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Abstract

We present a step-by-step proof of Theorem 2 in the paper Pairwise-Difference Estimation of Incomplete
Information Games. We also describe the bandwidth-selection criterion used in the Monte Carlo
experiments.

1 Step-by-step proof of Theorem 2

The proof relies on showing that the statistic U, can be expressed as
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where ,, = Y, — Fp(tpi), NO?R,, 250, Nh*uPr % N(0,V,P1), NhuPrr % N(0,V,Prr),
NRYPuBrv L N(0,VPrv), and NuBrr -5 3Y, where Y = O,(1). From here, the bandwidth
conditions in Assumption (B2) will yield
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And the main result in Theorem 2 will follow from Theorem 1 in Hall (1984). Without loss of generality we

will focus on p = 1, with all proofs for p = 2 following identical steps. Let

tii = Wi + Vi + aapes = Wi + 21,01, EYiltu] = Fi(tu); E[YplXi] = pp(Xi), p=1,2.
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The density of ¢1; is denoted by fi, (-). We will use p,(X;) and p,; interchangeably. If the model is correct,
then 11 (X;) = Fi(t1;). From now on, we will use the notation A{;; = ¢; — (;. Let
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Define now
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~ 1 Atiis —~ 1 Atyi; =~ ~ S t1;
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Tiy (ty) = Nlﬁ i”»’-{c(ﬂ)w(&), Siy(ty) = Nlﬁc iZNIYuHc(A%iU)D(Xi)y Fi(ty;) = %7

First, we will find asymptotic linear representations for Ty (f1;) — Tiy(t1;) and Sty (t1;) — Sy (t1))
conditional on X;. Note that AtAh-j — Aty = (ZU — le)l(§1 — 91) + (&1 — oq) [(/jgl — p2i) — (fg; —
ng)] + oy [(/jgl — p2;) — (f2j — ugj)}; where, from our previous notation, (Zh- — le)l(gl — 91) =
(Vli — Vlj)/(% — fyl) + (ugi — ugj) (&1 — al). Given our assumptions, we can use Theorem A-1 in Aradillas-
Lopez (2008) or Lemma 3 in Collomb and Hardle (1986) to show that for any compact set X € S(X) and
any § > 0,

sup AtAlij — Aﬁuj‘ = Op(N_l/Q) + OP(N5—1E;L)1/2 [1 + Op(N—l/z)] _ Op(N(S—lE;L)l/Q.

Ti,T;EX

Let AZlij = Zli — le. This yields
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where sup |Ciy(z)| = Op(N‘S/Q_liNL;LNEgQ) and sup [¢4 (z)| = Op(N‘S_liNLb_LE;3) for any compact set
reEX reX
X € S(X) and any ¢ > 0.
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where sup [€% (z)] = 0p,(N~Y2h2) and sup €5 (@)| = O,,(N‘S_lfNL;LfNLC_Q). Grouping terms, we can reexpress
TEX TEX
Bin(X;) as
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where sup ‘E?V(x)‘ = Op(N_lﬁc_QﬁgL) + Op(N‘S_lE;LEC_Q) = Op(N‘S_lE;L?LC_Q) for any 6 > 0 and any
zeX
compact set X € int (S(X )) The first term in the above equation is a symmetric, third order U-statistic

which satisfies the assumptions of Lemma A.3 in Ahn and Powell (1993). Given our assumptions, taking the

projection of this U-statistic conditional on X; yields
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where Ry (t1) = Vy, (E [@(X)’tl}ftl(tl)) € R and
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Let us move on to An (X)), grouping terms we have
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where sup ‘«EN )| = 72) 4 0,(N"Y2h2) = 0,(N~Y/2172) for any compact set X € int(S(X)).
rEX

Taking the projection of the third-order U-statistic conditional on X; yields

Ain(X;) = (Ri(t)Z1; — Qui(tyy)) Zdﬁl + En(X;), (S-4)

where Q1(t1) = Vi, (E [@(X)Z1|t1]ftl(t1)) € RUm(Z1) " and sua‘{N z)| = hM )+o (N_1/2i~zg2) for any
re

compact set X € int(S(X)). Eqs. (5= — (54) yield a linear representation result for Ty (t1;) — Tin(t15)



conditional on X;:
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for any compact set X' € int(S(X)) and any § > 0. Following analogous steps, we can arrive at an expression

for Sin(t1;) — Sin(t1;) equivalent to (S=5). Defin:

Ra(tr) = Vo, (Ble(X)[0F () o (1)), Qi) = Vi (Blp(X) Zilta] Fa (1) fu (1))

We have
1 o = Atij
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where £3* (X;) is of the same order of magnitude as €4 (X;) (see (8=6)). If the model is correct, E[Y1]| X, 1] =

Fi(t1), this yields

S (t15)

= i (t1y) -2 Fi(tey).
Tin(iny) 1(t1y) 1(t1;)

Sin(t1y) == Fi(ty) Elp(X)[ty] fr, (t1;), Tin(try) == Elp(X)[ta;] i, (1),

=S1(t15) =Ty (t15)

Given our assumptions, we have in fact

sup |ﬁ1 (t1;) — Fi(ty;)| = Oy (N(‘Ll)/QE;l/Q) for any compact X € int(S(X)) and any § > 0.  (S-7)

;X

Using (85) — (8=7), adding and subtracting F} (t1;), we obtain

il = i) = g @) = Snton)] = R 1 ) = ()
* Tl(ilj) [S1v(t13) = Fi(t1) Tin (815)] + €81 (X)-

IRecall that Fy(t1;) = E[Y14]t1;], and if the model is correct then p1(X;) = Fi(t1;)-



Using our previous results, simplifying the above equation yields the following asymptotic linear

representation for F (£ i) — Fi(t1;) conditional on X,

57 FV(ty) o
Fi(ti;) — Fi(tiy) = m(Rl(tlj)Zlg Ql tlg Zd)
[Yai — poi][p1i — pay] (1) (Atlij) (1 [Ym MQJ (AXM)
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for any compact X € int(S(X)) and any § > 0.
Given our assumptions, this implies in particular that, conditional on X
sup !ﬁl(aj) —Fl(tlj)| :Op(N_l/Qh )+ O, (N(é 1)/2h_L/2)+O (N(é 1)/2h 1/2)+0p(ﬁcﬂ)+0p(ﬁbﬂ)
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40, ([T )+ (B =050 4 (VT R+ (VR + (V)
for any compact X € int (S(X)) and any 0 > 0.
Denote
e =Yi; - Filty), &, =Yy — Fhy), 51(X)) = Fi(hy) - Filty).
Note that £1; — e1; = —11(X;). Now, let us go back to the statistic
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2Notice that the expectation of the first two terms in the linear representation are exactly equal to zero conditional on Xj.



We deal first with US. Recall that the trimming function ¢(-) is nonzero only in a compact set X' € int(S(X)).

U < s (07 - (7 ) > F(AX”>‘ ~0,(sup () (s-11)

i<j b reX

:Op(l)

The order of magnitude of sup |7y (z)] is given by (S=3). We now move on to Uf . Let
TEX
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Note that A(X;, X;) is symmetric in its arguments. Now, for 7 € {I,II,I1I,IV} let
AT (Wi, W3, W) = 01 [57 O W) B (X2, X) + 57 (Wi, Wi B(Xi, Xa) | + 21, [87 00, W) B(X0, X))
+ 87 (Wi WOR(X;, X0)| + e [57 005, Wi B(XG, Xe) +37 00, W B(X;, X))
T Wi, W) = (e0:[67 W5, W) + 87 5, )| + 24, [57 00, ) + 37 00, W) ) B, X5).

Note that these two objects are symmetric in their arguments. In addition, if the model is correct,

E[AT (Wi, W;j,Wy)| = 0 because in this case, Ele1a]|Xa, Wh, We] = 0 for a,b,c € {i,j, k}. Let

B, 1(N—=2)(N\"' 7 ., 1 (N\T' 7
=) 2 AT W Vi =5 () T wy).
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Going back to the U, component in (S=I0), we can express it as

UE\[ = (ul +UBII) +u1 I +ulBIV + o (V + VBII) + Vl r oy VlBIV + Rﬁ'
=g (UPT +UPT) +UPTT +UPTY + 0,(NTY) + R, where

R < (s efr @)+ @) (3) 30 (lud + )
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The order of magnitude of sup ’51{7,1 (z)] is characterized in (S=8). Define
TEX

X (Wi) = E[AT (Wi, Wy, W) | Wi
A (Wi, W) = E[AT (Wi, Wy, Wi) | Wi, W;] — E[AT (Wi, Wy, Wi) Wi — E[AT (Wi, Wy, W) | W]
KOV, Wy, W) = AT (Wi, Wi, Wi — E[AT (Wi, W, W) [Wi, W;] — E[AT (Wi, Wi, Wie) [Wi, W]
— E[AT (Wi, Wi, W) Wi, Wie] + E[AT (Wi, Wi, W) [Wi] + E[AT (Wi, Wi, W) | W]

+ E[AT (Wi, Wy, Wi)|Wa].

If the model is correct, then E[AJ(Wi,Wj,Wk)] = 0 for the reasons outlined above. In this case the
Hoeffding Decomposition (see Lemma 5.1.4.A in Serfling (1980)) of UFNJ is given by

U7 = (1\;);]2) [% SR ) +3<1;f> SR WL W) + <];r> > Kg(Wi7W77Wk):|~ (5-13)

i<J i<j<k

For each J € {I,II,III,IV}, the third term in the right hand side of (SI3) is a symmetric, third order
U-statistic that is degenerate of order 2 as, by construction, E[ (Wz, Wj, W) ’Wz, W; } = 0. Given our

assumptions, it has a finite variance and therefore (see Lemma 5.2.1.A in Serfling (1980))
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N\ . N ) (S-14)
~II1 v
o ) = 7 ) A ) ’ = |-
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We now move on to the first term in the right hand side of (S=13)). Computing the relevant expectations,

our assumptions yield

N N ~ N —
1 —I 1 —IT hit 1 —IIT 1 —IV hM
Py mow =0 LR =0, (E ) LA om0 3T -0,(%).

Finally, let us deal with the second term on the right-hand side of (S=13)). Define
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We have

—1 —1 —
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N III N III M
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For J € {I,III}, it is immediate to verify that if our model is correct,

degenerate second order U—statisticH. For J € {II, IV}, define

7 (Wi, W) = &7 (Wi, W) = E[@7 (Wi, W)

Wi - E[87 (Wi, W)

wj]l

Computing the expectations in question, our assumptions yield

(;V) DWWy = <J2V> > Wi wy) + 0, ()

i<j i<j
—1 —1
<J2V> S ot (W W) = (;V) S W) + 0, (i)
1<J 1<j

The first object on the right hand side is exactly a second-order, degenerate U-statistic. We will now verify

the basic condition in Theorem 1 of Hall (1984) for the following degenerate U-statistics
N —1 N —1 N —1
<2> > WL Wy); <2> > Wi W) <2> > (Wi wy).
i<j i<j i<j

Define
G7 (Wi, W) = E[(PJ(kawi)‘I)J(Wk7WJ)

j] (for 7 = I); s16)
-16
G7 Wi, W) = E[%J(Wk,wi)@(wk,wj)

)] (for 7 € (11,1},

3Note that Hgl)(a) = *Hgl)(*“)-



Given our assumptions, there is a scalar £ > 0 such that

B[GT Wi Wy)*] + N B[S (Wi Wi)'] _ O(he®) + O(N"'he™) _ O(he) +O(N"hc")

3 < = = —0
{Eforov w21 s s
E[G" (Wi, Wi)*] + NT'E[@T Vi, W)'] _ Oy *) +O(RYF) + O(N "k, *F) + O(N~"RYT2E)
{E[(T)”(Wuwj)ﬂ }2 - i (hy*" + )
_0(h) + O™ + O(N"hyh) +O(NTIRTY)
- £+ (1+hM)
B[G" Wi Wi)*] + N B[S Wi Wy)'] _ O(he!) +O(BEY) + O(N~"he®) + O(N~'h"?)
{BEv W, w2} - g (he? +h2)
_ O(h) + O + O(N ') + O(NTRETY)
- (1+ M) '
Given this result, Theorem 1 in Hall (1984) yields
7 d N e 2
ST (Wi, W) *)N(O, 5 E[®7 (Wi, W) }) for J = I
'~ B N (S-17)
> T (W, W) N N(O, 7E[qﬂ()/vi,wj)ﬂ). for 7 € {II,1V}.
i<j

In particular, this implies that

<];7> Z(I)I(Wi7wj) = 0, (N~ 'R %/?); <J;7> Z&)U(thj) —0, (N—l’i'Lb—L/Q);

i<j 1<j

(g) _ STV (W, Wy) = 0 (N Th )

1<j

Given our assumptions, E[CI)HI(Wi, Wj)ﬂ < 0. Using this, Theorem 5.5.2 in Serfling (1980) yields

N\ L
N x (2) ST oW, wy) - 3y, (S-18)
i<j
where J = Z;’il Aj (Xi, — 1), with Xi,xi, ... are independent y? variables. The weights ()\j);-";l are the
solutions (in A) to Ag — Ag = 0, where Ag(W) = [ MW W,)g(W,)dFy(W,). Immediately, this
implies that

(g)_lzqﬂ”(wi,wj) = 0,(N71Y). (S-19)

i<j



Going back to the Hoeffding decomposition in (S-13)) and the results in (S=14) — (S=19), the expression for
U in (SI2) becomes

UZ =0 lEx (@)] ) + 0 L _Vio[— )40 E + 0, Rt +0 s
RERAVE L P\ vorzprnz ) P\ v ) TP\ e bL P\ tM
M 1 1 1 1
RE+M NhY? Nh!? Nh? N

where the order of magnitude of sup |§J€1 (.Z')‘ is given in the last line of (S=8). Note that the last two terms
rEX

are redundant, given the rest. We will drop them from now on. Using this result along with (S=11)) and
(S-I0) implies that our test-statistic satisfies

= (3) g (35) o (o) 0 5 ) <0

1<

ol N o (B o (Y o (N o (Yoo (o (2
For\ g ) TG ) oG ) o\ ) 0w ) o\ ) O\ e )

where the order of magnitude of sup ‘Vl ’ is given by (S=9)). Using our assumptions about the relative
reX
rates of convergence of the three bandwidths involved, and the “smoothness measure” M, the above equation

(N S enend(X)8(X,) - ( AXy o !
UlN‘(z) Z L H( b >+p<NZL/2> (S-20)

1<g

becomes

EU{‘N
If our model is correct, UlAN is a symmetric, degenerate second order U-statistic. We will verify that it

satisfies Hall’s condition. As in (S=10), let

@(Wi,wj)—s“shd’(bL)a( i (A%(”); g(wi,wj):E[@(Wi,Wk)<1>(vvj,wk)‘wi,wj].

Given our assumptions, there exists a scalar ¢ > 0 such that

E[GWi W)’ + NT'E[e(Wi, Wy)*'] _ O ") +O(N ' %) _ 0(") +O(N"'b ") o
{E[‘P(WMWJ)Q}}Q

c-b2r c

Therefore the conditions Theorem 1 in Hall (1984) are satisfied and they yield

1 — —
_ £ B(XD)B(X;)— [ AX,
Zp—leL/z <];7> Z Ep;Ep; ¢£ )o( ])H<A%(]> 4, N(0,1), where ¥, =E = :

L
i<j b

hiEh0(X0) 6 (X;)” ﬁ(Aggmﬂ

This yields E;INEL/QUPN =3 " —%5 N(0,1). Moreover, using Theorem 1 in Hall (1984) we can show

that for any pair of constants 7, » € R,

e1i62:620(X1)2B(X;)2 — [ AX,;
71Ty +72T2y i>./\/(0 Y1475 %9 +2m Y 2), where 15 =FE f15¢1i€22i0(X0) *O(X)” H( ) ]

bL b
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From here, the Cramer-Wold device and the properties of the normal distribution imply

Y1 X2

(Tiy Taw) -5 N(0,%), where %=
E1,2 DI

Note that ¥ is invertible under the conditions of Theorem 2 which implies (via the continuous mapping
theorem) that N2bL (Ury , U2y ) S H(Uny UQN)I SN X3. Next, the uniform convergence result in (5=9) is

more than enough to yield

-1 22 22 Ty V270 V2 N2 -1 2 2 20y \2a 0y )2 N2
ip_(];f) e ()g(i) 5(X,) H(A?]) _ <];f> Zsmsplqﬁ(%(z) 3(X,) H(A%@) op(1)

i<y i<j
25,
-1 =~ o T X, 27 X 2 2 -1 - X 27 X 2 2
21’2 _ N 261i61j62i62j?( i) o(X;5) 7 A{(ij _ N 251,;61j€2,;62j?( i) o(X;5) 7 A{(ij
2 i<j bt b 2 i<j b- b

+ Op(l) L) 2172.

This yields part 1 of the theorem. Namely, if the model is correctly specified,
Tv = N (Ury , Usy)S (Uny , Uzy) —55 X2
To prove part 2 of Theorem 2, we let
D, = B| (B2, 4300 1 EBEO ] = EIZ3C01s B 2300 in] ) o )|

Cy = B| (B (2 W00 s EBCON 1] ~ E[25(3) ) [Wp$(X)\uprup(up)]-

Given our assumptions, a dominated convergence argument easily yields
n P —1 — p*
0p — —D, Cp, =0,.

Under the conditions of part 2 of Theorem 2, 0} is well-defined even if the model is incorrect and Equation
in AL-09 is violated with positive probability. Conversely, if the model is correctly specified we know that
Wy, = F; ' (up) — Z),6, and 05 = 6, (the true structural parameter value). Let t%; = W; 4+ Z,,0%. Given our

assumptions, conditional on X; we hav

Fp(tpj) L} [/’LP( )90( *)’_pz - p]} -
Elp(Xo)|ty, = t3;]

4We use the notation py,; and 1, (X;) interchangeably.

11



Moreover, this convergence is uniform over X. This yields

()

= B[(1(X) = F3 (55)) “8(X0)*] + 0p(1)

—1 - -
eher d(Xi)o(Xj)— [ AX, L o
Z P p o H > L) +op(1), with ey, =Yy — F (L)

i<j

Suppose Equation (1) in AL-09 is violated with positive probability for player p in the set X and

Pr[p(X0) Ep(Xi)t5] # Bl (Xo)o(Xi)t5.]

X; e x| >0
Then, under the conditions of part 2 of Theorem 2 we would have
Pr[up(X;) # Fp(t;(Xi))‘Xi x| >0.

Consequently, E{(um— - Fy (t;i))Qa(Xi)Q] > 0. It follows that if Equation (1) in AL-09 is violated with
positive probability,

Pr [NEL/2‘UPN‘ > mN} — 1 for any sequence of scalars such that mN/(NEL/Q) — 0.

If the exclusion restriction in Assumption (A1) is satisfied and if Y1 — F}*(¢]) and Ya — Fi (t5) are not perfectly
correlated conditional on X € X' (as it is assumed in part 2 of Theorem 2), it is easy to show that $! has

a well-defined probability-limit. Combined with the previous result, this yields
Pr(|TN| > mN) — 1 for any sequence of scalars such that mN/(NQEL) — 0.

Therefore Ty diverges w.p.1. This concludes the proof. O

1.1 Kernels and bandwidths used in Monte Carlo experiments

For a random variable ¢, define

)

F1(0.75) — ﬁw1(0.25)}

(1) = min{30) o~

This is the proportionality constant used in Silverman’s “rule of thumb” bandwidth hy = 0.9RN—1/5
(see Equation 3.31, p. 48 in Silverman (1986)). According to the notation in the previous sections, the
kernels involved in the estimation of ép are K, and K, while those used to construct our specification
test-statistic are Hp, M. and H. We used covariate-specific bandwidths for K3, M, and H of the form
ho(Wy) = Cn, R(W,) - N~ and hy(V,) = Cp, R(V,) - N~ for Ky, hy(W,) = C; R(W,) - N~ and
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hy(Vy) = Ci R(Vy) - N™ % for Hy, and b(W,) = CGR(W,) - N™% and b(V,) = GR(V,) - N~% for H.
Our asymptotic results still hold with covariate-specific bandwidths as long as the bandwidth convergence
rates in our assumptions are satisfied. The bandwidths used for the remaining kernels were of the form
ha(fip) = Ch@ﬁ(ﬁp) N~ for K,, and h, (t,) = C;Lcﬁ(t:,) Nk for H,. All kernels used were multiplicative

with a general functional form of the type

K () = (a0 + a19? + agp* + - + app®) p(1)),

where ¢(-) is the N(0,1) density function and the coefficients of the polynomial are chosen to satisfy
the various bias-reducing conditions in the paper. The constants Ap,,...,A; were chosen to satisfy the
convergence rates in our bandwidth assumptions. The values used are specified in each one of the tables

presented below. The next section describes how the constants Cy,,...,C; were chosen.

1.1.1 Choice of bandwidth constants Cp,,Ch, used in the estimation of @\p

Our previous sections results provide no guidance for choosing the different bandwidths involved. Applied
researchers could use different criteria to solve this question. We employed a procedure based on the
asymptotic approximations of our estimator and specification test-statistic. Let §p(, Jj) and @f (—7) denote
the estimator and sample influence-function analog (as described in Equation (??) of Theorem ?7) that

result when we drop the j* observation in the sample. Let

The constants Cp,,Cp, used in the estimation of é\p were chosen among a grid of candidate values to
minimize the Kolmogorov-Smirnov distance between the empirical distributions of ﬁ;p(f j) and ﬁbp (—7) .

Specifically, the following steps were taken for each design.
1.— For each design, one sample of size N = 600 was generated.

2.— A grid of points in the set [0.2, 6] X [0.2, 6] was considered as candidate values for Cj,,Cp,. For p =1,
{fgp(*j)}j,vzl and {ﬁbp(fj)}j,v:l were computed for each point in this grid.

3.— Let ﬁfg (1) and ﬁﬂ (1) denote the corresponding empirical distributions. The values chosen for
P ’p
Ch,,Cn, were those that yielded the smallest value of the Kolmogorov-Smirnov distance between ng ()
P

and F@p ().

This procedure was performed only once for each design. The resulting constants Cj,,Cp, were used in all

subsequent simulations.
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1.1.2 Choice of bandwidth constants czb,cze,cg used in the construction of the specification

test-statistic Ty

As with the previous bandwidths, we employed a simple procedure based on the asymptotic properties of
Tn. To simplify computations, in all our experiments we fixed Cﬁb = C;. According to Theorem 77, if
the model is correct the test-statistic Ty described there has an asymptotic x3 distribution. Following the
choice of Cp,, and Cp, and the resulting estimator 5, we took the following steps for the same sample of size

N = 600 described above

1.— A grid of points in the set [0.2,6} X [0.2,6} was considered as candidate values for Cﬁb = C; and
C; . Let Tn(—j) denote the test-statistic described in Theorem 77 after we leave out the jt" observation.

{TN(f 7 )}j\]:l were computed for each point in the grid of candidate values.

2.— Let ﬁTN () denote the resulting empirical distribution. The values for G, = G and Cp, that were
chosen were those that yielded the smallest value of the Kolmogorov-Smirnov distance between ﬁTN (+) and

the distribution of a x4 random variable.

As before, this was done only once for each design. The resulting constants were used in all subsequent

simulations of Ty

References

AHN, H., anp J. POWELL (1993): “Semiparametric Estimation of Censored Selection Models,” Journal of

FEconometrics, 58, 3—29.

ARADILLAS-LOPEZ, A. (2008): “Semiparametric Estimation of a Simultaneous Game with Incomplete

Information,” Working Paper, Princeton University.

CoLLoMmB, G., anxp W. HARDLE (1986): “Strong Uniform Convergence Rates in Robust Nonparametric
Time Series Analysis and Prediction : Kernel Regression from Dependent Observations,” Stochastic

Processes and their Applications, 23, 77-89.

HarLL, P. (1984): “Central Limit Theorem for Integrated Square Error of Multivariate Nonparametric

Density Estimators,” Journal of Multivariate Analysis, 14, 1-16.
SERFLING, R. (1980): Approzimation Theorems of Mathematical Statistics. Wiley, New York, NY.

SILVERMAN, B. (1986): Density Estimation for Statistics and Data Analysis. Chapman and Hall.

14



	Step-by-step proof of Theorem 2
	Kernels and bandwidths used in Monte Carlo experiments
	Choice of bandwidth constants  Chb, Cha-.4 used in the estimation of "0362-.4p 
	Choice of bandwidth constants Ch"0365hb, Ch"0365hc, Cb"0365b -.4 used in the construction of the specification test-statistic TN-.4



