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Abstract

We introduce the first nonparametric tests for the presence and the sign of strategic interac-

tion effects in discrete 2×2 games of complete information under the assumption of rationalizable

behavior, which includes Nash Equilibrium as a special case but allows for incorrect beliefs. Our

tests assume the existence of an observable covariate with a positive stochastic relationship with

the payoffs of a particular player.
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1 A 2× 2 game

Consider the following normal-form game.

Y2 = 1 Y2 = 0

Y1 = 1 T1 +D1, T2 +D2 T1, 0

Y1 = 0 0, T2 0, 0

We will treat (T1, D1, T2, D2) as unobserved random variables. Dj and Tj measure the strategic

and the non-strategic portions of player j’s payoffs, respectively. We refer to (D1, D2) as the

strategic-interaction effects.

2×2 static simultaneous games were first analyzed econometrically in Bjorn and Vuong (1984).

Other well known papers in the literature which focused on them include Bresnahan and Reiss

(1990), Tamer (2003) and many others. This body of work focuses on either parametric models

and/or on the assumption of Nash Equilibrium (NE) behavior. We present here the first nonpara-

metric tests that do not rely on (but allow for) NE behavior. Our discussion will provide a roadmap

of what would be required to extend our results beyond 2× 2 games.
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2 Rationalizable actions

Let us maintain expected-utility maximizing players and let us predict rational behavior based on

the following assumptions:

1. The players in the game are rational in the sense that they do not play dominated strategies.

2. Each player believes that the other player is rational.

3. Each player believes that the other player believes this, and so on ad infinitum.

The strategies that survive this iterative thinking process are rationalizable strategies, consistent

with common knowledge of rationality.

Assumption 1 The realization of (T1, T2, D1, D2) and the normal-form payoffs are known to both

players (i.e, the game is played with complete information). Players choose their actions simulta-

neously. Players are allowed to randomize their actions but player j is assumed to play Yj ∈ {0, 1}
with nonzero probability only if Yj is rationalizable.

Assumption 1 includes Nash Equilibrium (NE) as a special case, but it allows for incorrect

beliefs as long as they are consistent with rationalizability. This solution concept was analyzed

in Aradillas-López and Tamer (2008) in the context of parametric models. To my knowledge,

this paper contains the first nonparametric testable implications in discrete games based solely on

rationalizability as opposed to Nash Equilibrium behavior.

Denote (V )+ ≡ max{V, 0} and (V )− ≡ min{V, 0}. Yj = 1 is dominated for player p iff Tj +

(Dj)+ < 0. Yj = 0 is dominated iff Tj + (Dj)− > 0. If Tj + (Dj)+ ≥ 0 and Tj + (Dj)− ≤ 0 for

p = {1, 2}, both actions are rationalizable for each player and all four outcomes of the game are

rationalizable.

Suppose Yj + (Dj)+ < 0. Then Yj = 1 is dominated for player p. In this case, the rationalizable

actions are:

• (Yj = 0, Y` = 1) if T` > 0,

• (Yj = 0, Y` = 0) if T` < 0,

• (Yj = 0, Y` = 0) and (Yj = 0, Y` = 1) if T` = 0.

Suppose Yj + (Dj)− > 0. Then Yj = 0 is dominated for player p. In this case, the rationalizable

actions are:

• (Yj = 1, Y` = 1) if T` +D` > 0,

• (Yj = 1, Y` = 0) if T` +D` < 0,

• (Yj = 1, Y` = 0) and (Yj = 1, Y` = 1) if T` +D` = 0.

Figure 1 summarizes the regions of rationalizable actions in the (T1, T2) space.
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Figure 1: Rationalizable actions

3 Observables

We focus on a setting where the researcher observes the outcome of the game (Y1, Y2) and a collection

of covariates (X,Z1) related to players’ unobserved payoffs and strategic-interaction effects. Z1 ∈ R
is assumed to have a positive stochastic relationship with T1 in a way described below. Henceforth

Supp(U) denotes the support of the random variable U . Lower case u denotes a particular value

of the random variable U .

Assumption 2

(i) T1, T2 are jointly continuously distributed conditional on (D2, D1, X, Z1).

(ii) Let H1(·|T2, D2, D1, X, Z1) denote the cdf of T1 conditional on (T2, D2, D1, X, Z1). With prob-

ability one (w.p.1) in (T2, D2, D1, X, Z1),

0 < H1(0|T2, D2, D1, X, Z1) < 1, and 0 < H1(−D1|T2, D2, D1, X, Z1) < 1.
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(iii) For almost every (a.e) (t1, t2, d2, d1, x) ∈ Supp (T1, T2, D2, D1, X) and a.e z1, z
′
1 ∈ Supp(Z1),

z1 > z′1 =⇒ H1(t1|t2, d2, d1, x, z1) < H1(t1|t2, d2, d1, x, z′1).

That is, H1(t1|t2, d2, d1, x, z1) is strictly decreasing in z1 for all z1 ∈ Supp(Z1).

(iv) T2, D2|X,Z1, D1 ∼ T2, D2|X,D1 and D1|X,Z1 ∼ D1|X

(v) W.p.1 in X: Pr (T2 < (−D2)−|X) > 0, Pr (T2 > (−D2)+|X) > 0 and, unless Pr (D2 = 0|X) =

1, we also have Pr ((−D2)− ≤ T2 ≤ (−D2)+|X) > 0.

Example 1 Suppose T1 = m1(X1, Z1)+ε1 and T2 = m2(X2)+ε2. Let X ≡ (X1, X2) and suppose,

· For a.e x1 ∈ Supp(X1), m1(x1, z1) is strictly increasing in z1 for a.e z1 ∈ Supp(Z1).

· Supp(T1) = Supp(ε1) and Supp(T2) = Supp(ε2) (e.g, Supp(εj) = R).

· ε1, ε2|X,Z1, D1, D2 ∼ ε1, ε2|X,D1, D2. Let Fε1|ε2,X,D1,D2
(·|ε2, X,D1, D2) denote the cdf of

ε1|ε2, X,D1, D2.

· Fε1|ε2,X,D1,D2
( · |ε2, X,D1, D2) is strictly increasing everywhere on Supp(ε1).

In this case, we have

H1(t1|t2, d2, d1, x, z1) = Fε1|ε2,X,D1,D2
(t1 −m1(x, z1)|t2 −m2(x2), x, d1, d2) ,

which is decreasing in z1 for all z1 ∈ Supp(Z1). This example is compatible with the commonly

assumed parametrization T1 = X ′1β1 +Z1 · βz1 +D1 + ε1 and T2 = X ′2β2 +D2 + ε2, where (D1, D2)

are fixed strategic-interaction parameters. Assumption 2(iii) presupposes that βz1 > 0.

4 Testable implications of strategic-interaction effects

Let R = [(−D1)− , (−D1)+]× [(−D2)− , (−D2)+]. From Figure 1, all four outcomes are rational-

izable when (T1, T2) ∈ R. For j = 1, 2, let

πj(X,Z1) = Pr (Yj = 1|(T1, T2) ∈ R, X, , Z1) .

(π1, π2) summarize players’ rationalizable selection mechanism in R. We make no assumptions

about it. Denote

Pj(X,Z1) = Pr(Yj = 1|X,Z1), and Pj(X) = Pr(Yj = 1|X).

Fix (x, z1) ∈ Supp(X,Z1). By Assumptions 1-2, we have
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P1(x, z1) =

1− E [H1 (−D1|T2, D2, D1, x, z1) · 1 {T2 > (−D2)+} |X = x]

− E [H1 (0|T2, D2, D1, x, z1) · 1 {T2 < (−D2)−} |X = x]

− E [H1 ((−D1)+|T2, D2, D1, x, z1) · 1 {(−D2)− ≤ T2 ≤ (−D2)+} |X = x]×
(

1− π1(x, z1)
)

− E [H1 ((−D1)−|T2, D2, D1, x, z1) · 1 {(−D2)− ≤ T2 ≤ (−D2)+} |X = x]× π1(x, z1),

P2(x, z1) =

Pr(T2 > −D2|X = x)

+

{
E [H1 ((−D1)−|T2, D2, D1, x, z1) · 1 {0 ≤ T2 ≤ −D2} |X = x]

− E [H1 ((−D1)+|T2, D2, D1, x, z1) · 1 {−D2 ≤ T2 ≤ 0} |X = x]

}
×
(

1− π2(x, z1)
)

+

{
E [H1 ((−D1)+|T2, D2, D1, x, z1) · 1 {0 ≤ T2 ≤ −D2} |X = x]

− E [H1 ((−D1)−|T2, D2, D1, x, z1) · 1 {−D2 ≤ T2 ≤ 0} |X = x]

}
× π2(x, z1).

(4.1)

Result 1 Implications of D2 = 0D2 = 0D2 = 0 on P2(x, z1)P2(x, z1)P2(x, z1): If Pr(D2 = 0|X = x) = 1, then P2(x, z1) =

P2(x) ∀ z1. In particular, if Pr(D2 = 0) = 1, then P2(X,Z1) = P2(X). Conversely, P2(X,Z1) 6=
P2(X) implies Pr(D2 6= 0) > 0. However, without further assumptions, having P2(x, Z1) = P2(x)

does not necessarily imply Pr(D2 = 0|X = x) = 1. We will describe below a sufficient condition

(Assumption 3) that will ensure that, if P2(x, Z1) = P2(x), then we must have Pr(D2 = 0|X =

x) = 1.

Result 2 Implications of D2 ≤ 0D2 ≤ 0D2 ≤ 0 on P2(x, z1)P2(x, z1)P2(x, z1): Suppose Pr(D2 ≤ 0|X = x) = 1. In this case

(4.1) becomes

P2(x, z1) = Pr(T2 > −D2|X = x)

+ E [H1 ((−D1)−|T2, D2, D1, x, z1) · 1 {0 ≤ T2 ≤ −D2} |X = x]×
(
1− π2(x, z1)

)
+ E [H1 ((−D1)+|T2, D2, D1, x, z1) · 1 {0 ≤ T2 ≤ −D2} |X = x]× π2(x, z1).

Since π2(x, z1) ∈ [0, 1], lower and upper bounds for P2(x, z1) are given by,

P 2(x, z1) ≡ Pr(T2 > −D2|X = x) + E [H1 ((−D1)−|T2, D2, D1, x, z1) · 1 {0 ≤ T2 ≤ −D2} |X = x] ,

P 2(x, z1) ≡ Pr(T2 > −D2|X = x) + E [H1 ((−D1)+|T2, D2, D1, x, z1) · 1 {0 ≤ T2 ≤ −D2} |X = x] .

(4.2)
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• If Pr(D1 = 0|X = x) = 1, then P2(x, z1) is strictly decreasing in z1. In particular, if

Pr(D1 = 0) = 1, then P2(X, z1) is strictly decreasing in z1 for a.e X.

• If Pr(D1 6= 0|X = x) > 0, then without further restrictions, P2(x, z1) can be decreasing

or increasing in z1 everywhere on Supp(Z1). More precisely, we can always characterize a

rationalizable selection mechanism π2 such that P2(x, z1) is increasing in z1 ∀ z1 ∈ Supp(Z1)

and a selection mechanism π2 such that P2(x, z1) is decreasing in z1 ∀ z1 ∈ Supp(Z1).

However, we can obtain a more definitive monotonicity result for P2(x, z1) as a function of z1 under

the following assumption.

Assumption 3 (x, z1) is such that, ∃ b1 > 0: ∀ b ≥ b1 where z1 + b ∈ Supp(Z1),

H1((−D1)+|T2, D2, D1, x, z1 + b) < H1((−D1)−|T2, D2, D1, x, z1) for a.e (T2, D2, D1).

Example 1 (continued).- Assumption 3 would be satisfied if ∃b1 > 0 such that m1(x1, z1 + b1)−
m1(x1, z1) > (−D1)+− (−D1)− ∀ D1 ∈ Supp(D1) and z1 +b1 ∈ int(Supp(Z1)). If |D1| ≤ D1 w.p.1,

then Assumption 3 would be satisfied if ∃b1 > 0 such that m1(x1, z1 + b1) −m1(x1, z1) > D1. In

the usual parametrization T1 = X ′1β1 + Z1 · βz1 +D1 + ε1, with D1 a fixed parameter, Assumption

3 would be satisfied for a given z1 if z1 + |D1|
βz
1
∈ Supp(Z1). In particular, if Supp(Z1) has no upper

bound, then Assumption 3 would be satisfied for a.e z1.

From the bounds in (4.2), Assumption 3 implies the following,

• If Pr(D2 ≤ 0|X = x) = 1 and Pr(D2 < 0|X = x) > 0, then P2(x, z1 + b) < P2(x, z1)

∀ b ≥ b1: z1 + b ∈ Supp(Z1). In particular, if Pr(D2 ≤ 0) = 1 and there exists a range

of values (x, z1) with positive probability measure where Assumption 3 holds and Pr(D2 <

0|X = x) > 0, then there must exist x and z′1 > z1 such that P2(x, z
′
1) < P2(x, z1).

Result 3 Implications of D2 ≥ 0D2 ≥ 0D2 ≥ 0 on P2(x, z1)P2(x, z1)P2(x, z1): Suppose Pr(D2 ≥ 0|X = x) = 1. Now (4.1)

becomes

P2(x, z1) = Pr(T2 > −D2|X = x)

− E [H1 ((−D1)+|T2, D2, D1, x, z1) · 1 {−D2 ≤ T2 ≤ 0} |X = x]×
(
1− π2(x, z1)

)
− E [H1 ((−D1)−|T2, D2, D1, x, z1) · 1 {−D2 ≤ T2 ≤ 0} |X = x]

}
× π2(x, z1).

• If Pr(D1 = 0|X = x) = 1, then P2(x, z1) is strictly increasing in z1. In particular, if

Pr(D1 = 0) = 1, then P2(X, z1) is strictly increasing in z1 for a.e X.
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• If Pr(D1 6= 0|X = x) > 0, P2(x, z1) can be increasing or decreasing in z1. However, if

Pr(D2 ≥ 0) = 1 and Assumption 3 holds over a range of values (x, z1) such that Pr(D2 >

0|X = x) > 0, then there must exist x and z′1 > z1 such that P2(x, z
′
1) > P2(x, z1).

Result 4 Implications of D1D1D1 and D2D2D2 on P1(x, z1)P1(x, z1)P1(x, z1)

• If Pr(D1 = 0|X = x) = 1 or Pr(D2 = 0|X = x) = 1, then P1(x, z1) is strictly increasing in

z1. In particular, if Pr(D1 = 0) = 1 or Pr(D2 = 0) = 1, then P1(X, z1) is strictly increasing

in z1 for a.e X.

• P1(x, z1) is not strictly decreasing in z1 only if Pr(D1 6= 0|X = x) > 0 and Pr(D2 6= 0|X =

x) > 0. In particular, P1(X, z1) is not strictly increasing in z1 only if Pr(D1 6= 0 and D2 6=
0) > 0.

• Unlike P2(x, z1), the specific signs of D1 and D2 do not have qualitatively different implications

for P1(x, z1). The monotonicity of P1(x, z1) with respect to z1 can only help us infer whether

strategic interaction is present, but not its sign.

5 A menu of econometric tests

Our previous results provide a roadmap for econometric tests about different conjectures of strategic-

interaction effects. These tests involve nonparametric functional equalities and/or inequalities, as

well as exclusion restrictions, all of which can be implemented using existing econometric methods

(e.g:Lee, Song, and Whang (2013), Aradillas-López, Gandhi, and Quint (2016), Lee, Song, and

Whang (2018) for inequality tests, Fan and Li (1996) for equalities and exclusion restrictions).

5.1 Tests under Assumptions 1 and 2

A sufficient condition to determine the presence of strategic-interaction effects

Consider the following null hypothesis

H0 : P1(X, z
′
1) > P1(X, z1) ∀ z′1 > z1 ∈ Supp(Z1), a.e in X.

Under Assumptions 1 and 2, H0 can be rejected only if Pr(D1 ×D2 6= 0) > 0. That is, rejection

of H0 reveals the presence of strategic-interaction effects for both players.
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A test for D2 = 0

Under Assumptions 1-2, a test of the conjecture Pr(D2 = 0|X = x) = 1 can be done by testing the

joint null hypothesis

H0 :

 P2(x, z1) = P2(x) ∀ z1 ∈ Supp(Z1),

P1(x, z
′
1) > P1(x, z1) ∀ z′1 > z1 ∈ Supp(Z1).

A test of the conjecture Pr(D2 = 0) = 1 can be done by testing the joint null hypothesis

H0 :

 P2(X,Z1) = P2(X),

P1(X, z
′
1) > P1(X, z1) ∀ z′1 > z1 ∈ Supp(Z1), a.e in X

A test for D1 = 0

Under Assumptions 1-2, a test of the conjecture Pr(D1 = 0|X = x) = 1 can be done by testing the

null hypothesis

H0 : P1(x, z
′
1) > P1(x, z1) ∀ z′1 > z1 ∈ Supp(Z1).

A test of the conjecture Pr(D1 = 0) = 1 can be done by testing

H0 : P1(X, z
′
1) > P1(X, z1) ∀ z′1 > z1 ∈ Supp(Z1), a.e in X.

A test for D1 = 0 and D2 ≤ 0

Under Assumptions 1 and 2, a test for the conjecture Pr(D1 = 0, D2 ≤ 0|X = x) = 1 can be done

by testing the joint null hypothesis

H0 :

P2(x, z
′
1) ≤ P2(x, z1) ∀ z′1 > z1 ∈ Supp(Z1),

P1(x, z
′
1) > P1(x, z1) ∀ z′1 > z1 ∈ Supp(Z1).

A test for the conjecture Pr(D1 = 0, D2 ≤ 0) = 1 can be done by testing the joint null hypothesis

H0 :

 P2(X, z
′
1) ≤ P2(X, z1) ∀ z′1 > z1 ∈ Supp(Z1), a.e in X,

P1(X, z
′
1) > P1(X, z1) ∀ z′1 > z1 ∈ Supp(Z1), a.e in X,
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A test for D1 = 0, D2 ≥ 0

Under Assumptions 1 and 2, a test for the conjecture Pr(D1 = 0, D2 ≥ 0|X = x) = 1 can be done

by testing the joint null hypothesis

H0 :

P2(x, z
′
1) ≥ P2(x, z1) ∀ z′1 > z1 ∈ Supp(Z1),

P1(x, z
′
1) > P1(x, z1) ∀ z′1 > z1 ∈ Supp(Z1).

A test for the conjecture Pr(D1 = 0, D2 ≥ 0) = 1 can be done by testing the joint null hypothesis

H0 :

 P2(X, z
′
1) ≥ P2(X, z1) ∀ z′1 > z1 ∈ Supp(Z1), a.e in X,

P1(X, z
′
1) > P1(X, z1) ∀ z′1 > z1 ∈ Supp(Z1), a.e in X,

5.2 Tests under Assumptions 1, 2 and 3

A test to reject Assumptions 1- 3

Consider the null hypothesis

H0 : P1(X, z
′
1) ≤ P1(X, z1) ∀ z′1 > z1 ∈ Supp(Z1), a.e in X.

Failure to reject H0 would invalidate the joint validity of Assumptions 1- 3. In other words, there

would not exist any range of values (x, z1) such that all three assumptions are satisfied. These

conditions would be invalidated for a particular (x, z1) if P1(x, z
′
1) ≤ P1(x, z1) ∀ z′1 > z1.

A test for D2 < 0

Take a given (x, z1) and consider the conjecture of a strategic-substitute effect on Player 2: Hs :

Pr(D2 ≤ 0|X = x) = 1, Pr(D2 < 0|X = x) > 0. Now consider the null hypothesis

H0 : P2(x, z
′
1) ≥ P2(x, z1) ∀ z′1 > z1.

If Assumptions 1- 3 hold for (x, z1), then failure to reject H0 would immediately invalidate Hs.

More generally, failure to reject the null hypothesis

H0 : P2(X, z
′
1) ≥ P2(X, z1) ∀ z′1 > z1 ∈ Supp(Z1), a.e in X,

would immediately reject the possibility that Hs holds for some (x, z1). There cannot be a strategic-

substitute effect on Player 2.
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A test for D2 > 0

Take a given (x, z1) and consider the conjecture of a strategic-complement effect on Player 2:

Hc : Pr(D2 ≥ 0|X = x) = 1, Pr(D2 > 0|X = x) > 0. Now consider the null hypothesis

H0 : P2(x, z
′
1) ≤ P2(x, z1) ∀ z′1 > z1.

If Assumptions 1- 3 hold for (x, z1), then failure to reject H0 would immediately invalidate Hc.

More generally, failure to reject the null hypothesis

H0 : P2(X, z
′
1) ≤ P2(X, z1) ∀ z′1 > z1 ∈ Supp(Z1), a.e in X,

would immediately reject the possibility that Hc holds for some (x, z1). There cannot be a strategic-

complement effect on Player 2.

5.3 Extensions: tests for mutual strategic substitutes, complements

If there exists an observable covariate z2 for Player 2 with the same features described in Assump-

tions 2 and 3 (for z1 and Player 1), then it is easy to deduce from the above results how we could

test conjectures such as mutual-strategic substitute effects (D1 < 0, D2 < 0) or complement effects

(D1 > 0, D2 > 0).

6 Concluding remarks

We described nonparametric tests for the presence and the sign of strategic interaction effects in

2× 2 games of complete information under the basic assumption of rationalizable behavior and the

presence of a regressor with a special type of positive stochastic relationship one of the players’

payoffs. Our assumptions are testable. Extensions beyond the 2 × 2 can be undertaken once

the regions of rationalizable choices are characterized. In such cases, our tests can be extended

provided that there exist regressors positively associated with the payoffs of a subset of players in

a way analogous to the one described here.
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