (z, ε1, ε2).
If we choose π02 = 0, then the sequence {π

k
1 (z, ε2), π

k
2 (z, ε1)}k is

monotonic for all possible values16 of α1 and α2. It is also bounded
in [0, 1]2 w.p.1 and consequently it has a limit. Any such limit is
a solution to (30). This is also immediate to see for example if we
choose π02 = 1. Other starting values would also converge, but
π02 ∈ {0, 1} simplify computations, and make the monotonicity
argument transparent. Let (H(·), b) and (K(·), h) denote a pair of
kernels and bandwidths, with Hb(ψ) ≡ H(ψ/b) and Kh(ψ) ≡
K(ψ/h). A sample analog to the iterative procedure in (31) can be
done as follows
1. Draw an i.i.d. sample (ε1s, ε2s)Ss=1 from the joint distribution
g1,2(·, ·; ρ).
2. For any realization z and a given value (ε1, ε2), define
ζ̂1 (X1, φA(z, ·), ε2; θ)

=

S∑
s=1

1
{
X ′1β1 + α1φA(z, ε1s)− ε1s ≥ 0

}
Hb(ε2s − ε2)

S∑
s=1
Hb(ε2s − ε2)

,

ζ̂2 (X2, φB(z, ·), ε1; θ)

=

S∑
s=1

1
{
X ′2β2 + α2φB(z, ε2s)− ε2s ≥ 0

}
Hb(ε1s − ε1)

S∑
s=1
Hb(ε1s − ε1)

.

3. For any realization ε1r , ε2r in our simulated sample, a
semiparametric sample analog to the iterative procedure in (31)
would be

π̂11 (z, ε2r; θ) =
N∑
n=1

ζ̂1
(
X1n, π02 (z, ·), ε2r; θ

)
Kh(Zn − z)

N∑
n=1
Kh(Zn − z)

π̂22 (z, ε1r; θ) =
N∑
n=1

ζ̂2
(
X2n, π11 (z, ·; θ), ε1r; θ

)
Kh(Zn − z)

N∑
n=1
Kh(Zn − z)

16 As before, if α1α2 = 0, a solution to (30) is trivially unique.
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π̂31 (z, ε2r; θ) =
N∑
n=1

ζ̂1
(
X1n, π22 (z, ·; θ), ε2r; θ

)
Kh(Zn − z)

N∑
n=1
Kh(Zn − z)

....

Starting values could be determined as we described above.
Let π̂∗1 (Zn, ε1s; θ), π̂

∗

1 (Zn, ε1s; θ) denote the limit of this iterative
procedure. Estimation of θ could rely on the simulated conditional
probabilities

P̂r (Y1 = 1|X1n, Zn; θ)

=
1
S

S∑
s=1

1
{
X ′1nβ1 + α1π̂

∗

2 (Zn, ε1s; θ)− ε1s ≥ 0
}

P̂r (Y2 = 1|X2n, Zn; θ)

=
1
S

S∑
s=1

1
{
X ′2nβ1 + α2π̂

∗

1 (Zn, ε2s; θ)− ε2s ≥ 0
}
.

The properties of an estimation procedure such as this one are
currently under investigation.

5.2. Games with more players and actions

Consider a game played by a discrete set of players Ω =

{1, . . . ,P }, where player p = 1, . . . ,P can choose among a set
of Sp + 1 possible actions, labeled (a0p, a

1
p, . . . , a

Sp
p ). Let Ap denote

the action chosen by p and define

Y `p = 1
{
Ap = a`p

}
.

5.2.1. Action profiles
Let ‘‘−p’’ denote the collection of player p’s opponents. Denote

a
˜
−p =

{
a`qq
}
q6=p

,

where a`qq denotes the action played by Player q 6= p.

The total number of action profiles by p’s opponents is
∏
q6=p(Sq +

1) ≡M−p. Denote the space of choice profiles by p’s opponents by
A−p = {a

˜

1
−p, . . . , a

˜

M−p
−p } and let A

˜
−p ∈ A−p be the action profile

selected by them. For each j = 1, . . . ,M−p define

Y
˜

j
−p = 1

{
A
˜
−p = a

˜

j
−p

}
, and let Y

˜
−p =

(
Y
˜

1
−p, . . . ,Y

˜

M−p
−p

)′
.

5.2.2. Behavior
Let V (a`p) denote the payoff to Player p of choosing the `th

action. A generalization of the normal form payoffs in the 2 × 2
game is given by

Vp(a0p) = 0, Vp(a`p) = X
′

p`βp` + α
′

p`Y
˜
−p − εp`

for ` = 1, . . . , Sp, and αp` ≡
(
α1p` , . . . , α

M−p
p`

)′
.

Suppose the game has the same information structure as its
2 × 2 counterpart examined above. Player p’s expected utility of
choosing action a`p is then

Ep
[
Vp(a`p)

]
= X ′p`βp` + α

′

p`Ep
[
Y
˜
−p|Z

]
− εp` ,

` = 1, . . . , Sp. Ep
[
Vp(a0p)

]
= 0

≡ X ′p`βp` + α
′

p`π−p(Z)− εp`

˜

where π
˜
−p(Z) denotes Player p’s subjective expectation of Y

˜
−p

given Z . Players maximize their subjective expected utility which
yields the decision rule

Y `p = 1
{
Ep
[
Vp(a`p)

]
> max

κ 6=`

{
Ep
[
Vp(apκ)

]}}
,

` = 0, . . . , Sp.

5.2.3. Equilibrium beliefs
Denote εp = (εp1 , . . . , εpSp )

′, Xp = (X ′p1 , . . . , X
′
pSp
)′, θp =

(β ′p1 , . . . , β
′
pSp
, α′p1 , . . . , α

′
pSp
)′ and θ = (θ ′1, . . . , θ

′
P )
′. Fix an

arbitrary vector of constants π
˜
−p = (π1

−p, . . . , π
M−p
−p )′ ∈ RM−p

and let

P`p
(
Xp, Z;π

˜
−p, θp

)

=



Pr

(
X ′p`βp` + α

′

p`π
˜
−p − εp`

> max

{
0,max

κ 6=`
κ≥1

(
X ′pκβpκ + α

′

pκπ
˜
−p − εpκ

)}∣∣∣∣∣ Xp, Z
)

if ` = 1, . . . , Sp

Pr
(
max

`=1,...,Sp

(
X ′p`βp` + α

′

p`π
˜
−p − εp`

)
< 0

∣∣∣∣Xp, Z)
if ` = 0.

P`p
(
Z;π
˜
−p, θp

)
= E

[
P`p
(
Xp, Z;π

˜
−p, θp

)
|Z
]
.

Suppose the distribution of εp is assumed known up to a finite-
dimensional parameterΣp. Extensions of Assumption A4(ii) to this
multidimensional casewoulddetermine the identification features
ofΣp. Reexpress the probabilities in the previous equation as

P`p
(
Xp, Z;π

˜
−p, θp,Σp

)
and P`p

(
Z;π
˜
−p, θp,Σp

)
to reflect their dependence on Σp. Suppose we maintain the
assumption that εp is independent of (Xq, Zq) for all q and p. Let
M ≡

∑P
p=1M−p and fix a realization z ∈ S(Z). For such a

realization, equilibriumbeliefswould be any collection {π
˜
−p}

P
p=1 ∈

RM that solves the followingM ×M system

π
j
−p =

∏
q6=p

a`q∈a
˜

j
−p

P`q
(
z;π
˜
−q, θq,Σq

)
,

p = 1, . . . ,P ; j = 1, . . . ,M−p.

Existence and uniqueness of BNE can be studied in an analogous
way to Sections 2.3 and 2.4. A sample analog to the BNE system
described above would be of the form

π
j
−p =

∏
q6=p

a`q∈a
˜

j
−p


N∑
n=1

P`q
(
Xpn , z;π

˜
−q, θq,Σq

)
Kh(Zn − z)

N∑
n=1
Kh(Zn − z)

 ,
p = 1, . . . ,P ; j = 1, . . . ,M−p.

The case in which the distribution of εp is unknown could be
addressed as in Section 4 by using pseudo equilibrium conditions
which would rely on the multiple-index nature of the game.
The extension to beliefs conditioned on unobservables could be
approached in a way analogous to the one outlined in Section 5.1.
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6. A simple empirical example

Consider two firms, p = 1, 2 competing against each other in
a given industry. At the end of year t , each firm commits to either
an ‘‘aggressive’’ or a ‘‘passive’’ capital investment strategy for year
t + 1. Let Kpt and Ipt denote firm p’s net capital stock at the end of
year t , and net capital investment during year t , respectively; and
let Rpt = Ipt /Kpt−1 denote firm p’s rate of capital investment in year
t . We say that firm p commits to an aggressive investment strategy
for year t + 1 if Rpt+1 > Rpt . We will let Ypt = 1{Rpt+1 > Rpt }.
In order to adhere to the structure of the game analyzed above,
two features must be present. First, it must be a game played by
two firms. Second, players must commit simultaneously to their
choices in an incomplete-information environment.
All firm-level information was collected from Standard and

Poor’s Industrial Compustat-North America data set. Let S1t denote
the total real net sales of the largest firm in the industry in year
t and let S2t and S3t be the corresponding figures for the second
and – if it exists – the third largest firms. For any given year t , we
considered an industry at the NAICS level as a candidate for having
two dominant players in year t if S2t ≥ 0.05∗ S1t (otherwise it was
considered to have only one dominant player), and if S3t < 0.05 ∗
S2t (otherwise it was considered to have at least three dominant
players). From the resulting pool of candidate industries we kept
only those that satisfied these criteria for years t , t − 1 and t − 2.
Thus, the population of industries that we considered as having
two dominant players in t = 1990 were those that satisfied the
above criteria not only in 1990, but also in 1988 and 1989. We
did this in order to eliminate those whose structure had shifted
towards having two dominant firms only in the recent past.
For each industry, we labeled the firm with the largest market

share as ‘‘Player 1’’, with the remaining firm labeled as ‘‘Player 2’’.
Let Qpt denote player p’s Tobin’s Q at the end of year t . Denote
∆%Spt = (Spt − Spt−1)/Spt−1 and 1Qpt = Qpt − Qpt−1 . Let Xpt =
(1,1Qpt ,∆%Spt , Rpt ). Tobin’s Q compares the capitalized value
of a marginal investment in real capital to its replacement cost.
According to the net present value (NPV) theory of investment,
Player p should adjust its investment decisions according to
changes in Qpt . We include ∆%Spt to account for the influence of
short-term firm performance. Finally, a firm’s propensity to act
aggressively may depend on the investment rate itself. This is the
reason why we also included Rpt in Xpt . Qpt was computed as
in Jovanovic and Rousseau (2003), who also used the Compustat
database. Spt was computed using firm p’s net sales. To compute Ipt
weused capital expenditures in property, plant and equipment.Kpt
was measured as the net value of property, plant and equipment.
Price deflators for the value of shipments and capital expenditures
were taken from the NBER-CES Manufacturing Database.
Public knowledge of Xpt is directly tied to the timing in the

release of Player p’s financial statements. Regulations in place
during the period analyzed here (1986–1994) allowed firms to
strategically delay such disclosure (see Chamley and Gale (1994)
for a related model). This delay is the source of incomplete
information in our example. At the end of year t , player p knows the
exact realization of Xpt but knows that of X-pt with a lag of at least
one quarter. We will assume here that Zt = (X1t−1 , X2t−1).

17 Note
that, after the fact, the researcher is able to observe Xpt and
Ypt along with Zt for p = 1, 2. Players’ unobserved shocks εpt
are assumed to have a logistic marginal distribution, and a joint
distribution given by an FGM copula function
G1,2(ε1, ε2; ρ)
= G1(ε1)G2(ε2) [1+ ρ(1− G1(ε1))(1− G2(ε2))] ,

17 Some of the variables used to compute Xp were not consistently reported for
all firms in Compustat’s quarterly database. However, all figures were consistently
reported annually.
Table 1
Estimation results. (Standard errors in parentheses.)

Player 1 Player 2

Intercept −1.6285* −0.2799
(0.7298) (0.5804)

1Qp 1.1452* 0.2826
(0.4020) (0.3199)

∆%Sp −2.8965* −2.7802*
(0.9805) (0.6169)

Rp 7.4691* 5.5557*
(1.6078) (1.2537)

αp −0.1906 −1.4531*
(0.7683) (0.7027)

ρ 0.8093*
(0.3407)

* Statistically significant at a 5% level.

with −1 ≤ ρ ≤ 1. This yields Corr(ε1, ε2) = ρ. In addition, both
shocks are independent if and only if ρ = 0. These distributions
are assumed to be time-invariant, which could be easily relaxed.
The years included in the sample were t = {1986, 1988, 1990,

1992, 1994}. All observations were pooled18 together, resulting
in a sample size of N = 245. We have Zt ∈ R4, all of which
are assumed continuously distributed. The following statistics
summarize the data,

Ê[Y1] = 0.5743, Ê[Y2] = 0.4729,
Ê[Y1Y2] = 0.2567, Ĉorr(Y1, Y2) = −0.0602,
Ê[Y1|Y2 = 1] = 0.5428, Ê[Y1|Y2 = 0] = 0.6025,
Ê[Y2|Y1 = 1] = 0.4470, Ê[Y2|Y1 = 0] = 0.5079.

The choices observed in the datawere relativelywell spread across
the four possible outcomes. The choice profile more frequently
observed was (1, 0) and the least frequently observed was (0, 0).
All these features remained relatively stable across the years in the
sample.
The bias-reducing kernel used is the product of a polynomial

and a standard normal density function.We chose a trimming setZ
that avoids large, positive values of Ê[Qpt |Zt ] for p = 1, 2. If mutual
fighting hurts both players and the predictions of NPV investment
theory hold, this trimming criterion would reduce the likelihood
of multiple equilibria. Specifically, we dropped observations for
which Ê[Qpt |Zt ] was above the 98th percentile for p = 1, 2. This
eliminated 8 observations. We estimated the model following the
steps described in Section 3. Table 1 presents the results.19 The
sign for the coefficient of 1Qp is positive, as predicted by the
NPV theory of investment. However, it is statistically significant
only for Player 1 (the dominant firm). The coefficient of∆%Sp was
statistically the same for both players, and this was also true for
that of Rp. The composite hypothesis H0 : β∆%S1 = β∆%S2 , βR1 =

βR2 could not be rejected.
20 Looking at the strategic interaction

estimates, it appears that mutual aggression affects both players
negatively. This effect is statistically significant only for the small
player (Player 2). Finally, our estimation results provide evidence

18 Implicit in our modeling choice of taking observations at least two years apart
is the assumption that εt ≡ (ε1t , ε2t ) and εs ≡ (ε1s, ε2s) are jointly i.i.d. for all
|t − s| ≥ 2.
19 The bandwidth h and the kernel-parameter σ (in fact, the product σ × h) were
chosen doing a simple grid search over a set of candidate values and choosing the
ones thatminimized the difference (using the Frobeniusmatrix-norm) between the
estimated asymptotic variance–covariance matrix described in Theorem 1 and a
block-resampled counterpart. The latter was computed by eliminating blocks of ten
observations at a time. These blocks were determined by ranking all observations
according to‖Z‖ (after eliminating the observations in the trimming setZdescribed
above). The values chosen were h× σ = 2/10.
20 All tests mentioned here were conducted at a 5% significance level.
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of a positive and statistically significant correlation coefficient ρ
between the unobserved shocks, ε1 and ε2.
We estimated amodified version of the gamewhere the degree

of strategic interaction depends on players’ relative ‘‘distance’’,
measured simply by the sales ratio S2/S1 ∈ (0, 1). Omitting the
time subscript, players’ optimal behavior is

Yp = 1
{
X ′pβp +

[
δp + γp (S2/S1)

]
× Prp(Y−p = 1|Yp = 1, Z)︸ ︷︷ ︸

Player p’s beliefs.

−εp ≥ 0
}
, for p = 1, 2, (32)

where the strategic interaction parameter αp is now generalized to
δp+ γp(S2/S1). We re-estimated the model using the same signals,
kernels, etc. as before. There was little change in the estimate
results for βp. Fig. 2 shows estimates and 95% confidence bands
for the strategic interaction component. Our results suggest that
mutually aggressive behavior becomes increasingly costly as firms
become closer to each other (i.e., as S2/S1 → 1).While the strategic
interaction effect was statistically significant for player 2 at every
value of S2/S1, we were still unable to reject the hypothesis that
there is no strategic interaction effect for player 1 (the dominant
firm).

7. Concluding remarks

The amount of information that agents are assumed to
possess and their degree of rationality determine the equilibrium
properties of any game-theoretic model. Such properties have an
immediate impact on the identification features of the model.
Under certain circumstances, private information in payoffs
reduces the prevalence of multiple equilibria and this has
significant identification implications. In such settings, conditional
choice probabilities for each outcome of the game can be point-
identified, and it is possible to design an estimation procedure
that does not require prior knowledge of the sign of strategic
among the players. This stands in contrast with the complete
information version of the game. To illustrate these issues we
studied a 2 × 2 game that has been previously analyzed in the
context of complete information. We compared the equilibrium
features of the game with and without complete information.
Concentrating on the incomplete information environment, we
proposed likelihood-based estimation methods that replicated
the population equilibrium conditions using well-defined sample
analogs. The estimation procedures were intrinsically tied to the
equilibrium properties of the underlying game under weaker
semiparametric assumptions than those in the existing literature.
Separate procedures were described for the case in which the
distribution of unobservables is assumed known, and the case in
which it is unknown. In both cases,

√
N-consistency relied on

equilibrium uniqueness in a neighborhood of the true parameter
value and regularity of (possibly multiple) equilibria elsewhere
in the parameter space. The efficiency features of the resulting
estimators depended on the extent to which the signals explain
the variation in players’ private information. As we outlined, the
principles and methods used here can be extended to games with
more players and actions, or games with beliefs conditioned on
unobservables. Ongoing research focuses on these extensions.
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Appendix. Mathematical appendix

A.1. A uniform linear representation result

Linear representation theorems like the one we will present
here have been known and used in the literature under assump-
tions very similar to ours. Closely related examples include Lemma
3 in Collomb and Hardle (1986) (henceforth CH) which was in-
voked for example by Stoker (1991) and byAhn andManski (1993).
See also Theorem 1′ in Lewbel (1997) and the references cited
there. A slight difference with respect to existing results is that our
semiparametric estimators must have uniform convergence prop-
erties both over the parameter spaceΘ and over the trimming set
Z. The existing results cited consider uniform convergence over
compact subsets of the support (e.g, over Z in our case). The spe-
cific conditions we enumerate in the result below are tailor-made
to accommodate the technical assumptions made throughout the
paper. The proof could rely on the type of combinatorial meth-
ods and maximal inequalities in Andrews (1994) and particularly,
the results in Sherman (1994a,b). A direct, step-by-step proof us-
ing a chaining argument similar to Huber (1967) can be found in
the author’s website, at http://www.ssc.wisc.edu/~aaradill/spinfo-
appendix-suppl.pdf and they are also readily available from the au-
thor. We omit the details here for space. Suppose (X, Z) ∈ RP ×RL
is a random vector with joint density fX,Z (x, z) and letM ≥ L+ 1.
Assume an i.i.d. sample {Xn, Zn}Nn=1. Fix γ ∈ RD and z ∈ RL, con-
sider a function η : RP × RL × RD → R, a kernel K : RL → R
and a bandwidth hN → 0. Let KhN (ψ) = K(ψ/hN) and de-
fine RN(z, γ ) = (NhLN)

−1∑N
n=1 η(Xn, z, γ )KhN (Zn − z), f̂ZN (z) =

(NhLN)
−1∑N

n=1 KhN (Zn − z) and µN(z, γ ) = RN(z, γ )/̂fZN (z). For
any z ∈ S(Z) let µ(z, γ ) = E[η(X, z, γ )|Z = z].

Assumption S1. (A) Z is absolutely continuous w.r.t. Lebesgue
measure. (B) fX,Z (x, z) and fZ (z) are bounded, M times differen-
tiable with respect to z with bounded derivatives.

Assumption S2. There exist compact sets Z ⊂ S(Z) with
infz∈Z fZ (z) > 0, and Γ ⊂ RD such that: (A) µ(z, γ ) is M times
differentiable w.r.t. z and γ with bounded derivatives ∀z ∈ S(Z),
γ ∈ Γ . (B) There existsη : RP → R+ such that |η(X, z, γ )| ≤ η(X)
w.p.1 for all X ∈ S(X), z ∈ Z, γ ∈ Γ E[η(X)2|Z = z] is a continuous
function of z for all z ∈ S(Z), and E[η(X)4] < ∞. (C) There exists
η1 : RP → R+, and ϕ1 > 0 such that |η(X, z, γ ) − η(X, z ′, γ )| ≤
η1(X)‖z − z ′‖ϕ1 w.p.1 for all X ∈ S(X), z, z ′ ∈ Z, γ ∈ Γ , and
E[η1(X)] < ∞. (D) There exists η2 : RP → R+, and ϕ2 > 0 such
that |η(X, z, γ ) − η(X, z, γ ′)| ≤ η2(X)‖γ − γ ′‖ϕ2 w.p.1 for all
X ∈ S(X), z ∈ Z, γ , γ ′ ∈ Γ , and E[η2(X)] <∞.

Assumption S3. (A) The kernel K(·) has compact support, is
Lipschitz-continuous, bounded and symmetric about zero. Denote
ψ = (ψ1, . . . , ψL)

′, then
∫
K(ψ)dψ = 1,

∫
‖ψ‖M |K(ψ)|dψ <∞

and
∫
(ψ
q1
1 · · ·ψ

qL
L )K(ψ)dψ1 · · · dψL = 0 for all 0 < q1+· · ·+qL <

M . (B) hN → 0 satisfies: NhL+2N → ∞Nh2LN / log(N) → ∞ and
Nh2MN → 0.21

Theorem A.1. If Assumptions S1–S3 are satisfied, then for any z ∈
Z, γ ∈ Γ ,

µN(z, γ )− µ(z, γ ) =
1
fZ (z)

1
NhLN

N∑
n=1

[η(Xn, z, γ )− µ(z, γ )]

× KhN (Zn − z)+ ξN(z, γ )

where sup z∈Z
γ∈Γ
|ξN(z, γ )| = Op(Nδ−1h−LN ) for any δ > 0.

21 If L ≥ 2, Nh2LN / log(N)→∞ implies Nh
L+2
N →∞.

http://www.ssc.wisc.edu/~aaradill/spinfo-appendix-suppl.pdf
http://www.ssc.wisc.edu/~aaradill/spinfo-appendix-suppl.pdf
http://www.ssc.wisc.edu/~aaradill/spinfo-appendix-suppl.pdf
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Fig. 2. 95% confidence intervals for δp + γp(S2/S1) (conditional on S2/S1) as defined in Eq. (32). Solid line depicts δ̂p + γ̂p(S2/S1). Horizontal axis represents S2/S1 in both
panels.
Corollary 1. If we strengthen the condition logNh−2LN = o(N) to
Nδh−2LN = o(N) for some δ > 0. Let ξN(z, γ ) be as defined
in Theorem A.1, then sup z∈Z

γ∈Γ
|ξN(z, γ )| = op(N−1/2).

A.2. Theorem 1

A.2.1. Asymptotic properties of π̂(θ, z)
Fix (θ, z) ∈ Θ × Z and re-express the objects in Eq. (2) as

E
[
G1,2(X ′1β1 + α1π2, X

′

2β2 + α2π1; ρ)|Z = z
]

E
[
G2(X ′2β2 + α2π1)|Z = z

]
≡
δ1,2(π; θ, z)
δ2(π; θ, z)

⇒ ϕ1(π1, π2; θ, z) = π1 −
δ1,2(π; θ, z)
δ2(π; θ, z)

,

E
[
G1,2(X ′1β1 + α1π2, X

′

2β2 + α2π1; ρ)|Z = z
]

E
[
G1(X ′1β1 + α1π2)|Z = z

]
≡
δ1,2(π; θ, z)
δ1(π; θ, z)

⇒ ϕ2(π1, π2; θ, z) = π2 −
δ1,2(π; θ, z)
δ1(π; θ, z)

.

Fix∆ > 0 and define the following two correspondences

Υ1(∆; θ, z) =
{
π1, π2 ∈ [0, 1]2 :

δ1,2(π; θ, z)
δ2(π; θ, z)

−∆ ≤ π1 ≤
δ1,2(π; θ, z)
δ2(π; θ, z)

+∆

}
,

Υ2(∆; θ, z) =
{
π1, π2 ∈ [0, 1]2 :

δ1,2(π; θ, z)
δ1(π; θ, z)

−∆ ≤ π2 ≤
δ1,2(π; θ, z)
δ1(π; θ, z)

+∆

}
.

(A.1)

Υp(∆; θ, z) contains the locus ϕp(π; θ, z) = 0, for p = 1, 2.
Let π∗

(s′)(θ, z) be the solution to (3) that is closest to π
∗

(s)(θ, z),
with the latter as defined in Assumption S3(i). Uniform regularity
of π∗(s)(θ, z) as described in S3(i) yields inf θ∈Θz∈Z ‖π

∗

(s)(θ, z) −
π∗
(s′)(θ, z)‖ ≥ ε > 0. Fix any ε: 0 < ε < ε, and define
B(ε; θ, z) = {π ∈ [0, 1]2 : ‖π − π∗(s)(θ, z)‖ < ε}. Then, for
any such ε, ∃∆(ε) > 0 such that ∀(θ, z) ∈ Θ × Z the following
holds: If we take any pair of continuous selections ψp(ε; θ, z) ∈
Υp(∆(ε); θ, z), for p = 1, 2,22 and we denote the set

Πψ (ε; θ, z) =
{
π ∈ [0, 1]2 : π ∈ {ψ1(ε; θ, z) ∩ ψ2(ε; θ, z)}

}
,

22 That is, any pair of continuous functions ψ1(ε; θ, z) and ψ2(ε; θ, z) such that
ψ1(ε; θ, z) belongs to the correspondence Υ1(∆(ε); θ, z) and ψ2(ε; θ, z) belongs
to the correspondence Υ2(∆(ε); θ, z).
and we let πψ(s)(ε; θ, z) be the element of Πψ (ε; θ, z) with the
smallest value for the π1 component, then

sup
θ∈Θ
z∈Z

∥∥πψ(s)(ε; θ, z)− π∗(s)(θ, z)∥∥ ≤ ε and

inf
θ∈Θ
z∈Z

∥∥πψ(s)(ε; θ, z)− π∗(s′)(θ, z)∥∥ > ε − ε. (A.2)

Fig. A.1 illustrates these objects for a case in which (3) hasmultiple
(three) solutions.
Let δ̂1,2(π; θ, z) and δ̂p(π; θ, z), p = 1, 2be as defined in Eq. (9).

Given our assumptions, these semiparametric estimators satisfy
the conditions of Theorem A.1 and in particular,

sup
π∈[0,1]2
θ∈Θ
z∈Z

∣∣̂δ1,2(π; θ, z)− δ1,2(π; θ, z)∣∣ p
−→ 0,

sup
π∈[0,1]2
θ∈Θ
z∈Z

∣∣̂δp(π; θ, z)− δp(π; θ, z)∣∣ p
−→ 0, p = 1, 2.

Invoking the unbounded support property of εp, these results yield

sup
π∈[0,1]2
θ∈Θ
z∈Z

∥∥∥∥ δ̂1,2(π; θ, z)δ̂p(π; θ, z)
−
δ1,2(π; θ, z)
δp(π; θ, z)

∥∥∥∥ p
−→ 0,

and therefore, sup
π∈[0,1]2
θ∈Θ
z∈Z

‖ϕ̂(π; θ, z)− ϕ(π; θ, z)‖
p
−→ 0. (A.3)

Take any∆ > 0 and define the event

S(∆; θ, z) = 1
{{
π ∈ [0, 1]2 : ϕ̂p(π; θ, z) = 0

}
is a

continuous selection of Υp(∆; θ, z) for p = 1, 2
}
.

Eqs. (A.1) and (A.3) yield sup θ∈Θ
z∈Z
|S(∆; θ, z)− 1|

p
−→ 0. Now take

π̂(θ, z) as defined in Eq. (11) and define the event

T (θ, z) = 1 {π̂(θ, z) is the solution to ϕ̂(π; θ, z) = 0 with
the smallest value for the π1 component} .

Since all solutions to (3) are assumed to be regular w.p.1 uniformly
in Θ × Z, we have sup θ∈Θ

z∈Z
|T (θ, z) − 1|

p
−→ 0. Now take any

0 < ε < ε and let∆(ε) be as defined above, then these results and
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A B

Fig. A.1. Example: The correspondence Υp(∆(ε); θ, z) is given by the set of points between (and including) the dotted lines surrounding the locus ϕp(π1, π2; θ, z) = 0, for
p = 1, 2. Panel (B) depicts two continuous selections ψp(ε; θ, z) ∈ Υ1(∆(ε); θ, z), for p = 1, 2. The first point of crossing along the π1-axis of any such pair of continuous
selections must be inside the set A(ε; θ, z), which is contained in B(ε; θ, z).
Eq. (A.2) yield23

sup
θ∈Θ
z∈Z

∥∥π̂(θ, z)− π∗(s)(θ, z)∥∥ p
−→ 0 and consequently,

sup
θ∈Nθ
z∈Z

∥∥π̂(θ, z)− π∗(θ, z)∥∥ p
−→ 0. (A.4)

Next, wewill look for a linear representation for π̂(θ, z)−π∗(θ, z)
in Nθ × Z. As in (5), let J(π; θ, z)

2×2
= ∇πϕ(π; θ, z). Uniqueness

implies regularity, and Assumption S3(ii) yields

sup
θ∈Nθ
z∈Z

∥∥∥J (π∗(θ, z); θ, z)−1∥∥∥ < M for someM <∞. (A.5)

With probability approaching one (w.p.a.1) uniformly in Nθ × Z,
π̂(θ, z) satisfies ϕ̂(π̂(θ, z); θ, z) = 0. A first-order approximation
around π∗(θ, z) yields

0 = ϕ̂
(
π∗(θ, z); θ, z

)
+ Ĵ (π̃(θ, z); θ, z)

×
[
π̂(θ, z)− π∗(θ, z)

]
, (A.6)

where Ĵ(π; θ, z) = ∇π ϕ̂(π; θ, z) and π̃(θ, z) is between π̂(θ, z)
and π∗(θ, z). Let V (Z) and B(Y ) be as in Eq. (15), and let V (Z, θ)
denote the value of V (Z) for an arbitrary θ ∈ Nθ . Our assumptions
and the result in Theorem A.1 yield

ϕ̂
(
π∗(θ, z); θ, z

)
= −

V (z, θ)
fz(z)

1
NhL

N∑
m=1

[E [B(Ym)|Xm, Zm = z; θ ]

− E [B(Ym)|Zm = z; θ ]] Kh (Zm − z)+ ξ̂ϕ(z, θ) (A.7)

where sup θ∈Nθ
z∈Z
‖̂ξϕ(z, θ)‖ = Op(Nδ−1h−L) for any δ > 0. Eqs. (A.4),

(A.5) and TheoremA.1 yield sup θ∈Nθ
z∈Z
‖̂J(π̃(θ, z); θ, z)−1‖ = Op(1).

Combining this with Eqs. (A.6), (A.7) and the proof of Theorem A.1,
we get

sup
θ∈Nθ
z∈Z

∥∥π̂(θ, z)− π∗(θ, z)∥∥ = Op (√Nδ−1h−L) for any δ > 0.

(A.8)

23 If all solutions to Eq. (10) are regular, then each one satisfies the first order
conditions ∇π Q̂ (π; θ, z) = 0. Since the Jacobian ∇π ϕ̂(π; θ, z) is invertible, this
can be satisfied if and only if ϕ̂(π; θ, z) = 0.
Combining this result with Theorem A.1 and Eq. (A.5), a
first order approximation yields sup θ∈Nθ

z∈Z
‖̂J(π̃(θ, z); θ, z)−1 −

J(π∗(θ, z); θ, z)−1‖ = Op(
√
Nδ−1h−L) for any δ > 0. Let D(z, θ) =

J(π∗(θ, z); θ, z)−1V (z, θ). Eqs. (A.6) and (A.7) yield24

π̂(θ, z)− π∗(θ, z) =
D(z, θ)
fZ (z)

1
NhL

N∑
m=1

[E [B(Ym)|Xm, Zm = z; θ ]

− E [B(Ym)|Zm = z; θ ]] Kh (Zm − z)+ ξ̂π (z, θ), (A.9)
where sup θ∈Nθ

z∈Z
‖̂ξπ (z, θ)‖ = Op(Nδ−1h−L) for any δ > 0. Now

consider ∇θ π̂(θ, z). w.p.a.1 uniformly in Nθ × Z, the Implicit
Function Theorem (IFT) yields
∇θ π̂(θ, z) = −̂J (π̂(θ, z); θ, z)−1 ∇θ ϕ̂ (π̂(θ, z); θ, z) ,
where ∇θ ϕ̂(π; θ, z) denotes the vector of partial derivatives of
ϕ̂(π; θ, z) with respect to θ , with π fixed. The IFT also yields
∇θπ

∗(θ, z) = −J(π∗(θ, z); θ, z)−1∇θϕ(π∗(θ, z); θ, z). A detailed
inspection into the components of ∇θ ϕ̂(π; θ, z), along with our
assumptions and the results from Theorem A.1 yield

sup
π∈[0,1]2
θ∈Θ
z∈Z

‖∇θ ϕ̂ (π; θ, z)−∇θϕ (π; θ, z)‖ = Op
(√
Nδ−1h−L

)
for any δ > 0. (A.10)

Using (A.9) and (A.10), component-wise Taylor approximations
yield

∇θ π̂(θ, z)−∇θπ∗(θ, z) =
1
NhL

N∑
m=1

Γ (Xm, z; θ)Kh(Zm − z)

+ υ̂(z, θ), (A.11)
where
E [Γ (Xm, z; θ)|Zm = z] = 0,

sup
θ∈Nθ
z∈Z

∥∥∥∥E [Γ (Xm, z; θ)Kh(Zm − z)hL

]∥∥∥∥ = O(hM),
and sup θ∈Nθ

z∈Z
‖υ̂(z, θ)‖ = Op(Nδ−1h−L) for any δ > 0. M is as

defined in Assumption A6. The exact expression for Γ (Xm, z; θ) is
not relevant (see Eqs. (A.20) and (A.21)).

24 Uniqueness of equilibrium along with our remaining assumptions imply
that each one of the elements in J(π∗(θ, z); θ, z)−1 is uniformly bounded
away from zero everywhere in Nθ × Z. A first-order Taylor approximation
of Ĵ(π̃(θ, z); θ, z)−1 − J(π∗(θ, z); θ, z)−1 component-wise along with our
previous results and Theorem A.1 yield the result sup θ∈Nθ

z∈Z
‖̂J(π̃(θ, z); θ, z)−1 −

J(π∗(θ, z); θ, z)−1‖ = Op(
√
Nδ−1h−L).



424 A. Aradillas-Lopez / Journal of Econometrics 157 (2010) 409–431
A.2.2. Proof of Theorem 1
Using our previous results and Assumption A7, we have

sup
θ∈Θ

∣∣∣∣∣ 1N
N∑
n=1

`Z (Wn, θ, π̂(θ, Zn))−
1
N

N∑
n=1

`Z

(
Wn, θ, π∗(s)(θ, Zn)

)∣∣∣∣∣
≤ sup

θ∈Θ
z∈Z

∥∥π̂(θ, z)− π∗(s)(θ, z)∥∥︸ ︷︷ ︸
op(1)

×
1
N

N∑
n=1

sup
θ∈Θ

π∈[0,1]2

‖∇π`Z (Wn, θ, π)‖

︸ ︷︷ ︸
Op(1)

= op(1). (A.12)

Using Assumption A7 and Lemma 2.4 in Newey and McFadden
(1994), we obtain∑
θ∈Θ

∣∣∣∣∣ 1N
N∑
n=1

`Z

(
Wn, θ, π∗(s)(θ, Zn)

)
− E

[
`Z

(
W , θ, π∗(s)(θ, Z)

)]∣∣∣∣∣ p
−→ 0.

Eq. (A.12) yields∑
θ∈Θ

∣∣∣∣∣ 1N
N∑
n=1

`Z (Wn, θ, π̂(θ, Zn))

− E
[
`Z

(
W , θ, π∗(s)(θ, Z)

)]∣∣∣∣∣ p
−→ 0. (A.13)

Let LZ(W , θ) = exp{`Z(W , θ, π∗(s)(θ, Z))}, and note that LZ(W ,
θ0) = Pr(Y |X, Z)1{Z∈Z}. Take any θ ∈ Θ such that θ 6= θ0. By
Assumption A4, it is not the case that the ratio LZ(W , θ)/LZ(W , θ0)
is constant w.p.1. We have

LZ(W , θ)
LZ(W , θ0)

=

exp
{
`
(
W , θ, π∗(s)(θ, Z)

)}
Pr(Y |X, Z)

if Z ∈ Z and 1 otherwise

 .
This ratio is always positive for any θ . Therefore by Jensen’s
Inequality we have

− log
{
E
[
LZ(W , θ)
LZ(W , θ0)

]}
< E

[
− log

{
LZ(W , θ)
LZ(W , θ0)

}]
. (A.14)

By construction, for any (x, z) ∈ S(X, Z) we have
∑
y exp{`(y, x,

z, θ, π∗(s)(θ, z))} = 1 when we sum over the four possible
outcomes y ∈ {(1, 1), (1, 0), (0, 1), (0, 0)}.25 Therefore

E
[
LZ(W , θ)
LZ(W , θ0)

]
=

∫
(x,z):z 6∈Z

1 · fX,Z (x, z)dxdz

+

∫
(x,z):z∈Z

∑y ×
exp

{
`
(
y, x, z, θ, π∗(s)(θ, Z)

)}
Pr(Y = y|X = x, Z = z)


× Pr(Y = y|X = x, Z = z)

 fX,Z (x, z)dxdz

25 See Eq. (12).
= (1− Pr(Z ∈ Z))

+

∫
(x,z):z∈Z

{∑
y

exp
{
`
(
y, x, z, θ, π∗(s)(θ, z)

)}}
× fX,Z (x, z)dxdz
= (1− Pr(Z ∈ Z))+ Pr(Z ∈ Z) = 1.

Combining this with (A.14) we have

0 < E
[
− log

{
LZ(W , θ)
LZ(W , θ0)

}]
= E [log LZ(W , θ)]

− E [log LZ(W , θ0)] for any θ ∈ Θ : θ 6= θ0.

Since LZ(W , θ) = exp{`Z(W , θ, π∗(s)(θ, Z))}, this implies that
E[`Z(W , θ, π∗(s)(θ, Z))] is uniquely minimized at θ0. Combining
this with Eq. (A.13) and Theorem 2.1 in Newey and McFadden, we
get

θ̂
p
−→ θ0. (A.15)

Let SθZ(W , θ0) be as defined in Eq. (14). Since θ0 belongs in the
interior ofΘ , it satisfies E[SθZ(W , θ0)] = 0. Denote

ŜθZ(W , θ) ≡
∂`Z(W , θ, π̂(θ, Z))

∂θ
= ∇θ`Z (W , θ, π̂(θ, Z))

+∇θ π̂(θ, Z)′∇π`Z (W , θ, π̂(θ, Z)) .

w.p.a.1, θ̂ satisfies 1N
∑N
n=1 ŜθZ(Wn, θ̂ ) = 0. We have

0 =
1
N

N∑
n=1

ŜθZ (Wn, θ0)+

[
1
N

N∑
n=1

∂ ŜθZ
(
Wn, θ̃

)
∂θ ′

] (̂
θ − θ0

)
,

(A.16)

with θ̃ between θ̂ and θ0. Eqs. (A.8), (A.10) andAssumptionA7 yield

1
N

N∑
n=1

(
∇θ π̂(θ0, Zn)−∇θπ∗(θ0, Zn)

)′
∇ππ ′`Z

×
(
Wn, θ0, π∗(θ0, Zn)

) (
π̂(θ0, Zn)− π∗(θ0, Zn)

)
= Op

(
Nδ−1h−L

)
for any δ > 0. Therefore,

1
N

N∑
n=1

ŜθZ (Wn, θ0) =
1
N

N∑
n=1

{
SθZ (Wn, θ0)

+
[
∇θπ

∗(θ0, Zn)′∇ππ ′`Z

(
Wn, θ0, π∗(θ0, Zn)

)
+∇θπ ′`Z

(
Wn, θ0, π∗(θ0, Zn)

)] (
π̂(θ0, Zn)− π∗(θ0, Zn)

)
+
(
∇θ π̂(θ0, Zn)−∇θπ∗(θ0, Zn)

)′
× ∇π`Z

(
Wn, θ0, π∗(θ0, Zn)

)}
+ Op

(
Nδ−1h−L

)
for any δ > 0. (A.17)

Using (A.9), for any δ > 0,[
∇θπ

∗(θ0, Zn)′∇ππ ′`Z

(
Wn, θ0, π∗(θ0, Zn)

)
+∇θπ ′`Z

(
Wn, θ0, π∗(θ0, Zn)

)] (
π̂(θ0, Zn)− π∗(θ0, Zn)

)
=

1
N2hL

N∑
m=1

N∑
n=1

[
∇θπ

∗(θ0, Zn)′∇ππ ′`Z

×
(
Wn, θ0, π∗(θ0, Zn)

)
+∇θπ ′`Z

(
Wn, θ0, π∗(θ0, Zn)

)]
×
D(Zn, θ0)
fZ (Zn)

[E [B(Ym)|Xm, Zm = Zn]

− E [B(Ym)|Zm = Zn]] Kh (Zm − Zn)+ Op
(
Nδ−1h−L

)
. (A.18)
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Let SθπZ(Wn, θ0) be as in Theorem 1. Note that E[∇πp`Z(Wn, θ0,
π∗(θ0, Zn))|Xn, Zn] = 0 for p = 1, 2. Therefore,

E
[
SθπZ(Wn, θ0)|Zn

]
= E

[
∇θπ

∗(θ0, Zn)′∇ππ ′`Z

×
(
Wn, θ0, π∗(θ0, Zn)

)
+∇θπ ′`Z

(
Wn, θ0, π∗(θ0, Zn)

)
|Zn
]
.

The first term on the right-hand side of Eq. (A.18) is a U-statistic
with projection

1
N

N∑
n=1

E
[
SθπZ(Wn, θ0)|Zn

]
D(Zn, θ0) [E [B(Yn)|Xn, Zn]

− E [B(Yn)|Zn]]+ ξN , (A.19)

where ξN = op(N−1/2) + O(hM). Take the third term on the right-
hand side of Eq. (A.17). Using (A.10) and (A.11),

1
N

N∑
n=1

(
∇θ π̂(θ0, Zn)−∇θπ∗(θ0, Zn)

)′
∇π`Z

(
Wn, θ0, π∗(θ0, Zn)

)
=

1
N2hL

N∑
m=1

N∑
n=1

(Γ (Xm, Zn; θ)Kh(Zm − Zn))′ ∇π`Z

×
(
Wn, θ0, π∗(θ0, Zn)

)
+ Op(Nδ−1h−L), (A.20)

for any δ > 0. The first term on the right-hand side can be ex-
pressed as a symmetric, second-orderU-statistic whose projection
is given by a term of order O(hM). Therefore

1
N2hL

N∑
m=1

N∑
n=1

(Γ (Xm, Zn; θ0)Kh(Zm − Zn))′ ∇π`Z

×
(
Wn, θ0, π∗(θ0, Zn)

)
= op(N−1/2)+ O(hM). (A.21)

Assumption A6(ii) yieldsOp(Nδ−1h−L) = op(N−1/2) for some δ > 0
and N1/2hM → 0. Combining this with the results in (A.19) and
(A.21), Eq. (A.17) becomes

1
N

N∑
n=1

ŜθZ (Wn, θ0) =
1
N

N∑
n=1

[
SθZ (Wn, θ0)

+ AZ(Xn, Zn, θ0)]+ op(N−1/2) (A.22)

where AZ(Xn, Zn, θ0) ≡ E[SθπZ(Wn, θ0)|Zn]D(Zn, θ0)[E[B(Yn)|Xn,
Zn]−E[B(Yn)|Zn]]. Now, since E[∇π`Z(Wn, θ0, π∗(θ0, Zn))|Xn, Zn] =
0,we have

E
[
∂SθZ (W , θ0)

∂θ ′

]
= E

[
∇θθ ′`Z

(
W , θ0, π∗(θ0, Z)

)
+∇θπ ′`Z

(
W , θ0, π∗(θ0, Z)

)
∇θπ

∗(θ0, Z)

+∇θπ
∗(θ0, Z)′∇θπ ′`Z

(
W , θ0, π∗(θ0, Z)

)′
+∇θπ

∗(θ0, Z)′∇ππ ′`Z

(
W , θ0, π∗(θ0, Z)

)
∇θπ

∗(θ0, Z)
]
.

(A.23)

Take a, b ∈ {θ, π}. It is easy to show that

E
[
∇a,b′`Z

(
W , θ0, π∗(θ0, Z)

)
|X, Z

]
= −E

[
∇a`Z

(
W , θ0, π∗(θ0, Z)

)
∇b`Z

×
(
W , θ0, π∗(θ0, Z)

)′
|X, Z

]
. (A.24)

Eqs. (A.23) and (A.24) yield

−E
[
∂SθZ (W , θ0)

∂θ ′

]
= E

[
SθZ (W , θ0) SθZ (W , θ0)

′
]
≡ =Z, (A.25)
an information-identity result for our trimmed log-likelihood
function. We have

1
N

N∑
n=1

∂ ŜθZ (Wn, θ)
∂θ ′

=
1
N

N∑
n=1

[∇θθ ′`Z (Wn, θ, π̂(θ, Zn))

+∇θπ ′`Z (Wn, θ, π̂(θ, Zn))∇θ π̂(θ, Zn)
+∇θθ ′ π̂(θ, Zn)′

[
∇π`Z (Wn, θ, π̂(θ, Zn))⊗ I(k+3)

]
+∇θ π̂(θ, Zn)′ {∇πθ ′`Z (Wn, θ, π̂(θ, Zn))
+ ∇ππ ′`Z (Wn, θ, π̂(θ, Zn))∇θ π̂(θ, Zn)}] .

Using (A.5) and Theorem A.1, component-wise Taylor approxima-
tions yield sup θ∈Nθ

z∈Z
‖∇θθ ′ π̂(θ, z) − ∇θθ ′π∗(θ, z)‖

p
−→ 0.Since

E[∇πp`Z(W , θ0, π∗(θ0, Z))|Z] = 0 for p = 1, 2 and θ̂
p
−→ θ0 ∈

Nθ . Therefore, 1
N

∑N
n=1 ∇θθ ′ π̂ (̂θ, Zn)

′
[∇π`Z(Wn, θ̂ , π̂ (̂θ, Zn)) ⊗

I(k+3)]
p
−→ 0. Going back to (A.16),

1
N

N∑
n=1

∂ ŜθZ
(
Wn, θ̃

)
∂θ ′

p
−→ −=Z.

Combining this with (A.16) and (A.22) yields

θ̂ − θ0 = =
−1
Z ×

1
N

N∑
n=1

[
SθZ (Wn, θ0)+ AZ(Xn, Zn, θ0)

]
+ op(N−1/2).

Using Eq. (A.25) and letting RZ(Z, θ0) ≡ E[SθπZ(W , θ0)|Z]D(Z, θ0),

√
N
(̂
θ − θ0

) d
−→ N

(
0,=−1Z + =

−1
Z ΩZ=

−1
Z

)
,

whereΩZ = E[RZ(Z, θ0)Var[E[B(Y )|X, Z]|Z]RZ(Z, θ0)′], the result
in Theorem 1. �

A.3. Theorem 2

A.3.1. Asymptotic properties of π t(γ , z)
Steps as those in Appendix A.2.1 yield the equivalent of Eq. (A.4)

in this case,

sup
γ∈Γ
z∈Z

∥∥∥π t(γ , z)− π∗t(s)(γ , z)∥∥∥ p
−→ 0,

sup
γ∈Nγ
z∈Z

∥∥π t(γ , z)− π∗t (γ , z)∥∥ p
−→ 0,

(A.26)

with supz∈Z ‖π t(γ0, z) − π∗(γ0, z)‖
p
−→ 0 since π∗(γ0, z) =

π∗t (γ0, z). Next, we look for a linear representation of π t(γ , z) −
π∗t (γ , z) inNγ × Z. We start with a result analogous to (A.6),

0 = ϕt
(
π∗t (γ , z); γ , z

)
+∇πϕt (π̃t(γ , z); γ , z)

×
[
π t(γ , z)− π∗t (γ , z)

]
, (A.27)

with π̃t(γ , z) between π t(γ , z) and π∗t (γ , z). Now, let t
∗

1m(γ1) =

X ′1mη1 + σ1π
∗

2t (γ , Zm), t
∗

2m(γ2) = X
′

2mη2 + σ2π
∗

1t (γ , Zm), t
∗

1m(γ1, z)
= X ′1mη1 + σ1π

∗

2t (γ , z) and t
∗

2m(γ2, z) = X
′

2mη2 + σ2π
∗

1t (γ , z),
with t∗m(γ ) = (t∗1m(γ1), t

∗

2m(γ2))
′ and t∗m(γ , z) = (t∗1m(γ1, z), t

∗

2m
(γ1, z))′. Note that t∗m(γ1, Zm) = t

∗
m(γ ) and t

∗
m(γ0) = tm(γ0). Take

PY |t(1, 1|τ ; γ ) as in Eq. (22) and re-express it as PY |t(1, 1|t∗n (γ , z);
γ ) = RY |t(1, 1|t∗n (γ , z); γ )/f t(t

∗
n (γ , z); γ ), where RY |t(1, 1|t

∗
n

(γ , z); γ ) ≡ 1
Nh2

∑N
m=1 Y1mY2mKh(tm(γ ) − t

∗
n (γ , z)) and f t(t

∗
n
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(γ , z); γ ) = (Nh2)−1
∑N
m=1 Kh(tm(γ ) − t

∗
n (γ , z)). Our assump-

tions yield

RY |t(1, 1|t∗n (γ , z); γ ) =
1
Nh2

N∑
m=1

Y1mY2mKh
(
tm(γ )− t∗n (γ , z)

)
+
σ1

Nh3

N∑
m=1

Y1mY2m∇t1Kh
(
tm(γ )− t∗n (γ , z)

)
×
[
π2(Zm)− π∗2 (γ0, Zm)

]
+
σ2

Nh3

N∑
m=1

Y1mY2m∇t2Kh
(
tm(γ )− t∗n (γ , z)

)
×
[
π1(Zm)− π∗1 (γ0, Zm)

]
+ ξ

A
11N (z, γ ) (A.28)

where sup z∈S(Z)
γ∈Γ
|ξ
A
11N (z, γ )| = Op(N

δ−1b−Lh−4) for any δ > 0.

Invoking either Lemma 3 in CH or Theorem A.1, we have

π1(z)− π∗1 (γ0, z) =
1
NbL

N∑
m=1

Y1mY2m − Pr(Y1 = 1, Y2 = 1|z)
Pr(Y2 = 1|z)fZ (z)

×Hb(Zm − z)−
π∗1 (γ0, z)
Pr(Y2 = 1|z)

1
NbL

N∑
m=1

Y2m − Pr(Y2 = 1|z)
fZ (z)

×Hb(Zm − z)+ ξ 1N (z)

π2(z)− π∗2 (γ0, z) =
1
NbL

N∑
m=1

Y1mY2m − Pr(Y1 = 1, Y2 = 1|z)
Pr(Y1 = 1|z)fZ (z)

×Hb(Zm − z)−
π∗2 (γ0, z)
Pr(Y1 = 1|z)

1
NbL

N∑
m=1

Y1m − Pr(Y1 = 1|z)
fZ (z)

×Hb(Zm − z)+ ξ 2N (z)

supz∈S(Z) |ξ pN (z)| = Op(N
δ−1b−L) for any δ > 0. This represen-

tation result holds uniformly over S(Z), due to the conditions in
Assumption B2(i). Using the previous result we obtain

1
Nh3

N∑
m=1

Y1mY2m∇t1Kh
(
tm(γ )− t∗n (γ , z)

)
×
[
π2(Zm)− π∗2 (γ0, Zm)

]
=

1
N2h3bL

N∑
m=1

N∑
`=1

Y1mY2m∇t1Kh
(
tm(γ )− t∗n (γ , z)

)
×

(
Y1`Y2` − Pr(Y1 = 1, Y2 = 1|Zm)

Pr(Y1 = 1|Zm)fZ (Zm)
−

π∗2 (γ0, Zm)
Pr(Y1 = 1|Zm)

×
[Y1` − Pr(Y1 = 1|Zm)]

fZ (Zm)

)
Hb(Z` − Zm)+ ξ

B
11N (z, γ )

where sup z∈S(Z)
γ∈Γ
|ξ
B
11N (z, γ )| = Op(N

δ−1b−Lh−3) for any δ > 0.

We can express the right-hand side as a symmetric, second-order
U-statistic which satisfies all the assumptions of LemmaA.3 in Ahn
and Powell (1993) uniformly in Γ ×S(Z). LetµY1Y2(·) and ft|z(·) be
as defined in Eq. (18). The projection of this U-statistic conditional
onWn is

1
Nh3

N∑
m=1

Y1mY2m∇t1Kh
(
tm(γ )− t∗n (γ , z)

)
×
[
π2(Zm)− π∗2 (γ0, Zm)

]
=
1
N

N∑
`=1

∇t1

[
µY1Y2

(
t∗n (γ , z), Z`; γ

)
· ft|z

(
t∗n (γ , z)|Z`; γ

)]
Pr(Y1 = 1|Z`)

×
(
π∗2 (γ0, Z`) [Y1` − Pr(Y1 = 1|Z`)]
− [Y1`Y2` − Pr(Y1 = 1, Y2 = 1|Z`)]
)
+ ξ

C
11N (z, γ )

where sup z∈S(Z)
γ∈Γ
|ξ
C
11N (z, γ )| = Op(Nδ−1b−Lh−3) + O(bM/h3) +

op(N−1/2) for any δ > 0. M is as described in Assumption B4. A
parallel result holds for the third term on the right-hand side of
Eq. (A.28). Combining both results (A.28) becomes

RY |t(1, 1|t∗n (γ , z); γ ) =
1
Nh2

N∑
m=1

Y1mY2mKh
(
tm(γ )− t∗n (γ , z)

)
+
σ1

N

N∑
`=1

∇t1

[
µY1Y2

(
t∗n (γ , z), Z`; γ

)
· ft|z

(
t∗n (γ , z)|Z`; γ

)]
Pr(Y1 = 1|Z`)

×
(
π∗2 (γ0, Z`) [Y1` − Pr(Y1 = 1|Z`)]

− [Y1`Y2` − Pr(Y1 = 1, Y2 = 1|Z`)]
)

+
σ2

N

N∑
`=1

∇t2

[
µY1Y2

(
t∗n (γ , z), Z`; γ

)
· ft|z

(
t∗n (γ , z)|Z`; γ

)]
Pr(Y2 = 1|Z`)

×
(
π∗1 (γ0, Z`) [Y2` − Pr(Y2 = 1|Z`)] .

− [Y1`Y2` − Pr(Y1 = 1, Y2 = 1|Z`)]
)
+ ξ

D
11N (z, γ ) (A.29)

where ξ
D
11N (z, γ ) has the same properties as ξ

C
11N (z, γ ), described

above. This is the linear representation for RY |t(1, 1|t∗n (γ , z); γ )
conditional onWn. Take τ ∈ R2 and let

f̃t(τ ; γ ) =
1
Nh2

N∑
m=1

Kh (tm(γ )− τ) ,

P̃Y |t(1, 1|τ ; γ ) =
1

f̃t(τ ; γ )

1
Nh2

N∑
m=1

Y1mY2mKh (tm(γ )− τ) .

(A.30)

P̃Y |t(1, 1|τ ; γ ) is the nonparametric estimator for PY |t(1, 1|τ ; γ ) if
we knew π∗(γ0, ·). Define the term in Box III, where all the objects
involved are as defined in Eqs. (18) and (19). After combining
(A.29) with the corresponding representation of f t(t∗n (γ , z); γ )
conditional onWn, we obtain
PY |t(1, 1|t∗n (γ , z); γ ) = P̃Y |t(1, 1|t

∗

n (γ , z); γ )

+
1
N

N∑
`=1

R11(t∗n (γ , z), Z`; γ )
′Ψ (Y`, Z`)

ft(t∗n (γ , z); γ )
+ ζ 11N (z, γ ), (A.31)

where sup z∈S(Z)
γ∈Γ
|ζ 11N (z, γ )| = Op(Nδ−1b−Lh−4) + O(bM/h3) +

op(N−1/2) for any δ > 0. This is the linear representation
for PY |t(1, 1|t∗n (γ , z); γ ) conditional on Wn. The equivalent
representations for the remaining estimators described in Eq. (22)
are (for p = 1, 2):
PYp|t(1|t

∗

n (γ , z); γ ) = P̃Yp|t(1|t
∗

n (γ , z); γ )

+
1
N

N∑
`=1

Rp(t∗n (γ , z), Z`; γ )
′Ψ (Y`, Z`)

ft(t∗n (γ , z); γ )
+ ζ pN (z, γ ),

where P̃Yp|t(1|τ ; γ ) = (̃ft(τ ; γ )Nh2)−1
∑N
m=1 YpmKh(tm(γ ) − τ),

and Rp(t∗n (γ , z), Z`; γ ) is given by (A.32) in Box IV where the
objects involved are defined in Eqs. (18) and (19). Using (23) and
(A.31), we have
δ1,2|t

(
π∗t (γ , z); γ , z

)
=

1

f̂Z (z)

1
NbL

N∑
n=1

P̃Y |t(1, 1|t∗n (γ , z); γ )Hb(Zn − z)+
1

f̂Z (z)

×
1
N2bL

N∑
`=1

N∑
n=1

R11
(
t∗n (γ , z), Z`; γ

)′
Ψ (Y`, Z`)

ft(t∗n (γ , z); γ )

×Hb(Zn − z)+ ξ̂A11N (γ , z), (A.33)
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R11(t∗n (γ , z), Z`; γ ) =

(
σ2∇t2

[
µY1Y2

(
t∗n (γ , z), Z`; γ

)
· ft|z

(
t∗n (γ , z)|Z`; γ

)]
− σ2PY |t(1, 1|t∗n (γ , z); γ )∇t2 ft|z

(
t∗n (γ , z)|Z`; γ

)
σ1∇t1

[
µY1Y2

(
t∗n (γ , z), Z`; γ

)
· ft|z

(
t∗n (γ , z)|Z`; γ

)]
− σ1PY |t(1, 1|t∗n (γ , z); γ )∇t1 ft|z

(
t∗n (γ , z)|Z`; γ

) )
Box III.
2)
Rp(t∗n (γ , z), Z`; γ ) =

(
σ2∇t2

[
µYp

(
t∗n (γ , z), Z`; γ

)
· ft|z

(
t∗n (γ , z)|Z`; γ

)]
− σ2PYp|t(1|t

∗

n (γ , z); γ )∇t2 ft|z
(
t∗n (γ , z)|Z`; γ

)
σ1∇t1

[
µYp

(
t∗n (γ , z), Z`; γ

)
· ft|z

(
t∗n (γ , z)|Z`; γ

)]
− σ1PYp|t(1|t

∗

n (γ , z); γ )∇t1 ft|z
(
t∗n (γ , z)|Z`; γ

) ) (A.3

Box IV.
where sup z∈S(Z)
γ∈Γ
|̂ξA11N (γ , z)| = Op(Nδ−1b−Lh−4) + O(bM/h3) +

op(N−1/2) for any δ > 0. Ignore for a moment the term 1/̂fZ (z).
The second term on the right hand side of (A.33) can be expressed
as a symmetric, second-order U-statistic, with projection

1
N2bL

N∑
`=1

N∑
n=1

R11
(
t∗n (γ , z), Z`; γ

)′
Ψ (Y`, Z`)

ft(t∗n (γ , z); γ )
Hb(Zn − z)

=
1
N

N∑
n=1

(∫
R11 (t, Zn; γ ) fz|t(z|t; γ )dt

)′
Ψ (Yn, Zn)

+ ξ̂ B11N (γ , z)

≡
1
N

N∑
n=1

φ11 (Zn, z; γ )′ Ψ (Yn, Zn)+ ξ̂ B11N (γ , z),

with φ11 (Zn, z; γ ) ≡
∫
R11 (t, Zn; γ ) fz|t(z|t; γ )dt, (A.34)

where sup z∈S(Z)
γ∈Γ
|̂ξ B11N (γ , z)| = O(bM). The conditional density

fz|t(·) is as defined in Assumption B2(ii). Assumption B2 ensures
that φ11(Zn, z; γ ) is well-defined for all n.26 Let P̃Y |t(1, 1|τ ; γ ) be
as defined in (A.30). Given our assumptions, either Lemma 3 in CH
or Theorem A.1 yield

P̃Y |t(1, 1|τ ; γ )− PY |t(1, 1|τ ; γ )

=
1
Nh2

N∑
m=1

Y1mY2m − PY |t(1, 1|τ ; γ )
ft(τ ; γ )

× Kh(tm(γ )− τ)+ ζ̃11N (τ ; γ ),

where sup τ∈S(t(γ ))
γ∈Γ

|̃ζ11N (τ ; γ )| = Op(N
δ−1h−2) for any δ > 0.

1
NbL

N∑
n=1

P̃Y |t(1, 1|t∗n (γ , z); γ )Hb(Zn − z)

=
1
NbL

N∑
n=1

PY |t(1, 1|t∗n (γ , z); γ )Hb(Zn − z)

+
1

N2h2bL

N∑
n=1

N∑
m=1

[
Y1mY2m − PY |t(1, 1|t∗n (γ , z); γ )

]
ft
(
t∗n (γ , z); γ

)
× Kh

(
tm(γ )− t∗n (γ , z)

)
Hb(Zn − z)+ ξ̂ C11N (γ , z), (A.35)

where sup z∈S(Z)
γ∈Γ
|̂ξ C11N (γ , z)| = Op(Nδ−1b−Lh−4) + O(bM/h3) +

op(N−1/2) for any δ > 0. The second term on the right-hand
side of Eq. (A.35) can be expressed as a second-order symmetric

26 The condition ft (t; γ ) > f
t
> 0 for all t ∈ S(t(γ )) uniformly over Γ in

Assumption B2 ensures that this integral is well-defined.
U-statistic, whose projection is given by

1
N2h2bL

N∑
n=1

N∑
m=1

[
Y1mY2m − PY |t(1, 1|t∗n (γ , z); γ )

]
ft
(
t∗n (γ , z); γ

)
× Kh

(
tm(γ )− t∗n (γ , z)

)
Hb(Zn − z)

=
1
N

N∑
n=1

[
Y1nY2n − PY |t(1, 1|tn(γ ); γ )

]
fz|t (z|tn(γ ))

+ ξ̂D11N (γ , z),

where sup z∈S(Z)
γ∈Γ
|̂ξD11N (γ , z)| = O(hM/bL) + O((b/h2)M) +

op(N−1/2). Throughout, we have used the fact that t∗n (γ , z) =
t∗n (γ ) + (σ1[π

∗

2t (γ , z) − π
∗

2t (γ , Zn)], σ2[π
∗

1t (γ , z) − π
∗

1t (γ , Zn)])
′

to compute the relevant expectations. Combining Eqs. (A.34) and
(A.35), Eq. (A.33) becomes

δ1,2|t
(
π∗t (γ , z); γ , z

)
=

1

f̂Z (z)

1
NbL

N∑
n=1

PY |t(1, 1|t∗n (γ , z); γ )

×Hb(Zn − z)+
1
N

N∑
n=1

[
Y1nY2n − PY |t(1, 1|tn(γ ); γ )

]
fZ (z)

fz|t

× (z|tn(γ ))+
1
N

N∑
n=1

φ11(Zn, z; γ )′Ψ (Yn, Zn)
fZ (z)

+ ξ̂ E11N (γ , z),

(A.36)

where sup z∈S(Z)
γ∈Γ
|̂ξ E11N (γ , z)| =

(
|̂ξ C11N (γ , z)| + |̂ξ

D
11N
(γ , z)|

)
×(

1+ Op
(√
Nδ−1b−L

))
+ Op

(√
Nδ−2b−L

)
for any δ > 0. For all

(γ , z) ∈ Nγ × Z, we have

E
[
PY |t(1, 1|t∗n (γ , z); γ )|Zn = z

]
= E

[
PY |t(1, 1|t∗n (γ ); γ )|Zn = z

]
= δ1,2|t

(
π∗t (γ , z); γ , z

)
.

Applying Theorem A.1, the first term on the right-hand side of
Eq. (A.35) satisfies

1

f̂Z (z)

1
NbL

N∑
n=1

PY |t(1, 1|t∗n (γ , z); γ )Hb(Zn − z)

= δ1,2|t
(
π∗t (γ , z); γ , z

)
+
1
N

N∑
n=1

[
PY |t(1, 1|t∗n (γ , z); γ )− δ1,2|t

(
π∗t (γ , z); γ , z

)]
fZ (z)

×Hb(Zn − z)+ ξ̂ F11N (γ , z),

where sup z∈Z
γ∈Nγ
|̂ξ F11N (γ , z)| = Op(N

δ−1b−L) for any δ > 0. From

above, (A.36) becomes

δ1,2|t
(
π∗t (γ , z); γ , z

)
= δ1,2|t

(
π∗t (γ , z); γ , z

)
+
1
N

N∑
n=1

[
PY |t(1, 1|t∗n (γ , z); γ )− δ1,2|t

(
π∗t (γ , z); γ , z

)]
fZ (z)
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×Hb(Zn − z)

+
1
N

N∑
n=1

[
Y1nY2n − PY |t(1, 1|tn(γ ); γ )

]
fZ (z)

fz|t (z|tn(γ ))

+
1
N

N∑
n=1

φ11(Zn, z; γ )′Ψ (Yn, Zn)
fZ (z)

+ ν1,2N (γ , z), (A.37)

with ν1,2N (γ , z) = ξ̂
E
11N
(γ , z)+ ξ̂ F11N (γ , z) for all (γ , z) ∈ Nγ ×Z.

Parallel steps yield equivalent expressions for δp|t(π∗t (γ , z); γ , z),
for p = 1, 2:
δp|t

(
π∗t (γ , z); γ , z

)
= δp|t

(
π∗t (γ , z); γ , z

)
+
1
N

N∑
n=1

[
PYp|t(1|t

∗
n (γ , z); γ )− δp|t

(
π∗t (γ , z); γ , z

)]
fZ (z)

×Hb(Zn − z)

+
1
N

N∑
n=1

[
Ypn − PYp|t(1|tn(γ ); γ )

]
fZ (z)

fz|t (z|tn(γ ))

+
1
N

N∑
n=1

φp(Zn, z; γ )′Ψ (Yn, Zn)
fZ (z)

+ νpN (γ , z), (A.38)

where φp(Zn, z; γ ) ≡
∫
Rp(t, Zn; γ )fz|t(z|t; γ )dt , and Rp(t, Zn; γ )

as in Eq. (A.32). We are now ready to present the linear
representation for π t(γ , z) that holds uniformly inNγ × Z.

Lemma A.1. Take any (γ , z) ∈ Nγ × Z. Let φ11(·) and φp(·) be
as defined in Eqs. (A.34) and (A.38) respectively and define the terms
shown in Box V.
As in Theorem 1, let B(Yn)

3×1
= (Y1nY2n, Y1n, Y2n)′. If our assumptions

are satisfied, then

π t(γ , z)− π∗t (γ , z) = D(z, γ )

×
1
N

N∑
n=1

{[
E [B(Yn)|tn(γ )]− E [E [B(Yn)|tn(γ )] |Zn = z]

bLfZ (z)

]
×Hb(Zn − z)+

[
B(Yn)− E [B(Yn)|tn(γ )]

fZ (z)

]
× fz|t (z|tn(γ ); γ )+

φ (Zn, z; γ )Ψ (Yn, Zn)
fZ (z)

}
+ ξ

π

N (γ , z),

where sup z∈Z
γ∈Nγ
|ξ
π

N (γ , z)| = [Op(N
δ−1b−Lh−4) + O(bM/h3) +

O(hM/bL) + O((b/h2)M) + op(N−1/2)] × [1 + Op(
√
Nδ−1b−L)] +

Op(
√
Nδ−2b−L)+ Op(Nδ−1b−L) for any δ > 0.

Proof. Note that E[B(Yn)|tn(γ )] = (PY |t(1, 1|tn(γ ); γ ), PY1|t(1|
tn(γ ); γ ), PY2|t(1|tn(γ ); γ ))

′, and E[E[B(Yn)|tn(γ )]|Zn = z] =
(δ1,2|t(π

∗
t (γ , z); γ , z), δ1|t(π

∗
t (γ , z); γ , z), δ2|t(π

∗
t (γ , z); γ , z))

′.
The result follows from Eqs. (A.26), (A.27), a result equivalent to
that of (A.5) – which follows from B3 –, and all the results that led
to Eqs. (A.37) and (A.38). �

A.3.2. Proof of Theorem 2
Consistency of γ̂ follows from arguments parallel to those of

Eqs. (A.12)–(A.15). Given the assumptions of Theorem 2, we can
show a result equivalent to Eq. (A.13):

sup
γ∈Γ

∣∣∣∣∣ 1N
N∑
n=1

̂̀t
Z (Wn, γ , π t(γ , Zn))

− E
[
`tZ

(
W , γ , π∗t(s)(γ , Z)

)]∣∣∣∣∣ p
−→ 0.
Let LtZ(W , γ ) = exp{`tZ(W , γ , π
∗
t(s)
(γ , Z))}. Then LtZ(W ,γ )

LtZ(W ,γ0)
=

exp{`tZ(W ,γ ,π
∗
t(s)
(γ ,Z))}

Pr(Y |X,Z) if Z ∈ Z and 1 otherwise; note that∑
y exp{`

t
Z(y, x, z, γ , π

∗
t(s)
(γ , Z))} = 1. Assumption B1 implies

that @γ ∈ Γ : γ 6= γ0 and LtZ(W , γ )/L
t
Z(W , γ0) is constant w.p.1.

Using the same arguments as in Eqs. (A.14) and (A.15), we arrive
at γ̂

p
−→ γ0. Now let ŜtγZ(W , γ ) =

∂ ̂̀tZ(W ,γ ,π t (γ ,Z))
∂γ

. w.p.a.1, γ̂

satisfies 1N
∑N
n=1 ŜtγZ(Wn, γ̂ ) = 0. We have

0 =
1
N

N∑
n=1

ŜtγZ(Wn, γ0)+

[
1
N

N∑
n=1

∂ ŜtγZ(Wn, γ̃ )
∂γ ′

]
(γ̂ − γ0),

with γ̃ between γ̂ and γ0. (A.39)

We begin by analyzing 1
N

∑N
n=1 ŜtγZ(Wn, γ0). Let φ(Zn, z; γ0) be

as in Lemma A.1. Then φ(Zn, z; γ0) =
∫
R(t, Zn; γ0)fz|t(z|t; γ0)dt .

Using Theorem A.1, Lemma A.1 and computing the projections
of all the U-statistics involved, we obtain the following linear
representation for P̂Y |t∗Z(1, 1|̂tn(γ0))−PY |t∗Z(1, 1|t

∗
n (γ0)) conditional

on Wn:

P̂Y |t∗Z(1, 1|̂tn(γ0))− PY |t∗Z(1, 1|t
∗

n (γ0))

=
1
Nh2

N∑
`=1

[
Y1`Y2` − PY |t∗Z(1, 1|tn(γ0))

]
PZ(t∗n (γ0))ft(t∗n (γ0))

× Kh
(
t`(γ0)− t∗n (γ0)

)
1{Z` ∈ Z}

+
∇πPY |t∗Z

(
1, 1|t∗n (γ0)

)′ D(Zn, γ0)
fZ (Zn)

×
1
NbL

N∑
`=1

[
E [B(Y`)|t`(γ0, Zn)]

− E [B(Y`)|Z` = Zn]
]
Hb(Z` − Zn)

−
∇πPY |t∗Z

(
1, 1|t∗n (γ0)

)
ft
(
t∗n (γ0)

)
PZ(t∗n (γ0))

′

1
N

N∑
`=1

1{Z` ∈ Z}

×D(Z`, γ0)
[
E[B(Y`)|t`(γ0)]

− E[B(Y`)|Z`]
]
ft|z
(
t∗n (γ0)|Z`

)
+
∇πPY |t∗Z

(
1, 1|t∗n (γ0)

)′ D(Zn, γ0)
fZ (Zn)

×
1
N

N∑
`=1

[B(Y`)− E[B(Y`)|t`(γ0)]]

× fz|t (Zn|t`(γ0))−
∇πPY |t∗Z

(
1, 1|t∗n (γ0)

)
ft
(
t∗n (γ0)

)
PZ(t∗n (γ0))

′

×
1
N

N∑
`=1

EZ
[
1{Z ∈ Z}

×D(Z, γ0)ft|z(t∗n (γ0)|Z)|t(γ0) = t`(γ0)
]

× [B(Y`)− E[B(Y`)|X`, Z`]]

+
∇πPY |t∗Z

(
1, 1|t∗n (γ0)

)′ D(Zn, γ0)
fZ (Zn)

×
1
N

N∑
`=1

φ(Z`, Zn; γ0)Ψ (Y`, Z`)−
∇πPY |t∗Z

(
1, 1|t∗n (γ0)

)
ft
(
t∗n (γ0)

)
PZ(t∗n (γ0))

′
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φ (Zn, z; γ )
3×2

= (φ11 (Zn, z; γ ) , φ1 (Zn, z; γ ) , φ2 (Zn, z; γ ))′

V (z, γ )
2×3

=


1

δ2|t(π
∗
t (γ , z); γ , z)

0 −
δ1,2|t(π

∗
t (γ , z); γ , z)

δ2|t(π
∗
t (γ , z); γ , z)2

1
δ1|t(π

∗
t (γ , z); γ , z)

−
δ1,2|t(π

∗
t (γ , z); γ , z)

δ1|t(π
∗
t (γ , z); γ , z)2

0


D(z, γ )
2×3

= ∇πϕt
(
π∗t (γ , z); γ , z

)−1 V (z, γ )
Box V.
×
1
N

N∑
`=1

{∫
EZ
[
1{Z ∈ Z}D(Z, γ0)f

(
t∗n (γ0)|Z

)
|t(γ0)

]
× R(t(γ0), Z`)dt(γ0)

}
Ψ (Y`, Z`)+ ζ̂11N (Wn),

where
sup

Wn:Zn∈Z

∣∣̂ζ11N (Wn)∣∣ = op(N−1/2)+ Op (Nδ−1b−Lh−4)
+Op

(
Nδ−1h−2

)
∀δ > 0.

Equivalent expressions exist for P̂Y |t∗Z(1, 0|̂tn(γ0)), P̂Y |t∗Z(0, 1|̂tn(γ0))
simply by replacing PY |t∗Z(1, 1|·) with PY |t∗Z(1, 0|·) and PY |t∗Z(0, 1|·)
respectively. Let

∂LZ (1, 1|t∗(γ0))
∂γ

=

[
1

PY |t∗Z(1, 1|t
∗(γ ); γ )

∂PY |t∗Z(1, 1|t
∗(γ ); γ )

∂γ

]
γ=γ0

1{Z ∈ Z}

where
∂PY |t∗Z

(1,1|·)

∂γ
is as described in Eq. (27). Let

∂LZ(1, 1|t∗n (γ0))
∂γ

=

[
1

PY |t∗Z(1, 1|t
∗
n (γ ); γ )

∂PY |t∗Z(1, 1|t
∗
n (γ ); γ )

∂γ

]
γ=γ0

1{Zn ∈ Z}.

Using our previous results, the fact that if Z ∈ Z then:
E[B(Y )|X, Z] = E[B(Y )|t(γ0)] = E[B(Y )|t(γ0)] and t(γ0) = t∗(γ0),
and computing the relevant U-statistic projections, algebraic
manipulation yields

1
N

N∑
n=1

Y1nY2n
∂ log P̂Y |t∗Z(1, 1|̂tn(γ0))

∂γ
1{Zn ∈ Z}

=
1
N

N∑
n=1

[
Y1nY2n

∂LZ
(
1, 1|t∗n (γ0)

)
∂γ

− E

[
Y1Y2

∂LZ (1, 1|t∗(γ0))
∂γ

∣∣∣∣ t∗(γ0) = t∗n (γ0)
]]

+
1
N

N∑
n=1

E

[
E

[
∂LZ (1, 1|t∗(γ0))

∂γ
∇π

× PY |t∗Z
(
1, 1|t∗(γ0)

)′
|Z

]
D(Z, γ0)|Z = Zn

]
× [E[B(Yn)|Xn, Zn] − E[B(Yn)|Zn]]

−
1
N

N∑
n=1

E

[
E

[
∂LZ (1, 1|t∗(γ0))

∂γ
∇π
× PY |t∗Z
(
1, 1|t∗(γ0)

)′
|t∗(γ0)

]
D(Z, γ0)|Z = Zn

]
× [E[B(Yn)|Xn, Zn] − E[B(Yn)|Zn]]

+
1
N

N∑
n=1

E

[
E

[
∂LZ (1, 1|t∗(γ0))

∂γ
∇π

× PY |t∗Z
(
1, 1|t∗(γ0)

)′
|Z

]
D(Z, γ0)|t∗(γ0) = t∗n (γ0)

]
× [B(Yn)− E[B(Yn)|Xn, Zn]]

−
1
N

N∑
n=1

E

[
E

[
∂LZ (1, 1|t∗(γ0))

∂γ
∇π

× PY |t∗Z
(
1, 1|t∗(γ0)

)′
|t∗(γ0)

]
D(Z, γ0)|t∗(γ0) = t∗n (γ0)

]
× [B(Yn)− E[B(Yn)|Xn, Zn]]

+
1
N

N∑
n=1

E

[
E

[
E

[
∂LZ (1, 1|t∗(γ0))

∂γ
∇π

× PY |t∗Z
(
1, 1|t∗(γ0)

)′
|Z

]

×D(Z, γ0)|t∗(γ0)

]
∇πE

[
B(Y )|t∗(γ0)

]
|Z = Zn

]

×Ψ (Yn, Zn)−
1
N

N∑
n=1

E

[
E

[
E

[
∂LZ (1, 1|t∗(γ0))

∂γ
∇π

× PY |t∗Z
(
1, 1|t∗(γ0)

)′
|t∗(γ0)

]
D(Z, γ0)|t∗(γ0)

]
∇π

× E
[
B(Y )|t∗(γ0)

]
|Z = Zn

]
Ψ (Yn, Zn)+ op(N−1/2). (A.40)

Analogous results exist for 1N
∑N
n=1 Y1n(1 − Y2n)

∂ log P̂Y |t∗Z
(1,0|̂tn(γ0))

∂γ

1{Zn ∈ Z}, etc. by replacing PY |t∗Z(1, 1|t(γ0)) and LZ(1, 1|t(γ0))
with their counterparts in each case. Taking the sum over y ∈
{(1, 1), (1, 0), (0, 1), (0, 0)}we have

∑
y

E
[
∂LZ (y|t∗(γ0))

∂γ
∇πPY |t∗Z

(
y|t∗(γ0)

)
|t∗(γ0)

]
= −E

[
SγπZ(W , γ0)|t

∗(γ0)
]
,∑

y

E
[
∂LZ (y|t∗(γ0))

∂γ
∇πPY |t∗Z

(
y|t∗(γ0)

)
|Z
]

= −E
[
SγπZ(W , γ0)|Z

]
,
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with SγπZ(W , γ0) as in Theorem 2. Note that E[Y1Y2|X, Z, Z ∈
Z] = PY |t∗Z(1, 1|t

∗(γ0)). Thus,

E
[
Y1Y2

∂LZ(1, 1|t∗(γ0))
∂γ

∣∣∣∣t∗(γ0), X, Z]
=
∂PY |t∗Z(1, 1|t

∗(γ0))

∂γ
1{Z ∈ Z}.

The same result holds for Y1(1 − Y2)
∂LZ(1,0|t∗(γ0))

∂γ
, etc. By

construction,
∑
y

∂PY |t∗Z
(y|τ)

∂γ
= 0. It follows by iterated expectations

that

E

[
Y1Y2

∂LZ(1, 1|t∗(γ0))
∂γ

+ (1− Y1)Y2
∂LZ(0, 1|t∗(γ0))

∂γ

+ Y1(1− Y2)
∂LZ(1, 0|t∗(γ0))

∂γ

+ (1− Y1)(1− Y2)
∂LZ(0, 0|t∗(γ0))

∂γ

∣∣∣∣t∗(γ0)
]
= 0 (A.41)

Let
ξZ(W , γ0) = E

[
SγπZ(W , γ0)|t

∗(γ0)
]
− E

[
SγπZ(W , γ0)|Z

]
AZ(Xn, Zn, γ0) = E [ξZ(W , γ0)|Z = Zn]D(Zn, γ0)

× [E [B(Yn)|Xn, Zn]− E [B(Yn)|Zn]]

BZ(Wn, γ0) = E
[
E [ξZ(W , γ0)|Z]D(Z, γ0)|t∗(γ0) = t∗n (γ0)

]
× [E [B(Yn)|Xn, Zn]− B(Yn)]

CZ(Wn, γ0) = E
[
E
[
E [ξZ(W , γ0)|Z]D(Z, γ0)|t∗(γ0)

]
∇π

× E
[
B(Y )|t∗(γ0)

]
|Z = Zn

]
Ψ (Yn, Zn; γ0).

Eqs. (A.40) and (A.41) yield

1
N

N∑
n=1

ŜtγZ(Wn, γ0) =
1
N

N∑
n=1

[
SγZ(Wn, γ0)+ AZ(Xn, Zn, γ0)

+ BZ(Wn, γ0)+ CZ(Wn, γ0)
]
+ op(N−1/2). (A.42)

Now let γ̃ be as described in Eq. (A.39). Denote 1Zn ≡ 1{Zn ∈
Z}. The uniform convergence properties of our nonparametric
estimators and consistency of γ̂ yield

1
N

N∑
n=1

Y1nY2n
∂2 log P̂Y |t∗Z(1, 1|̂t(γ̃ ))

∂γ ∂γ ′
1{Zn ∈ Z}

= −
1
N

N∑
n=1

Y1nY2n1Zn

P̂Y |t∗Z(1, 1|̂t(γ̃ ))
2

×
∂ P̂Y |t∗Z(1, 1|̂t(γ̃ ))

∂γ

∂ P̂Y |t∗Z(1, 1|̂t(γ̃ ))

∂γ

′

+
1
N

N∑
n=1

Y1nY2n1Zn

P̂Y |t∗Z(1, 1|̂t(γ̃ ))

∂2P̂Y |t∗Z(1, 1|̂t(γ̃ ))

∂γ ∂γ ′

p
−→ −E

[
1{Z ∈ Z}

PY |t∗Z(1, 1|t
∗(γ0))

∂PY |t∗Z(1, 1|t
∗(γ0))

∂γ

×
∂PY |t∗Z(1, 1|t

∗(γ0))

∂γ

′
]

+ E

[
1{Z ∈ Z}

∂2PY |t∗Z(1, 1|t
∗(γ0))

∂γ ∂γ ′

]
.

By construction,
∑
y

∂2PY |t∗Z
(y|t∗(γ ))

∂γ ∂γ ′
= 0. The previous result and the

definition of ŜtγZ(Wn, γ̃ ) in Eq. (A.39) yield

1
N

N∑
n=1

∂ ŜtγZ(Wn, γ̃ )
∂γ ′

p
−→ −E

[
SγZ(W , γ0)SγZ(W , γ0)

′
]

≡ −IZ.

Using Assumption B5, (A.39), (A.42) and the above equation, we
get

γ̂ − γ0 = I−1Z ×
1
N

N∑
n=1

[
SγZ(Wn, γ0)+ AZ(Xn, Zn, γ0)

+ BZ(Wn, γ0)+ CZ(Wn, γ0)
]
+ op(N−1/2).

which concludes the proof. �

A.4. Monotonicity of the loci ϕ1(π1, π2; θ, z) = 0, ϕ2(π1, π2; θ, z)
= 0

If (6) is satisfied, for each π2 ∈ [0, 1] there exists a unique
π1 ∈ [0, 1] such that ϕ1(π1, π2; θ, z) = 0. The same holds
for ϕ2(π1, π2; θ, z) = 0. Therefore, both loci can be depicted as
continuous curves in [0, 1]2. Let µp(Z) = E[Xp|Z] and express
Xp = µp(Z) + νp, where E[νp|Z] = 0. Let ηp(βp) =
εp − ν ′pβp. Take (η1, η2) ∈ R2 and let H1|2(η1, η2;β, z) =
Pr(η1(β1) ≤ η1|η2(β2) ≤ η2, Z = z) and H2|1(η2, η1;β, z) =
Pr(η2(β2) ≤ η2|η1(β1) ≤ η1, Z = z). We can re-express
ϕ1(π1, π2; θ, z) = π1 − H1|2(µ1(z)′β1 + α1π2, µ2(z)′β2 +
α2π1;β, z) and ϕ2(π2, π1; θ, z) = π2 − H2|1(µ2(z)′β2 +
α2π1, µ1(z)′β1 + α1π2;β, z). Thus, the signs of the slopes of the
loci ϕ1(π1, π2; θ, z) = 0 and ϕ2(π2, π1; θ, z) = 0 are given by the
signs of α1∇η1H1|2(µ1(z)

′β1 + α1π2, µ2(z)′β2 + α2π1;β, z) and
α2∇η2H2|1(µ2(z)

′β2 + α2π1, µ1(z)′β1 + α1π2;β, z), respectively.
These signs are equal to those of α1 and α2 respectively,
since ∇η1H1|2(η1, η2;β, z) > 0 and ∇η2H2|1(η2, η1;β, z) >

0∀(η1, η2) ∈ R2, z ∈ S(Z), θ ∈ Rk+3.
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