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Abstract

We present a step-by-step proof of Theorem 2 in the paper Pairwise-Difference Estimation of Incomplete

Information Games. We also describe the bandwidth-selection criterion used in the Monte Carlo

experiments.

1 Step-by-step proof of Theorem 2

The proof relies on showing that the statistic UpN can be expressed as

UpN =

(
N

2

)−1∑

i<j

"pi"pj�(Xi)�(Xj)

b̃L
H

(
ΔXij

b̃

)
+ �p0

(
UBIpN + UBIIpN

)
+ UBIIIpN + UBIVpN +ℛpN , (S-1)

where "pi ≡ Ypi − Fp(tpi), Nb̃L/2ℛpN
p

−→ 0, Nℎ̃
3/2
c UBIpN

d
−→ N

(
0, V BIp

)
, Nℎ̃

L/2
b UBIIpN

d
−→ N

(
0, V BIIp

)
,

Nℎ̃
1/2
c UBIVpN

d
−→ N

(
0, V BIVp

)
, and NUBIIIpN

d
−→ 3Y, where Y = Op(1). From here, the bandwidth

conditions in Assumption (B2) will yield

Nb̃L/2UpN = Nb̃L/2
(
N

2

)−1∑

i<j

"pi"pj�(Xi)�(Xj)

b̃L
H

(
ΔXij

b̃

)
+ �N , where �N

p
−→ 0.

And the main result in Theorem 2 will follow from Theorem 1 in Hall (1984). Without loss of generality we

will focus on p = 1, with all proofs for p = 2 following identical steps. Let

t1i =W1i + V ′
1i1 + �1�2i ≡W1i + Z ′

1i�1 , E[Y1∣t1i] ≡ F1(t1i); E[Yp∣Xi] ≡ �p(Xi), p = 1, 2.

∗Department of Economics, University of Wisconsin, Madison WI 53706; aaradill@ssc.wisc.edu .Financial support from the
National Science Foundation Grant No. SES−0718409 and the Gregory Chow Econometrics Research Program at Princeton
University are gratefully acknowledged.

1



The density of t1i is denoted by ft1(⋅). We will use �p(Xi) and �pi interchangeably. If the model is correct,

then �1(Xi) = F1(t1i). From now on, we will use the notation Δ�ij ≡ �i − �j . Let

�̃pi =
1

Nℎ̃Lb

N∑

j=1

Ypiℋb

(
ΔXji

ℎ̃b

)/
1

Nℎ̃Lb

N∑

j=1

ℋb

(
ΔXji

ℎ̃b

)
; t̂1i ≡W1i + V ′

1î1 + �̂1�̃2i︸ ︷︷ ︸
≡W1i+Z̃′

1i�̂1

.

Define now

T1N (t̂1j) =
1

Nℎ̃c

N∑

i=1

ℋc

(
Δt̂1ij

ℎ̃c

)
'(Xi), S1N (t̂1j) =

1

Nℎ̃c

N∑

i=1

Y1iℋc

(
Δt̂1ij

ℎ̃c

)
'(Xi), F̂1(t̂1j) =

S1N (t̂1j)

T1N (t̂1j)
,

T1N (t1j) =
1

Nℎ̃c

N∑

i=1

ℋc

(
Δt1ij

ℎ̃c

)
'(Xi), S1N (t1j) =

1

Nℎ̃c

N∑

i=1

Y1iℋc

(
Δt1ij

ℎ̃c

)
'(Xi), F̂1(t1j) =

S1N (t1j)

T1N (t1j)

First, we will find asymptotic linear representations for T1N (t̂1j) − T1N (t1j) and S1N (t̂1j) − S1N (t1j)

conditional on Xj . Note that Δt̂1ij − Δt1ij =
(
Z1i − Z1j

)′(
�̂1 − �1

)
+
(
�̂1 − �1

)[
(�̃2i − �2i) − (�̃2j −

�2j)
]
+ �1

[
(�̃2i − �2i) − (�̃2j − �2j)

]
; where, from our previous notation,

(
Z1i − Z1j

)′(
�̂1 − �1

)
≡

(
V1i −V1j

)′(
̂1 − 1

)
+
(
�2i−�2j

)(
�̂1 −�1

)
. Given our assumptions, we can use Theorem A-1 in Aradillas-

Lopez (2008) or Lemma 3 in Collomb and Hardle (1986) to show that for any compact set X ∈ S(X) and

any � > 0,

sup
xi,xj∈X

∣∣Δt̂1ij −Δt1ij
∣∣ = Op(N

−1/2) +Op(N
�−1ℎ̃−Lb )1/2

[
1 +Op(N

−1/2)
]
= Op(N

�−1ℎ̃−Lb )1/2.

Let ΔZ1ij ≡ Z1i − Z1j. This yields

1

Nℎ̃c

N∑

i=1

ℋc

(
Δt̂1ij

ℎ̃c

)
'(Xi)−

1

Nℎ̃c

N∑

i=1

ℋc

(
Δt1ij

ℎ̃c

)
'(Xi)

︸ ︷︷ ︸
=T1N (t̂1j)−T1N (t1j)

=
1

Nℎ̃2
c

N∑

i=1

ℋ(1)
c

(
Δt1ij

ℎ̃c

)
'(Xi)ΔZ

′
1ij

(
�̂1 − �1

)

︸ ︷︷ ︸
≡A1N (Xj)

+ �1
1

Nℎ̃2
c

N∑

i=1

ℋ(1)
c

(
Δt1ij

ℎ̃c

)[
(�̃2i − �2i)− (�̃2j − �2j)

]
'(Xi)

︸ ︷︷ ︸
≡B1N (Xj)

+
1

Nℎ̃2
c

N∑

i=1

ℋ(1)
c

(
Δt1ij

ℎ̃c

)(
�̂1 − �1

)[
(�̃2i − �2i)− (�̃2j − �2j)

]
'(Xi)

︸ ︷︷ ︸
≡C1N (Xj)

+�aN (Xj),

(S-2)
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where sup
x∈X

∣∣C1N (x)
∣∣ = Op(N

�/2−1ℎ̃
−L/2
b ℎ̃−2

c ) and sup
x∈X

∣∣�aN (x)
∣∣ = Op(N

�−1ℎ̃−Lb ℎ̃−3
c ) for any compact set

X ∈ S(X) and any � > 0.

A1N (Xj) =
1

N2ℎ̃2
c

N∑

ℓ=1

N∑

i=1

ℋ(1)
c

(
Δt1ij

ℎ̃c

)
'(Xi)ΔZ

′
1ij 

�1
ℓ + �

b
N(Xj)

B1N (Xj) =
1

N2ℎ̃2
c ℎ̃

L
b

N∑

ℓ=1

N∑

i=1

ℋ(1)
c

(
Δt1ij

ℎ̃c

)
'(Xi)

[[
Y2ℓ − �2i

]

fx(Xi)
ℋb

(
ΔXℓi

ℎ̃b

)
−

[
Y2ℓ − �2j

]

fx(Xj)
ℋb

(
ΔXℓj

ℎ̃b

)]
+ �

c
N(Xj),

(S-3)

where sup
x∈X

∣∣�bN (x)
∣∣ = op(N

−1/2ℎ̃−2
c ) and sup

x∈X

∣∣�cN (x)
∣∣ = Op(N

�−1ℎ̃−Lb ℎ̃−2
c ). Grouping terms, we can reexpress

B1N (Xj) as

B1N (Xj) =
1

N2ℎ̃2
c ℎ̃

L
b

∑

i<ℓ

{
ℋ(1)

c

(
Δt1ij

ℎ̃c

)
'(Xi)

[
[Y2ℓ − �2i]

fx(Xi)
ℋb

(
ΔXℓi

ℎ̃b

)
−

[Y2ℓ − �2j ]

fx(Xj)
ℋb

(
ΔXℓj

ℎ̃b

)]

+ℋ(1)
c

(
Δt1ℓj

ℎ̃c

)
'(Xℓ)

[
[Y2i − �2ℓ]

fx(Xℓ)
ℋb

(
ΔXiℓ

ℎ̃b

)
−

[Y2i − �2j ]

fx(Xj)
ℋb

(
ΔXij

ℎ̃b

)]}
+Op(N

−1
ℎ̃
−2
c ℎ̃

−L
b ) + �̃

c
N(Xj),

where sup
x∈X

∣∣�̃cN (x)
∣∣ = Op(N

−1ℎ̃−2
c ℎ̃−Lb ) + Op(N

�−1ℎ̃−Lb ℎ̃−2
c ) = Op(N

�−1ℎ̃−Lb ℎ̃−2
c ) for any � > 0 and any

compact set X ∈ int
(
S(X)

)
. The first term in the above equation is a symmetric, third order U-statistic

which satisfies the assumptions of Lemma A.3 in Ahn and Powell (1993). Given our assumptions, taking the

projection of this U-statistic conditional on Xj yields

B1N (Xj) =
1

Nℎ̃2
c

N∑

i=1

[
Y2i − �2i

]
'(Xi)ℋ

(1)
c

(
Δtij

ℎ̃c

)
+R1(t1j)

1

Nℎ̃L
b

N∑

i=1

[Y2i − �2j ]

fx(Xj)
ℋb

(
ΔXij

ℎ̃b

)
+ �

c

N(Xj)

where R1(t1) ≡ ∇t1

(
E
[
'(X)

∣∣t1
]
ft1(t1)

)
∈ ℝ and

sup
x∈X

∣∣�cN (x)
∣∣ = Op

(
ℎ̃ℳc

ℎ̃Lb

)
+Op

(
ℎ̃ℳb

ℎ̃2+ℳ
c

)
+Op(N

�−1ℎ̃−Lb ℎ̃−2
c ) + op(N

−1/2)

Let us move on to A1N (Xj), grouping terms we have

A1N (Xj) =
1

Nℎ̃2
c

∑

i<ℓ

{
ℋ(1)

c

(
Δt1ij

ℎ̃c

)
'(Xi)ΔZ

′
1ij 

�1
ℓ +ℋ(1)

c

(
Δt1ℓj

ℎ̃c

)
'(Xℓ)ΔZ

′
1ℓj 

�1
i

}
+ �̃

b
N(Xj),

where sup
x∈X

∣∣�̃bN (x)
∣∣ = Op(N

−1ℎ̃−2
c ) + op(N

−1/2ℎ̃−2
c ) = op(N

−1/2ℎ̃−2
c ) for any compact set X ∈ int(S(X)).

Taking the projection of the third-order U-statistic conditional on Xj yields

A1N (Xj) =
(
R1(t1j)Z1j −Q1(t1j)

)′ 1
N

N∑

i=1

 �1i + �
b

N (Xj), (S-4)

where Q1(t1) ≡ ∇t1

(
E
[
'(X)Z1

∣∣t1
]
ft1(t1)

)
∈ ℝ

dim(Z1), and sup
x∈X

∣∣�̃bN (x)
∣∣ = Op(ℎ̃

ℳ
c ) + op(N

−1/2ℎ̃−2
c ) for any

compact set X ∈ int(S(X)). Eqs. (S-2) − (S-4) yield a linear representation result for T1N(t̂1j) − T1N(t1j)
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conditional on Xj :

T1N (t̂1j)− T1N (t1j) =
(
R1(t1j)Z1j −Q1(t1j)

)′ 1
N

N∑

i=1

 
�1
i +

�1

Nℎ̃2
c

N∑

i=1

[
Y2i − �2i

]
'(Xi)ℋ

(1)
c

(
Δtij

ℎ̃c

)

+R1(t1j)
�1

Nℎ̃L
b

N∑

i=1

[Y2i − �2j ]

fx(Xj)
ℋb

(
ΔXij

ℎ̃b

)
+ �

T1

N (Xj),

(S-5)

where

sup
x∈X

∣∣�T1

N (x)
∣∣ = Op

(
ℎ̃ℳc

ℎ̃Lb

)
+Op

(
ℎ̃ℳb

ℎ̃2+ℳ
c

)
+Op(N

�−1ℎ̃−Lb ℎ̃−3
c ) + op(N

−1/2ℎ̃−2
c ) (S-6)

for any compact set X ∈ int(S(X)) and any � > 0. Following analogous steps, we can arrive at an expression

for S1N (t̂1j)− S1N (t1j) equivalent to (S-5). Define1

R̃1(t1) = ∇t1

(
E['(X)∣t1]F1(t1)ft1(t1)

)
, Q̃1(t1) = ∇t1

(
E['(X)Z1∣t1]F1(t1)ft1(t1)

)
.

We have

S1N (t̂1j)− S1N (t1j) =
(
R̃1(t1j)Z1j − Q̃1(t1j)

)′ 1
N

N∑

i=1

 
�1
i +

�1

Nℎ̃2
c

N∑

i=1

[
Y2i − �2i

]
F1(t1i)'(Xi)ℋ

(1)
c

(
Δtij

ℎ̃c

)

+ R̃1(t1j)
�1

Nℎ̃L
b

N∑

i=1

[Y2i − �2j ]

fx(Xj)
ℋb

(
ΔXij

ℎ̃b

)
+ �

S1

N (Xj),

where �S1

N (Xj) is of the same order of magnitude as �T1

N (Xj) (see (S-6)). If the model is correct, E[Y1∣X, t1] =

F1(t1), this yields

S1N (t1j)
p

−→ F1(t1j)E['(X)∣t1j ]ft1(t1j)︸ ︷︷ ︸
≡S1(t1j)

, T1N (t1j)
p

−→ E['(X)∣t1j ]ft1(t1j)︸ ︷︷ ︸
≡T1(t1j)

,
S1N (t1j)

T1N (t1j)
≡ F̂1(t1j)

p
−→ F1(t1j).

Given our assumptions, we have in fact

sup
xj∈X

∣∣F̂1(t1j)− F1(t1j)
∣∣ = Op

(
N (�−1)/2ℎ̃−1/2

c

)
for any compact X ∈ int(S(X)) and any � > 0. (S-7)

Using (S-5)− (S-7), adding and subtracting F̂1(t1j), we obtain

F̂1(t̂1j)− F1(t1j) =
1

T1(t1j)

[
S1N (t̂1j)− S1N (t1j)

]
−
F1(t1j)

T1(t1j)

[
T1N (t̂1j)− T1N (t1j)

]

+
1

T1(t1j)

[
S1N (t1j)− F1(t1j)T1N (t1j)

]
+ �

F1

N (Xj).

1Recall that F1(t1i) = E[Y1i∣t1i], and if the model is correct then �1(Xi) = F1(t1i).
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Using our previous results, simplifying the above equation yields the following asymptotic linear

representation for F̂1(t̂1j)− F1(t1j) conditional on Xj ,

F̂1(t̂1j)− F1(t1j) =
F

(1)
1 (t1j)

E['(X)∣t1j ]

(
R̃1(t1j)Z1j − Q̃1(t1j)

)′ 1
N

N∑

i=1

 
�1
i

+
�1

Nℎ̃2
c

N∑

i=1

[Y2i − �2i][�1i − �1j ]

T1(t1j)
'(Xi)ℋ

(1)
c

(
Δt1ij

ℎ̃c

)
+ F

(1)
1 (t1j)

�1

Nℎ̃L
b

N∑

i=1

[Y2i − �2j ]

fx(Xj)
ℋb

(
ΔXij

ℎ̃b

)

+
1

Nℎ̃c

N∑

i=1

[Y1i − F1(t1j)]

T1(t1j)
'(Xi)ℋc

(
Δt1ij

ℎ̃c

)
+ �

F1

N (Xj), where

sup
x∈X

∣∣�F1

N (x)
∣∣ = Op

([
(ℎ̃ℳ

c ℎ̃
−L
b ) + (ℎ̃ℳ

b ℎ̃
−(2+ℳ)
c ) + (N�−1

ℎ̃
−L
b ℎ̃

−3
c ) + (N−1/2

ℎ̃
−2
c ) +

(
N

(�−1)/2
ℎ̃
−1/2
c

)]2)

for any compact X ∈ int
(
S(X)

)
and any � > 0.

(S-8)

Given our assumptions, this implies in particular that, conditional on Xj
2

sup
xj∈X

∣∣F̂1(t̂1j)− F1(t1j)
∣∣ = Op(N

−1/2
ℎ̃
−1
c ) +Op(N

(�−1)/2
ℎ̃
−L/2
b ) +Op(N

(�−1)/2
ℎ̃
−1/2
c ) +Op(ℎ̃

ℳ
c ) +Op(ℎ̃

ℳ
b )

+Op

([
(ℎ̃ℳ

c ℎ̃
−L
b ) + (ℎ̃ℳ

b ℎ̃
−(2+ℳ)
c ) + (N�−1

ℎ̃
−L
b ℎ̃

−3
c ) + (N−1/2

ℎ̃
−2
c ) +

(
N

(�−1)/2
ℎ̃
−1/2
c

)]2) (S-9)

for any compact X ∈ int
(
S(X)

)
and any � > 0.

Denote

"1j ≡ Y1j − F1(t1j), "̂1j ≡ Y1j − F̂1(t̂1j), �̂1(Xj) ≡ F̂1(t̂1j)− F1(t1j).

Note that "̂1j − "1j = −�̂1(Xj). Now, let us go back to the statistic

U1N =

(
N

2

)−1∑

i<j

"̂1j "̂1i�(Xi)�(Xj)

b̃L
H

(
ΔXij

b̃

)
=

(
N

2

)−1∑

i<j

"1j"1i�(Xi)�(Xj)

b̃L
H

(
ΔXij

b̃

)

︸ ︷︷ ︸
≡UA

1N

−

(
N

2

)−1∑

i<j

[
"1j �̂1(Xi) + "1i�̂1(Xj)

]
�(Xi)�(Xj)

b̃L
H

(
ΔXij

b̃

)

︸ ︷︷ ︸
≡UB

1N

+

(
N

2

)−1∑

i<j

�̂1(Xj)�̂1(Xi)�(Xi)�(Xj)

b̃L
H

(
ΔXij

b̃

)

︸ ︷︷ ︸
≡UC

N

(S-10)

2Notice that the expectation of the first two terms in the linear representation are exactly equal to zero conditional on Xj .

5



We deal first with UCN . Recall that the trimming function �(⋅) is nonzero only in a compact set X ∈ int
(
S(X)

)
.

UCN ≤ sup
x∈X

∣∣�̂1(x)
∣∣2�

2
⋅

(
N

2

)−1∑

i<j

1

b̃L

∣∣∣∣∣H
(
ΔXij

b̃

)∣∣∣∣∣
︸ ︷︷ ︸

=Op(1)

= Op

(
sup
x∈X

∣∣�̂1(x)
∣∣2
)

(S-11)

The order of magnitude of sup
x∈X

∣∣�̂1(x)
∣∣ is given by (S-9). We now move on to UB1N . Let

Wi ≡
(
Y1i, Y2i, "1i, "2i, X

′
i ,  

�′
1

i

)′
;

Δ(Xi, Xj) =
�(Xi)�(Xj)

b̃L
H

(
ΔXji

b̃

)
; �

I
(Wi,Wj) =

1

ℎ̃2
c

"2j [�1j − �1i]

E['(X)∣t1i]ft1(t1i)
'(Xj)ℋ

(1)
c

(
Δt1ji

ℎ̃c

)
;

�
II
(Wi,Wj) =

1

ℎ̃L
b

[Y2j − �2i]

fx(Xi)
ℋb

(
ΔXji

ℎ̃b

)
F

(1)
1 (t1i); �

III
(Wi,Wj) =

F
(1)
1 (t1i)

(
R̃1(t1i)Z1i − Q̃1(t1i)

)′
 

�1
j

E['(X)∣t1i]
;

�
IV

(Wi,Wj) =
1

ℎ̃c

[Y1j − F1(t1i)]'(Xj)

E['(X)∣t1i]ft1(t1i)
ℋc

(
Δtji

ℎ̃c

)
.

Note that Δ(Xi, Xj) is symmetric in its arguments. Now, for J ∈ {I, II, III, IV } let

ΛJ (Wi,Wj ,Wk) = "1i

[
�
J
(Wj ,Wk)Δ(Xi, Xj) + �

J
(Wk,Wj)Δ(Xi, Xk)

]
+ "1j

[
�
J
(Wi,Wk)Δ(Xi, Xj)

+ �
J
(Wk,Wi)Δ(Xj , Xk)

]
+ "1k

[
�
J
(Wi,Wj)Δ(Xi, Xk) + �

J
(Wj ,Wi)Δ(Xj , Xk)

]
;

ΥJ (Wi,Wj) =
(
"1i

[
�
J
(Wj ,Wi) + �

J
(Wj ,Wj)

]
+ "1j

[
�
J
(Wi,Wj) + �

J
(Wi,Wi)

])
Δ(Xi, Xj).

Note that these two objects are symmetric in their arguments. In addition, if the model is correct,

E
[
ΛJ (Wi,Wj ,Wk)

]
= 0 because in this case, E["1a∣Xa,Wb,Wc] = 0 for a, b, c ∈ {i, j, k}. Let

UBJ

1N
=

1

3

(N − 2)

N

(
N

3

)−1 ∑

i<j<k

ΛJ (Wi,Wj ,Wk); VBJ

1N
=

1

N

(
N

2

)−1∑

i<j

ΥJ (Wi,Wj)

︸ ︷︷ ︸
=Op(1)︸ ︷︷ ︸

=Op(N−1)

.

Going back to the UB1N component in (S-10), we can express it as

UB1N = �1

(
UBI1N

+ UBII1N

)
+ UBIII1N

+ UBIV1N
+ �1

(
VBI1N

+ VBII1N

)
+ VBIII1N

+ VBIV1N
+RBN

= �1

(
UBI1N

+ UBII1N

)
+ UBIII1N

+ UBIV1N
+Op(N

−1) +RBN , where

RBN ≤
(
sup
x∈X

∣∣�F1

N (x)
∣∣ + sup

x∈X

∣∣�F1

N (x)
∣∣
)
�
2
⋅

(
N

2

)−1∑

i<j

(
∣"1i∣+ ∣"1j∣

) 1

b̃L

∣∣∣∣∣H
(
ΔXij

b̃

)∣∣∣∣∣
︸ ︷︷ ︸

=Op(1)

.

(S-12)
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The order of magnitude of sup
x∈X

∣∣�F1

N (x)
∣∣ is characterized in (S-8). Define

Λ
J

a (Wi) = E
[
ΛJ (Wi,Wj ,Wk)

∣∣Wi

]

Λ
J

b (Wi,Wj) = E
[
ΛJ (Wi,Wj ,Wk)

∣∣Wi,Wj

]
− E

[
ΛJ (Wi,Wj ,Wk)

∣∣Wi

]
−E

[
ΛJ (Wi,Wj ,Wk)

∣∣Wj

]

Λ
J

c (Wi,Wj ,Wk) = ΛJ (Wi,Wj ,Wk)−E
[
ΛJ (Wi,Wj ,Wk)

∣∣Wi,Wj

]
− E

[
ΛJ (Wi,Wj ,Wk)

∣∣Wi,Wk

]

− E
[
ΛJ (Wi,Wj ,Wk)

∣∣Wj ,Wk

]
+ E

[
ΛJ (Wi,Wj ,Wk)

∣∣Wi

]
+ E

[
ΛJ (Wi,Wj ,Wk)

∣∣Wj

]

+ E
[
ΛJ (Wi,Wj ,Wk)

∣∣Wk

]
.

If the model is correct, then E
[
ΛJ (Wi,Wj ,Wk)

]
= 0 for the reasons outlined above. In this case the

Hoeffding Decomposition (see Lemma 5.1.4.A in Serfling (1980)) of UBJ

1N
is given by

U
BJ

1N
=

(N − 2)

3N

[
3

N

N∑

i=1

Λ
J

a (Wi) + 3

(
N

2

)−1∑

i<j

Λ
J

b (Wi,Wj) +

(
N

3

)−1 ∑

i<j<k

Λ
J

c (Wi,Wj ,Wk)

]
. (S-13)

For each J ∈ {I, II, III, IV }, the third term in the right hand side of (S-13) is a symmetric, third order

U-statistic that is degenerate of order 2 as, by construction, E
[
Λ
J

c (Wi,Wj ,Wk)
∣∣Wi,Wj

]
= 0. Given our

assumptions, it has a finite variance and therefore (see Lemma 5.2.1.A in Serfling (1980))

(
N

3

)−1 ∑

i<j<k

Λ
I
c(Wi,Wj ,Wk) = Op

(
1

N3/2 b̃Lℎ̃2
c

)
;

(
N

3

)−1 ∑

i<j<k

Λ
II
c (Wi,Wj ,Wk) = Op

(
1

N3/2b̃Lℎ̃L
b

)
;

(
N

3

)−1 ∑

i<j<k

Λ
III
c (Wi,Wj ,Wk) = Op

(
1

N3/2b̃L

)
;

(
N

3

)−1 ∑

i<j<k

Λ
IV
c (Wi,Wj ,Wk) = Op

(
1

N3/2b̃Lℎ̃c

)
.

(S-14)

We now move on to the first term in the right hand side of (S-13). Computing the relevant expectations,

our assumptions yield

1

N

N∑

i=1

Λ
I
a(Wi) = 0;

1

N

N∑

i=1

Λ
II
a (Wi) = Op

(
ℎ̃ℳ
b

b̃L

)
;

1

N

N∑

i=1

Λ
III
a (Wi) = 0;

1

N

N∑

i=1

Λ
IV
a (Wi) = Op

(
ℎ̃ℳ
c

b̃L

)
.

Finally, let us deal with the second term on the right-hand side of (S-13). Define

ΦI(Wi,Wj) =

[
"1j"2i[�1i − �1j ]'(Xi)�(Xj)

2

E['(X)∣t1j ]ft1(t1j)
−
"1i"2j [�1j − �1i]'(Xj)�(Xi)

2

E['(X)∣t1i]ft1(t1i)

]
1

ℎ̃2
c

ℋ(1)
c

(
Δt1ij

ℎ̃c

)

ΦII(Wi,Wj) =

[
"1i

[Y2j − �2i]

fx(Xi)
F

(1)
1 (t1i)�(Xi)

2 + "1j
[Y2i − �2j ]

fx(Xj)
F

(1)
1 (t1j)�(Xj)

2

]
1

ℎ̃L
b

ℋb

(
ΔXij

ℎ̃b

)

ΦIII(Wi,Wj) =

[
"1iF

(1)
1 (t1i)�(Xi)

2fx(Xi)
(
R̃1(t1i)Z1i − Q̃1(t1i)

)′
 

�1
j

E['(X)∣t1i]

+
"1jF

(1)
1 (t1j)�(Xj)

2fx(Xj)
(
R̃1(t1j)Z1j − Q̃1(t1j)

)′
 

�1
i

E['(X)∣t1j ]

]

ΦIV (Wi,Wj) =

[
"1i
[
Y1j − F1(t1i)

]
'(Xj)fx(Xi)�(Xi)

2

E['(X)∣t1i]ft1(t1i)

+
"1j
[
Y1i − F1(t1j)

]
'(Xi)fx(Xj)�(Xj)

2

E['(X)∣t1j ]ft1(t1j)

]
1

ℎ̃c

ℋc

(
Δt1ij

ℎ̃c

)

(S-15)
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We have (
N

2

)−1∑

i<j

Λ
I
b(Wi,Wj) =

(
N

2

)−1∑

i<j

ΦI(Wi,Wj) +Op

(
b̃ℳ

ℎ̃2+ℳ
c

)

(
N

2

)−1∑

i<j

Λ
II
b (Wi,Wj) =

(
N

2

)−1∑

i<j

ΦII(Wi,Wj) +Op

(
b̃ℳ

ℎ̃L+ℳ

b

)
+Op

(
ℎ̃ℳ
b

b̃L

)

(
N

2

)−1∑

i<j

Λ
III
b (Wi,Wj) =

(
N

2

)−1∑

i<j

ΦIII(Wi,Wj) +Op

(
b̃
ℳ
)

(
N

2

)−1∑

i<j

Λ
IV
b (Wi,Wj) =

(
N

2

)−1∑

i<j

ΦIV (Wi,Wj) +Op

(
b̃ℳ

ℎ̃1+ℳ
c

)
+Op

(
ℎ̃ℳ
c

b̃L

)
.

For J ∈ {I, III}, it is immediate to verify that if our model is correct,
(
N
2

)−1∑
i<j

ΦJ (Wi,Wj) is a symmetric,

degenerate second order U-statistic3. For J ∈ {II, IV }, define

Φ̃J (Wi,Wj) = ΦJ (Wi,Wj)− E
[
ΦJ (Wi,Wj)

∣∣∣Wi

]
− E

[
ΦJ (Wi,Wj)

∣∣∣Wj

]
.

Computing the expectations in question, our assumptions yield

(
N

2

)−1∑

i<j

ΦII(Wi,Wj) =

(
N

2

)−1∑

i<j

Φ̃II(Wi,Wj) +Op

(
ℎ̃
ℳ
b

)

(
N

2

)−1∑

i<j

ΦIV (Wi,Wj) =

(
N

2

)−1∑

i<j

Φ̃IV (Wi,Wj) +Op

(
ℎ̃
ℳ
c

)

The first object on the right hand side is exactly a second-order, degenerate U-statistic. We will now verify

the basic condition in Theorem 1 of Hall (1984) for the following degenerate U-statistics

(
N

2

)−1∑

i<j

ΦI(Wi,Wj);

(
N

2

)−1∑

i<j

Φ̃II(Wi,Wj);

(
N

2

)−1∑

i<j

Φ̃IV (Wi,Wj).

Define

GJ (Wi,Wj) = E
[
ΦJ (Wk,Wi)Φ

J (Wk,Wj)
∣∣∣Wi,Wj

]
(for J = I);

G̃J (Wi,Wj) = E
[
Φ̃J (Wk,Wi)Φ̃

J (Wk,Wj)
∣∣∣Wi,Wj

]
(for J ∈ {II, IV }).

(S-16)

3Note that ℋ
(1)
c (a) = −ℋ

(1)
c (−a).
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Given our assumptions, there is a scalar � > 0 such that

E
[
GI(Wi,Wj)

2
]
+N−1E

[
ΦI(Wi,Wj)

4
]

{
E
[
ΦI(Wi,Wj)2

]}2
≤
O
(
ℎ̃−5
c

)
+O

(
N−1ℎ̃−7

c

)

� ⋅ ℎ̃−6
c

=
O
(
ℎ̃c

)
+O

(
N−1ℎ̃−1

c

)

�
−→ 0

E
[
G̃II(Wi,Wj)

2
]
+N−1E

[
Φ̃II(Wi,Wj)

4
]

{
E
[
Φ̃II(Wi,Wj)2

]}2 ≤
O
(
ℎ̃−L
b

)
+O

(
ℎ̃ℳ−L
b

)
+O

(
N−1ℎ̃−3L

b

)
+O

(
N−1ℎ̃ℳ−3L

b

)

� ⋅
(
ℎ̃−2L
b + ℎ̃ℳ−2L

b

)

=
O
(
ℎ̃L
b

)
+O

(
ℎ̃ℳ+L
b

)
+O

(
N−1ℎ̃−L

b

)
+O

(
N−1ℎ̃ℳ−L

b

)

� ⋅
(
1 + ℎ̃ℳ

b

) → 0

E
[
G̃IV (Wi,Wj)

2
]
+N−1E

[
Φ̃IV (Wi,Wj)

4
]

{
E
[
Φ̃IV (Wi,Wj)2

]}2
≤
O
(
ℎ̃−1
c

)
+O

(
ℎ̃ℳ−1
c

)
+O

(
N−1ℎ̃−3

c

)
+O

(
N−1ℎ̃ℳ−3

c

)

� ⋅
(
ℎ̃−2
c + ℎ̃ℳ−2

c

)

=
O
(
ℎ̃c

)
+O

(
ℎ̃ℳ+1
c

)
+O

(
N−1ℎ̃−1

c

)
+O

(
N−1ℎ̃ℳ−1

c

)

� ⋅
(
1 + ℎ̃ℳ

c

) → 0.

Given this result, Theorem 1 in Hall (1984) yields

∑

i<j

ΦJ (Wi,Wj)
d

−→ N

(
0,
N2

2
E
[
ΦJ (Wi,Wj)

2]
)

for J = I ;

∑

i<j

Φ̃J (Wi,Wj)
d

−→ N

(
0,
N2

2
E
[
Φ̃J (Wi,Wj)

2]
)
. for J ∈ {II, IV }.

(S-17)

In particular, this implies that

(
N

2

)−1∑

i<j

ΦI(Wi,Wj) = Op

(
N

−1
ℎ̃
−3/2
c

)
;

(
N

2

)−1∑

i<j

Φ̃II(Wi,Wj) = Op

(
N

−1
ℎ̃
−L/2
b

)
;

(
N

2

)−1∑

i<j

Φ̃IV (Wi,Wj) = Op

(
N

−1
ℎ̃
−1/2
c

)

Given our assumptions, E
[
ΦIII(Wi,Wj)

2
]
<∞. Using this, Theorem 5.5.2 in Serfling (1980) yields

N ×

(
N

2

)−1∑

i<j

ΦIII(Wi,Wj)
d

−→ 3Y, (S-18)

where Y =
∑∞

j=1 �j
(
�2
1j − 1

)
, with �2

11 , �
2
12 , . . . are independent �2

1 variables. The weights (�j)
∞
j=1 are the

solutions (in �) to Ag − �g = 0, where Ag(W) =
∫∞

−∞
ΦIII(W ,W2)g(W2)dFW (W2). Immediately, this

implies that (
N

2

)−1∑

i<j

ΦIII(Wi,Wj) = Op(N
−1). (S-19)
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Going back to the Hoeffding decomposition in (S-13) and the results in (S-14) − (S-19), the expression for

UB1N in (S-12) becomes

U
B
1N =Op

(
sup
x∈X

∣∣�F1

N (x)
∣∣
)
+Op

(
1

N3/2b̃Lℎ̃2
c

)
+Op

(
1

N3/2 b̃Lℎ̃L
b

)
+Op

(
ℎ̃ℳ
b

b̃L

)
+Op

(
ℎ̃ℳ
c

b̃L

)
+Op

(
b̃ℳ

ℎ̃2+ℳ
c

)

+Op

(
b̃ℳ

ℎ̃L+ℳ

b

)
+Op

(
1

Nℎ̃
3/2
c

)
+Op

(
1

Nℎ̃
L/2
b

)
+Op

(
1

Nℎ̃
1/2
c

)
+Op

(
1

N

)
,

where the order of magnitude of sup
x∈X

∣∣�F1

N (x)
∣∣ is given in the last line of (S-8). Note that the last two terms

are redundant, given the rest. We will drop them from now on. Using this result along with (S-11) and

(S-10) implies that our test-statistic satisfies

U1N =

(
N

2

)−1∑

i<j

"1j"1i�(Xi)�(Xj)

b̃L
H

(
ΔXij

b̃

)
+Op

(
sup
x∈X

∣∣�̂1(x)
∣∣2
)
+Op

(
sup
x∈X

∣∣�F1

N (x)
∣∣
)
+Op

(
1

N3/2b̃Lℎ̃2
c

)

+Op

(
1

N3/2b̃Lℎ̃L
b

)
+Op

(
ℎ̃ℳ
b

b̃L

)
+Op

(
ℎ̃ℳ
c

b̃L

)
+Op

(
b̃ℳ

ℎ̃2+ℳ
c

)
+Op

(
b̃ℳ

ℎ̃L+ℳ

b

)
+Op

(
1

Nℎ̃
3/2
c

)
+Op

(
1

Nℎ̃
L/2
b

)
,

where the order of magnitude of sup
x∈X

∣∣�̂1(x)
∣∣ is given by (S-9). Using our assumptions about the relative

rates of convergence of the three bandwidths involved, and the “smoothness measure”ℳ, the above equation

becomes

U1N =

(
N

2

)−1∑

i<j

"1j"1i�(Xi)�(Xj)

b̃L
H

(
ΔXij

b̃

)

︸ ︷︷ ︸
≡UA

1N

+op

(
1

Nb̃L/2

)

(S-20)

If our model is correct, UA1N is a symmetric, degenerate second order U-statistic. We will verify that it

satisfies Hall’s condition. As in (S-16), let

Φ(Wi,Wj) =
"1j"1i�(Xi)�(Xj)

b̃L
H

(
ΔXij

b̃

)
; G(Wi,Wj) = E

[
Φ(Wi,Wk)Φ(Wj ,Wk)

∣∣∣Wi,Wj

]
.

Given our assumptions, there exists a scalar c > 0 such that

E
[
G(Wi,Wj)

2
]
+N−1E

[
Φ(Wi,Wj)

4
]

{
E
[
Φ(Wi,Wj)2

]}2
=
O
(
b̃−L

)
+O

(
N−1b̃−3L

)

c ⋅ b̃−2L
=
O
(
b̃L
)
+O

(
N−1b̃−L

)

c
→ 0

Therefore the conditions Theorem 1 in Hall (1984) are satisfied and they yield

Σ−1
p Nb̃

L/2

(
N

2

)−1∑

i<j

"pi"pj�(Xi)�(Xj)

b̃L
H

(
ΔXij

b̃

)
d

−→ N (0, 1), where Σp = E

[
"2pj"

2
pi�(Xi)

2�(Xj)
2

b̃L
H

(
ΔXij

b̃

)2
]
.

This yields Σ−1
p Nb̃L/2UpN ≡ Σ−1

p TpN
d

−→ N (0, 1). Moreover, using Theorem 1 in Hall (1984) we can show

that for any pair of constants �1, �2 ∈ R,

�1T1N+�2T2N
d

−→ N
(
0, �21Σ1+�

2
2Σ2+2�1�2Σ1,2

)
, where Σ1,2 = E

[
"1j"1i"2j"2i�(Xi)

2�(Xj)
2

b̃L
H

(
ΔXij

b̃

)2
]
.
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From here, the Cramer-Wold device and the properties of the normal distribution imply

(
T1N T2N

)′ d
−→ N

(
0,Σ

)
, where Σ =

⎛
⎝ Σ1 Σ1,2

Σ1,2 Σ2

⎞
⎠ .

Note that Σ is invertible under the conditions of Theorem 2 which implies (via the continuous mapping

theorem) that N2b̃L
(
U1N , U2N

)
Σ−1

(
U1N , U2N

)′ d
−→ �2

2. Next, the uniform convergence result in (S-9) is

more than enough to yield

Σ̂p ≡

(
N

2

)−1∑

i<j

"̂2pj "̂
2
pi�(Xi)

2�(Xj)
2

b̃L
H

(
ΔXij

b̃

)2

=

(
N

2

)−1∑

i<j

"2pj"
2
pi�(Xi)

2�(Xj)
2

b̃L
H

(
ΔXij

b̃

)2

+ op(1)

p
−→ Σp,

Σ̂1,2 ≡

(
N

2

)−1∑

i<j

"̂1i "̂1j "̂2i "̂2j�(Xi)
2�(Xj)

2

b̃L
H

(
ΔXij

b̃

)2

=

(
N

2

)−1∑

i<j

"1i"1j"2i"2j�(Xi)
2�(Xj)

2

b̃L
H

(
ΔXij

b̃

)2

+ op(1)
p

−→ Σ1,2.

This yields part 1 of the theorem. Namely, if the model is correctly specified,

TN ≡ N2b̃L
(
U1N , U2N

)
Σ̂−1

(
U1N , U2N

)′ d
−→ �2

2.

To prove part 2 of Theorem 2, we let

Dp = E

[(
E
[
ZpZ

′
p�(X)

∣∣�p

]
E
[
�(X)

∣∣�p

]
− E

[
Zp�(X)

∣∣�p

]
E
[
Zp�(X)

∣∣�p

]′)
f�p(�p)

]

Cp = E

[(
E
[
ZpWp�(X)

∣∣�p

]
E
[
�(X)

∣∣�p

]
− E

[
Zp�(X)

∣∣�p

]
E
[
Wp�(X)

∣∣�p

])
f�p (�p)

]
.

Given our assumptions, a dominated convergence argument easily yields

�̂p
p

−→ −D−1
p Cp ≡ �∗p.

Under the conditions of part 2 of Theorem 2, �∗p is well-defined even if the model is incorrect and Equation

in AL-09 is violated with positive probability. Conversely, if the model is correctly specified we know that

Wp = F−1
p (�p)− Z ′

p�p and �∗p = �p (the true structural parameter value). Let t∗pi =Wpi + Z ′
pi�

∗
p. Given our

assumptions, conditional on Xj we have4

F̂p(t̂pj)
p

−→
E
[
�p(Xi)'(Xi)

∣∣t∗pi = t∗pj
]

E
[
'(Xi)

∣∣t∗pi = t∗pj
] ≡ F ∗

p (t
∗
pj).

4We use the notation �pi and �p(Xi) interchangeably.
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Moreover, this convergence is uniform over X . This yields

UpN =

(
N

2

)−1∑

i<j

"∗pi"
∗
pj�(Xi)�(Xj)

b̃L
H

(
ΔXij

b̃

)
+ op(1), with "

∗
pi ≡ Ypi − F ∗

p (t
∗
pi).

= E
[(
�p(Xi)− F ∗

p (t
∗
pi)
)2
�(Xi)

2
]
+ op(1)

Suppose Equation (1) in AL-09 is violated with positive probability for player p in the set X and

Pr
[
�p(Xi)E

[
'(Xi)

∣∣t∗pi
]
∕= E

[
�p(Xi)'(Xi)

∣∣t∗pi
]∣∣∣Xi ∈ X

]
> 0.

Then, under the conditions of part 2 of Theorem 2 we would have

Pr
[
�p(Xi) ∕= Fp

(
t∗p(Xi)

)∣∣∣Xi ∈ X
]
> 0.

Consequently, E
[(
�pi − F ∗

p (t
∗
pi)
)2
�(Xi)

2
]
> 0. It follows that if Equation (1) in AL-09 is violated with

positive probability,

Pr
[
Nb̃L/2

∣∣UpN
∣∣ > m

N

]
−→ 1 for any sequence of scalars such that m

N

/(
Nb̃L/2

)
−→ 0.

If the exclusion restriction in Assumption (A1) is satisfied and if Y1−F ∗
1 (t

∗
1) and Y2−F

∗
2 (t

∗
2) are not perfectly

correlated conditional on X ∈ X (as it is assumed in part 2 of Theorem 2), it is easy to show that Σ̂−1 has

a well-defined probability-limit. Combined with the previous result, this yields

Pr
(∣∣TN

∣∣ > m
N

)
−→ 1 for any sequence of scalars such that m

N

/(
N2b̃L

)
−→ 0.

Therefore TN diverges w.p.1. This concludes the proof. □

1.1 Kernels and bandwidths used in Monte Carlo experiments

For a random variable  , define

ℛ̂( ) = min

{
�̂( ),

F̂−1
 (0.75)− F̂−1

 (0.25)

1.34

}
.

This is the proportionality constant used in Silverman’s “rule of thumb” bandwidth ℎN = 0.9ℛ̂N−1/5

(see Equation 3.31, p. 48 in Silverman (1986)). According to the notation in the previous sections, the

kernels involved in the estimation of �̂p are Ka and Kb, while those used to construct our specification

test-statistic are ℋb,ℋc and H. We used covariate-specific bandwidths for Kb, ℋb and H of the form

ℎb(Wp) = Cℎbℛ̂(Wp) ⋅ N
−�ℎb and ℎb(Vp) = Cℎbℛ̂(Vp) ⋅ N

−�ℎb for Kb, ℎ̃b(Wp) = Cℎ̃bℛ̂(Wp) ⋅ N
−�

ℎ̃b and
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ℎ̃b(Vp) = Cℎ̃bℛ̂(Vp) ⋅ N
−�

ℎ̃b for ℋb, and b̃(Wp) = Cb̃ℛ̂(Wp) ⋅ N−�
b̃ and b̃(Vp) = Cb̃ℛ̂(Vp) ⋅ N−�

b̃ for H .

Our asymptotic results still hold with covariate-specific bandwidths as long as the bandwidth convergence

rates in our assumptions are satisfied. The bandwidths used for the remaining kernels were of the form

ℎa(�̂p) = Cℎaℛ̂(�̂p)⋅N−�ℎa forKa, and ℎ̃c(t̂p) = Cℎcℛ̂(t̂p)⋅N
−�

ℎ̃c forℋc. All kernels used were multiplicative

with a general functional form of the type

K( ) =
(
a0 + a1 

2 + a2 
4 + ⋅ ⋅ ⋅+ ap 

2p
)
�( ),

where �(⋅) is the N (0, 1) density function and the coefficients of the polynomial are chosen to satisfy

the various bias-reducing conditions in the paper. The constants �ℎb , . . . , �b̃ were chosen to satisfy the

convergence rates in our bandwidth assumptions. The values used are specified in each one of the tables

presented below. The next section describes how the constants Cℎb , . . . , Cb̃ were chosen.

1.1.1 Choice of bandwidth constants Cℎb , CℎaCℎb , CℎaCℎb , Cℎa used in the estimation of �̂̂�̂�p

Our previous sections results provide no guidance for choosing the different bandwidths involved. Applied

researchers could use different criteria to solve this question. We employed a procedure based on the

asymptotic approximations of our estimator and specification test-statistic. Let �̂p(−j) and  ̂
p
i (−j) denote

the estimator and sample influence-function analog (as described in Equation (??) of Theorem ??) that

result when we drop the jtℎ observation in the sample. Let

 ̂p
N
(−j) =

1

N − 1

∑

i∕=j

 ̂
�p
i (−j), Ê[�̂p] =

1

N

N∑

j=1

�̂p(−j), Ŝp(−j) ≡ �̂p(−j)− Ê[�̂p],

T̂�p(−j) ≡ Ŝp(−j)
′Ŝp(−j), and T̂ p(−j) ≡  ̂p

N
(−j)′ ̂p

N
(−j).

The constants Cℎb , Cℎa used in the estimation of �̂p were chosen among a grid of candidate values to

minimize the Kolmogorov-Smirnov distance between the empirical distributions of T̂�p(−j) and T̂ p(−j) .

Specifically, the following steps were taken for each design.

1.− For each design, one sample of size N = 600 was generated.

2.− A grid of points in the set
[
0.2, 6

]
×
[
0.2, 6

]
was considered as candidate values for Cℎb , Cℎa . For p = 1,

{
T̂�p(−j)

}N
j=1

and
{
T̂ p(−j)

}N
j=1

were computed for each point in this grid.

3.− Let F̂T̂�p
(⋅) and F̂T̂ p

(⋅) denote the corresponding empirical distributions. The values chosen for

Cℎb , Cℎa were those that yielded the smallest value of the Kolmogorov-Smirnov distance between F̂T̂�p
(⋅)

and F̂T̂ p
(⋅) .

This procedure was performed only once for each design. The resulting constants Cℎb , Cℎa were used in all

subsequent simulations.
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1.1.2 Choice of bandwidth constants Cℎ̃b , Cℎ̃c , Cb̃Cℎ̃b , Cℎ̃c , Cb̃Cℎ̃b , Cℎ̃c , Cb̃ used in the construction of the specification

test-statistic TNTNTN

As with the previous bandwidths, we employed a simple procedure based on the asymptotic properties of

TN . To simplify computations, in all our experiments we fixed Cℎ̃b = Cb̃. According to Theorem ??, if

the model is correct the test-statistic TN described there has an asymptotic �2
2 distribution. Following the

choice of Cℎb and Cℎa and the resulting estimator �̂, we took the following steps for the same sample of size

N = 600 described above

1.− A grid of points in the set
[
0.2, 6

]
×
[
0.2, 6

]
was considered as candidate values for Cℎ̃b = Cb̃ and

Cℎ̃c . Let TN (−j) denote the test-statistic described in Theorem ?? after we leave out the jtℎ observation.
{
TN (−j)

}N
j=1

were computed for each point in the grid of candidate values.

2.− Let F̂T
N
(⋅) denote the resulting empirical distribution. The values for Cℎ̃b = Cb̃ and Cℎa that were

chosen were those that yielded the smallest value of the Kolmogorov-Smirnov distance between F̂T
N
(⋅) and

the distribution of a �2
2 random variable.

As before, this was done only once for each design. The resulting constants were used in all subsequent

simulations of TN .
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