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Abstract

We propose a nonparametric test for cooperative behavior among players in dis-

crete, static games. Assuming that certain exchangeability conditions hold if we

match observable characteristics across all players, we obtain testable implications

for cooperative behavior when players maximize an unknown, symmetric joint objec-

tive function. Cooperation implies the existence of a class of outcomes Y such that,

conditional on the matching, the probability of observing an outcome y ∈ Y must be

equal to the probability of observing any permutation of y. We present a nonparamet-

ric econometric test and we characterize its asymptotic properties. We apply our test

to expansion/entry decisions of Lowe’s and Home Depot in the contiguous U.S and

we find that, while outcomes are consistent with noncooperative behavior in larger

markets, we fail to reject cooperation in smaller markets.

Keywords: Econometrics of games, nonparametric tests, matching, conditional mo-

ment restrictions.

JEL classification: C01, C12, C14, C57.

1 Introduction

The ability to test alternative behavioral models nonparametrically is a valuable tool in

the econometric analysis of games. Of particular interest is the question of whether the
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data observed was generated by noncooperative behavior or if there is evidence of co-

operation. Econometric methods to detect the presence of collusion have received par-

ticular attention, for example, in auction models, where the various methods proposed

have taken advantage of the specific auction rules and have made precise assumptions

on bidders’ valuations and the nature of underlying collusive scheme in order to identify

colluders. Some examples of this work include McAfee and McMillan (1992), Porter and

Zona (1993), Baldwin, Marshall, and Richard (1997), Porter and Zona (1999), Pesendorfer

(2000), Bajari and Ye (2003), Aryal and Gabrielli (2013), Marmer, Shneyerov, and Kaplan

(2017), and Schurter (2020). Some of the tests proposed rely on parametric assumptions

while the ones that are nonparametric produce testable implications in the form of in-

dependence or orthogonality conditions. All of them leverage specific features about the

auction format studied and the particular type of collusive scheme conjectured.

Testing firm conduct in in the context of structural models of demand and supply

has also received attention in the empirical Industrial Organization literature, and col-

lusive behavior has been one of the applications. Tests of firm conduct typically involve

some form of comparison of the observed markups against the markups predicted by a

particular conduct model. Some examples include Bresnahan (1982), Porter (1983), Sul-

livan (1985), Bresnahan (1987), Gasmi, Laffont, and Vuong (1992), Genovese and Mullin

(1998), Berry and Haile (2014), Bergquist and Dinerstein (2020), Sullivan (2020), and

Duarte, Magnolfi, Solvsten, and Sullivan (2021). Most existing tests rely on the availabil-

ity of valid instruments (see Berry and Haile (2014)), and a number of them become spe-

cial cases of nonnested econometric specification tests (Vuong (1989), Rivers and Vuong

(2002)). Some recent approaches (see Bergquist and Dinerstein (2020)) use data from

randomized control trials designed to test alternative conduct models. Finally, testing for

cooperation has also been studied in experimental economics (see, e.g, Dal Bó (2005), M.

and Normann (2012), Fréchette, Lizzeri, and Vespa (2020)). However, the nature of ex-

perimental data, where the researcher controls key aspects of the data generating process,

which are assumed to be unknown in our setting, makes this type of work fundamentally

different, and not applicable to our problem.

In this paper we propose a nonparametric test for cooperation in discrete, static games.

Our test relies on the assumption that certain exchangeability conditions in players’ pay-

off functions hold if we match observable payoff covariates across all players. Combined

with the assumption that players maximize an unknown joint objective function that

treats all players symmetrically (conditional on the aforementioned matching of payoff
covariates across players), cooperation implies the existence of a class of outcomes Y such

that, conditional on matching observable payoff covariates across all players, the proba-
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bility of observing an outcome y ∈ Y must be equal to the probability of observing any

permutation of y. Our econometric test is based on the conditional moment-equalities

implied by cooperation. We contribute to the literature by focusing on a fairly general

class of discrete games, and developing a nonparametric econometric test that does not

rely on any type of parametric assumption regarding payoffs, nor does it rely on a specific

“collusion” scheme. We also do not rely on the existence of instruments, or on exclusion

restrictions in payoff covariates across players. Our setup also allows for the possibility

that players cooperate in some instances, while they do not cooperate in others.

The paper proceeds as follows. Section 2 focuses on a binary choice game with mul-

tiple players in order to illustrate our approach. Section 3 then extends to more general

discrete games. Section 4 describes our econometric test and its asymptotic properties.

Section 5 summarizes the results of Monte Carlo experiments. Section 6 includes an

empirical illustration where we analyze expansion/entry decisions by Home Depot and

Lowe’s in geographic markets of the contiguous U.S. Section 7 concludes. Proofs are con-

tained in the appendix, with step-by-step details pertaining to our main econometric

result included in the online supplement1.

2 A binary choice game

2.1 Action space

The game consists of a collection of P ≥ 2 players, where each player p has a binary action

Yp ∈ {0,1}. Following convention, we will use lower case letters to denote a potential

action, and upper case letters to denote actual choices made. Similarly, we will use the

subscript −p to denote all players except p. Thus, yp ∈ {0,1} and y−p ∈ {0,1}P−1 denote,

respectively, a potential action by player p and a potential action profile by all players

except p, while Yp and Y−p denote, respectively, the action chosen by p and the action

profile chosen by all players except p. We will adopt the convention of listing the choices

of each player within Y−p and y−p in order, meaning Y−p = (Y1,Y2, . . . ,Yp−1,Yp+1, . . . ,YP ) and

y−p = (y1, y2, . . . , yp−1, yp+1, . . . , yP ). Finally, we will let y ∈ {0,1}P denote a particular action

profile by all players in the game and we will let Y denote the action profile chosen by the

players in the game, both listed in order. That is, Y = (Y1,Y2, . . . ,YP ) and y = (y1, y2, . . . , yP ).

1Available online at http://www.personal.psu.edu/aza12/testing-for-cooperation-supplement.pdf
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2.1.1 Notation for unit vectors

We will let er ∈RP denote the P−dimensional vector that consists of zeros everywhere and

1 in the rth position, and we will let ιr ∈RP−1 denote the (P − 1)−dimensional vector that

consists of zeros everywhere and 1 in the rth position. Finally, we let eee ≡ (1, . . . ,1)′ ∈ RP

denote the vector of all-ones in RP . All these will be treated as column vectors.

2.2 Characteristics of the game

Each player has a collection of observable characteristics to the econometrician, which we

will denote as Xp, and we will group XG ≡ (X1, . . . ,Xp). We interpret Xp and Xq as denot-

ing the same set of economic characteristics (e.g, market share, firm size, cost measures,

distance to distribution center, etc.) for players p and q, and we will denote dim(Xp) ≡ dx.
We denote all other characteristics of the game as ν, which may include a player-specific

characteristics and global variables of the game. The distinction in the roles played by

XG and ν in our model will become clear below. We denote Supp(ξ) as the support of a

random variable ξ.

Assumption 1 (A support condition) Let X ≡ ∩Pp=1Supp(Xp) ⊂ Rdx . We do not require
Supp(Xp) = Supp(Xq) but we will maintain that X , ∅. Take any x ∈ X and let ⊗ be the
Kronecker product operator. We have eee ⊗ x = (x, . . . ,x) ∈ RP ·dx (P copies of x). Let fXG denote
the joint density of XG. Then X = {x ∈Rdx : fXG(eee⊗ x) > 0} , ∅. �

2.2.1 A probability definition

For each x ∈ X , we will denote

Q(y|x) ≡ Pr(Y = y | XG = eee⊗ x) = Pr(Y = y | X1 = · · · = XP = x) (1)

This is the probability that the outcome observed is y, conditional on matching all players’

observable characteristics to x.

2.3 Payoff functions

The payoff for player p is a function denoted as up(Yp,Y−p,XG,ν). We will assume that it

satisfies the following condition.

Assumption 2 (A stochastic payoff-symmetry condition for a class of action profiles)
Let A d= B denote A and B having the same distribution. Let (`1, . . . , `P ) and (k1, . . . , kP ) denote
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any two permutations of (1, . . . , P ). Let S = {er for some r = 1, . . . , P }. Then, for any action
profile s ≡ (s1, . . . , sP ) ∈ S ,

X1 = · · · = XP =⇒


u`1

(s1, s−1,XG,ν)

u`2
(s2, s−2,XG,ν)

...

u`P (sP , s−P ,XG,ν)


d=


uk1

(s1, s−1,XG,ν)

uk2
(s2, s−2,XG,ν)

...

ukP (sP , s−P ,XG,ν)


�

Assumption 2 states that, if we match Xp across all players, an exchangeability condition

for payoffs follows for all action profiles of the form y = ep. For illustration, suppose P = 3

and consider the action profile s = e2 = (0,1,0). Take the permutations (1,3,2) and (2,3,1)

of (1,2,3). Assumption 2 states that, if X1 = X2 = X3, then
u1(0, (1,0),XG,ν)

u3(1, (0,0),XG,ν)

u2(0, (0,1),XG,ν)

 d=


u2(0, (1,0),XG,ν)

u3(1, (0,0),XG,ν)

u1(0, (0,1),XG,ν)


And the above holds for all permutations of (1,2,3). Note that, in the context of an entry

game, the class of action profiles S in Assumption 2 is the collection of all outcomes

where only one player enters the market.

2.3.1 An example of payoff functions that satisfy Assumption 2

Suppose payoffs have the following structure,

up(Yp,Y−p,XG,ν) = φ0
p(XG,ν) +φ1

p(XG,ν) ·λ(Y−p) +φ2
p(XG,ν) ·Yp +∆p(Y−p,XG,ν) ·Yp. (2)

Payoff functions with this structure can satisfy Assumption 2 under the following con-

ditions. Suppose λ(·) is the same function for all players and it is symmetric in all its

arguments, with λ(ιr) = λ(ιm) ≡ λ for all (r,m) ∈ 1, . . . , P − 1, and λ(0) = 0. There are two

types of strategic effects in (2). λ captures the effect of other players’ actions that is in-

dependent of the choice made by player p (for example, a shift in p’s residual demand).

The function ∆p captures the effect of other players’ actions which depends on the choice

made by player p. The remaining components of (2) are non-strategic and they depend

only on the choice made by p.

Definition (exchangeability, Feller (1970, p.228)): The random variables ξ1, . . . ,ξP are
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said to be exchangeable if the P ! permutations (ξ`1
, . . . ,ξ`P ) have the same joint probability

distribution. �

Let θ0
p(XG,ν) ≡ φ0

p(XG,ν)+φ1
p(XG,ν) ·λ and θ1

p(XG,ν) ≡ φ0
p(XG,ν)+φ2

p(XG,ν) and suppose,

X1 = · · · = XP =⇒

 θ0
1(XG,ν), . . . ,θ0

P (XG,ν) are exchangeable

θ1
1(XG,ν), . . . ,θ1

P (XG,ν) are exchangeable
(3)

We do not impose any exchangeability on the functions ∆p(Y−p,XG,ν), but we assume

that2 ∆p(0,XG,ν) = 0 w.p.1. This would be satisfied, for example, if

∆p(Y−p,XG,ν) =

∑
q,p

∆
q
p(XG,ν) ·Yq

 ,
with the signs of each ∆

q
p(XG,ν) being unrestricted and unknown. Then, the payoff func-

tions described in (2) satisfy the exchangeability property in Assumption 2.

2.4 A joint objective function

We model cooperation in the following way.

Assumption 3 (Cooperation)
Conditional on the event X1 = · · · = XP , players choose Y to maximize a joint objective function
U (Y ,XG,ν) ≡ V (u1(Y ,XG,ν), . . . ,uP (Y ,XG,ν);XG,ν), for some function V (u1, . . . ,uP ;XG,ν)

which depends on the payoffs of each player and (possibly) on XG and ν as direct arguments as
well. We will treat the joint objective function as unknown, except for the following features.

(i) Conditional on the eventX1 = · · · = XP , the joint objective function is symmetric in u1, . . . ,uP .
That is, if X1 = · · · = XP , then V (u1, . . . ,up;XG,ν) = V (u`1

, . . . ,u`P ;XG,ν) for any permutation
(`1, . . . , `P ) of (1, . . . , P ).

(ii) P r
(
V
(
u1(y,XG,ν), . . . ,uP (y,XG,ν);XG,ν

)
= V

(
u1(y′,XG,ν), . . . ,uP (y′,XG,ν);XG,ν

))
= 0

for any pair y , y′ in {0,1}P . �

Part (i) of Assumption 3 states that when we match the characteristics Xp across all play-

ers, their joint objective function treats the payoffs of all players equally. Part (ii) ensures

U (y,XG,ν) has a unique maximizer for almost every (a.e) realization of (XG,ν), so

P r(Y = y|X1 = · · · = XP ) = P r
(
U (y,XG,ν) > U (y′,XG,ν) ∀ y′ , y

∣∣∣X1 = · · · = XP
)
∀ y. (4)

2We only need ∆p(0,XG,ν) = C w.p.1 for some constant C, not necessarily zero.
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Remark 1 Assumption 3 presupposes cooperation only when X1 = · · · = XP . Our results will
leave players’ behavior unspecified otherwise, allowing, for example, for a situation where firms
behave noncooperatively in some markets while they cooperate in others. Naturally, we include
the scenario where players always cooperate as a special case.

2.4.1 Examples of joint objective functions that satisfy the symmetry condition in
Assumption 3

A vast class of joint objective functions can satisfy the symmetry restrictions in Assump-

tion 3. Some immediate examples include,

V (u1, . . . ,uP ;XG,ν) =
P∑
p=1

ζ(Xp,ν) ·up,

V (u1, . . . ,uP ;XG,ν) = max {ζ(X1,ν) ·u1, . . . ,ζ(XP ,ν) ·uP } ,

V (u1, . . . ,uP ;XG,ν) = min {ζ(X1,ν) ·u1, . . . ,ζ(XP ,ν) ·uP } .

For any ν, if we match X1 = · · · = XP , we have ζ(X1,ν) = · · · = ζ(XP ,ν), making these

objective functions symmetric in (u1, · · · ,uP ).

2.5 Implications of Assumptions 1, 2 and 3

Exchangeability, symmetry and cooperation under our previous conditions produce the

following result in our binary choice game.

Proposition 1 Suppose Assumptions 1, 2 and 3 hold. Then,

Q(ep|x) =Q(eq|x) ∀ p,q, for a.e x ∈ X (5)

The proof of Proposition is included in the appendix.

Remark 2 Our test will only rely on assumptions about players’ behavior when their payoff
covariates are matched. We make no assumptions about their behavior otherwise. Thus, our
setup allows for the possibility that players cooperate in some instances, while they do not
cooperate in others.
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2.6 Violations of condition (5) when players’ true behavior is nonco-

operative

Let us discuss conditions under which (5) can be violated if players’ true behavior is non-
cooperative while the exchangeability conditions in Assumption 2 are satisfied. Suppose
the actions observed are the realization of a complete-information Nash equilibrium3

(NE). NE outcomes can be characterized as follows. Partition the support of (XG,ν) into
J mutually exclusive regions, R1, . . . ,RJ . The number of equilibria in region Rj (in pure
and mixed strategies) is denoted as Ej . Let us list the Ej NE in region Rj as πj1 , . . . ,πjEj ,

where πj` (y) ≡ Pr(Y = y under NE j`). There is also an equilibrium selection mechanism
M which determines which NE is selected in regions of multiplicity. Let Mj` be the
indicator function for M selecting NE j`. Then,

P r (Y = y|X1 = · · · = XP ) =
J∑
j=1

Ej∑
`=1

{
E
[
πj` (y)

∣∣∣ (XG,ν) ∈ Rj , Mj` = 1 , X1 = · · · = XP
]

· P r
(
(XG,ν) ∈ Rj

∣∣∣ Mj` = 1 , X1 = · · · = XP
)
· P r

(
Mj` = 1

∣∣∣ X1 = · · · = XP
)} (6)

From (6), there are different ways in which (5) can be violated while Assumption 2 holds.

For example, the following can be sufficient conditions for such a violation to occur.

(i) For some pair of players r , p, there exist regions Rj and Rj ′ where only er or ep is a NE
outcome, but not both and,

Ej∑
`=1

E
[
πj` (er )

∣∣∣ (XG,ν) ∈ Rj , Mj` = 1 , X1 = · · · = XP
]
,

Ej′∑
`=1

E
[
πj ′` (ep)

∣∣∣ (XG,ν) ∈ Rj ′ , Mj ′`
= 1 , X1 = · · · = XP

]
,

or

P r
(
(XG,ν) ∈ Rj

∣∣∣ X1 = · · · = XP
)
, P r

(
(XG,ν) ∈ Rj ′

∣∣∣ X1 = · · · = XP
)

(ii) For some pair of players r , p, there exists a region Rj where both er and ep are NE
outcomes for two different NE, j`j`j` and jmjmjm, and,

E
[
πj` (er )

∣∣∣ (XG,ν) ∈ Rj , Mj` = 1 , X1 = · · · = XP
]
, E

[
πjm(ep)

∣∣∣ (XG,ν) ∈ Rj , Mjm = 1 , X1 = · · · = XP
]
,

or

P r
(
Mj` = 1

∣∣∣ X1 = · · · = XP
)
, P r

(
Mjm = 1

∣∣∣ X1 = · · · = XP
)

As the above arguments suggest, there are various channels through which (5) can be

3Other noncooperative behavioral models can be considered, we focus on Nash equilibrium because it
is the most widely assumed.
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violated if true behavior is noncooperative. This can occur through differences in the NE

mixing probabilities across different equilibrium regions, differences in the likelihood

of falling in equilibrium regions (as in case (i) above), or through the properties of the

equilibrium selection mechanism (as in case (ii)). All of these scenarios are compatible

with Assumption 2. On the other hand, in certain cases it is possible for (6) to be satisfied

even if the true behavior is Nash equilibrium. For example, this would happen if the

following is true.

(i) There exists a collection of P regions, R1, . . . ,RP such that, each ep is a pure-strategy

Nash equilibrium (PSNE) if and only if (X,ν) ∈ Rp and if, in addition, these regions

are such that P r((X,ν) ∈ Rp|X1 = · · · = XP ) = P r((X,ν) ∈ Rq|X1 = · = XP ) for all p,q.

(ii) If any outcome y = er is played with positive probability in a mixed-strategy Nash

equilibrium (MSNE), then every outcome y = ep is also played with positive prob-

ability in this MSNE and they are all played with the same probability, so we have

E[π(ep)|X1 = · · · = Xp] = E[π(eq)|X1 = · · · = Xp] for all p.q.

2.7 The 2× 22× 22× 2 case

In a binary choice game where Yp ∈ {0,1} with two players (i.e, a 2×2 game), equation (5)

reduces to,

Q(1,0|x) =Q(0,1|x), a.e x ∈ X (7)

In other words, cooperation in a 2×2 game implies P r(1,0|X1 = X2) = P r(0,1|X1 = X2) a.s.

In the online supplement we take a look at 2×2 games in more detail and we illustrate the

restrictions implied by our assumptions, as well as the power of our testable implications

when the true underlying behavior is noncooperative. There, we show how Nash equi-

librium behavior can lead to violations of (7) if players’ strategic-interaction effects are

asymmetric, or if the equilibrium selection mechanism selects equilibria with different

probabilities.

3 A more general discrete game

Assume now that Yp ∈ Y (a discrete, finite set) for each p. We still assume that the action

space is the same for all players but it is not restricted to be binary. The joint action space

is then Y P . The following condition generalizes Assumption 2.

9



Assumption 4 There exists S ⊆ YP such that, for any s ≡ (s1, . . . , sP ) ∈ S , the following holds.
Let (`1, . . . , `P ) and (k1, . . . , kP ) denote any pair of permutations of (1, . . . , P ). Then,

X1 = · · · = XP =⇒


u`1

(s1, s−1,XG,ν)

u`2
(s2, s−2,XG,ν)

...

u`P (sP , s−P ,XG,ν)


d=


uk1

(s1, s−1,XG,ν)

uk2
(s2, s−2,XG,ν)

...

ukP (sP , s−P ,XG,ν)


�

Assumption 2 in our binary choice game is a special case of Assumption 4, with S =
{ep : p = 1, . . . , P }. In (2) we provided an expression for payoff functions that would satisfy
Assumption 2. We can generalize this class of payoff functions as follows. Suppose,

up(Yp,Y−p,XG,ν) = φ0
p(XG,ν) +φ1

p(XG,ν) ·λ(Y−p) +φ2
p(XG,ν) ·m(Yp) +∆p(XG,ν) · η(Yp,Y−p),

where the functions λ(·), m(·) and η(·) are the same across all players and, for any given

yp ∈ Y , the functions λ(Y−p) and η(yp,Y−p) are symmetric in Y−p. The condition in As-

sumption 4 would be satisfied for S = YP (the entire action space) if, X1 = · · · = XP
implies: (a) γ1(XG,ν), . . . ,γP (XG,ν) are exchangeable, (b) θ1(XG,ν), . . . ,θP (XG,ν) are ex-

changeable, (c) φ1(XG,ν), . . . ,φP (XG,ν) are exchangeable, and (d) ∆1(XG,ν), . . . ,∆P (XG,ν)

are exchangeable.

3.1 Implications of Assumptions 1, 3 and 4

The following Theorem generalizes the binary-choice result in Proposition 1.

Theorem 1 Suppose Assumptions 1, 3 and 4 hold. Then, for any y ∈ S and any permutation
y′ of y,

Q(y|x) =Q(y′ |x) for a.e x ∈ X (8)

The proof of Theorem 1 is included in the appendix. This result is a generalization of (5)

and it summarizes the testable implications of cooperation in our setting. We describe an

econometric test based on (8) next.
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4 An econometric test

Assume that Xp can be split into a collection of r continuously distributed and m discrete

random variables, where r +m = dx ≡ dim(Xp),

Xp =
(
Xc1p , . . . ,X

cr
p︸       ︷︷       ︸

continuous

,Xd1
p , . . . ,X

dm
p︸        ︷︷        ︸

discrete

)
≡

(
Xcp,X

d
p

)
,

where Xcp ≡ (Xc1p , . . . ,X
cr
p ) and Xdp ≡ (Xd1

p , . . . ,X
dm
p ). Let X be as defined in Assumption 1.

Then, each x ∈ X can be expressed as

x ≡ (xc1 , . . . ,xcr︸     ︷︷     ︸
continuous

,xd1 , . . . ,xdm︸       ︷︷       ︸
discrete

) ≡ (xc,xd).

We will let X c and X d denote the range of values of xc and xd within X . Recall that

XGi ≡ (X1i , . . . ,XP i) denotes the collection of all players’ observable characteristics. Let

XcG ≡ (Xc1, . . . ,X
c
P ) and XdG ≡ (Xd1 , . . . ,X

d
P ) denote the collection of all players’ continuous

and discrete observable characteristics, respectively.

4.1 A population statistic to test cooperation

Let σ (y) denote the collection of all distinct permutations of y. Let Q(y|x) be as defined

in (1). Let fXG(·) denote the density function of XG. For each x ∈ X , denote

τ(y,y′ |x) ≡ (Q(y|x)−Q(y′ |x)) · fXG(eee⊗ x).

Recall that every x ∈ X can be partitioned as x ≡ (xc,xd). Let ω(x) denote a pre-specified

weight function that satisfies ω(x) ≥ 0 ∀ x, and ω(x) > 0 only if x ∈ X . Let S ⊆ Y P be as

described in Assumption 4, and let

T ≡
∑
y∈S

∑
y′∈σ (y)

∑
xd∈X d

∫
xc∈X c

τ(y,y′ |x)2ω(x)dxc (9)

For simplicity, let us normalize our weight function so that
∑

xd∈X d

∫
xc∈X c

ω(x)dxc = 1. By con-

struction, T ≥ 0, and T = 0 only if (8) is satisfied. Therefore, we can test for cooperation

by testing the null hypothesis H0 : T = 0.
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Assumption E1 (Weight function properties) For each xd , ω(xc,xd) is continuous in xc. Let
xc and xc denote the (element-wise) minimum and maximum values of xc for which ω(xc,xd) >

0 for some xd , and for each p let Xcp and X
c
p denote the (element-wise) minimum and maximum

values of the support of the distribution of Xcp. Then, there exists a constant D > 0 such that
xc −Xcp ≥ D and X

c
p − xc ≥ D for each p. In other words, the range of values of xc for which

ω(xc,xd) > 0 for some xd , belongs in the interior of Supp(Xcp), for each p. �

Note that Assumption E1 allows for Supp(Xcp) to be unbounded.

4.2 Constructing a test-statistic

Our test is based on matching X1 = · · · = XP = x. While this matching can be done exactly

forXdp , we do it asymptotically forXcp. Let κ(·) be a real-valued, univariate kernel function

and let hn be a bandwidth sequence and denote L ≡ P · r (the total number of continuous

covariates in XGi). For a given x ≡ (xc,xd), let

K
(
XcGi −eee⊗ x

c

hn

)
≡

P∏
p=1

r∏
`=1

κ

X
c`
pi − x

c`

hn

 , 1

{
XdGi = eee⊗ xd

}
≡

P∏
p=1

m∏
s=1

1

{
Xdspi = xds

}
, (10)

Γ (XGi ,x,hn) ≡ 1

hLn
K

(
XcGi −eee⊗ x

c

hn

)
·1

{
XdGi = eee⊗ xd

}
.

Let S(Yi , y,y′) ≡ 1{Yi = y} −1{Yi = y′}, and

τ̂(y,y′ |x)2 =
(
n
2

)−1∑
i<j

S(Yi , y,y
′) · S(Yj , y,y

′) · Γ (XGi ,x,hn) · Γ (XGj ,x,hn).

This is a U-statistic of order two. Then,

T̂ =
∑
y∈S

∑
y′∈σ (y)

∑
xd∈X d

∫
xc∈X c

τ̂(y,y′ |x)2ω(x)dxc. (11)

Assumption E2 (Smoothness conditions with respect toXcGX
c
GX
c
G)

For each p, and each xp ≡ (xcp,x
d
p ) ∈ Supp(Xp), express xcp ≡ (xc1p , . . . ,x

cr
p ) and xdp ≡ (xd1

p , . . . ,x
dm
p ),

and group xcG ≡ (xc1, . . . ,x
c
P ), and xdG ≡ (xd1 , . . . ,x

d
P ). There exists X ∗G ⊆ Supp(XG) that satisfies

the following.

(i) eee⊗ x ∈ X ∗G for each x ∈ X .
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(ii) Let µ(y|XG) ≡ P r(Y = y|XG), and note from our definition in (1) thatQ(y|x) = µ(y|eee⊗x) for
each x ∈ X . Let fXcG |XdG denote the conditional density of XcG given XdG. There exists a constant

D <∞ and an integer M such that, for each xG ≡ (xcG,x
d
G) ∈ X ∗G, each integer 1 ≤ j ≤M, and

any collection {{j`p}Pp=1}
r
`=1 such that

∑P
p=1

∑r
`=1 j

`
p = j, we have fXcG |XdG(xcG|x

d
G) ≤D, and

∣∣∣∣∣∣∣ ∂jfXc |Xd (xcG|x
d
G)

(∂xc1
1 )j

1
1 · · · (∂xcr1 )j

r
1 · · · · · · (∂xc1

P )j
1
P · · · (∂xcrP )j

r
P

∣∣∣∣∣∣∣ ≤D,
∣∣∣∣∣∣∣ ∂jµ(v|xcG,x

d
G)

(∂xc1
1 )j

1
1 · · · (∂xcr1 )j

r
1 · · · · · · (∂xc1

P )j
1
P · · · (∂xcrP )j

r
P

∣∣∣∣∣∣∣ ≤D,
where the last holds for any v ∈ σ (y) : y ∈ S , with S as defined in Assumption 4. �

Assumption E3 (Kernels and bandwidths)
Let M be the integer described in Assumption E2. The following conditions hold,

(i) The kernel is constructed as described in (10). The kernel κ(·) is bias-reducing of order M
with support of the form [−S,S] (κ(v) = 0 ∀ v < (−S,S), with

∫ S
−S κ(v)dv = 1,

∫ S
−S v

jκ(v)dv = 0

for j = 1, . . . ,M − 1 and
∫ S
−S |v|

Mκ(v)dv <∞) and symmetric around zero (i.e, κ(v) = κ(−v) for
all v). In addition, |κ(·)| ≤ κ for a constant κ <∞.

(ii) The bandwidth sequence satisfies n · h2L−r
n −→∞, and n · hM+ r

2
n −→ 0. �

Part (ii) of Assumption E3 requires M + r
2 > 2L− r. Since L ≡ P · r, the smallest value of M

(the number of higher-order derivatives of the functionals described in Assumption E2)

consistent with Assumption E3 isM = dr ·(2P − 3/2)e, where dxe ≡ ceiling(x). For example,

if P = 2 (a two-player game), the smallest value of M consistent with Assumption E3 is

M = d5r/2e. Recall that M also determines the order of the kernel used. If our bandwidth

is of the form hn ∝ n−αh , part (ii) of Assumption E3 requires 1
M+r/2 < αh <

1
r(2P−1) .

4.3 Asymptotic properties of T̂̂T̂T

Group Ui ≡ (Yi ,XGi), denote S(Yi ,Yj , y,y′) ≡ S(Yi , y,y′) · S(Yj , y,y′),

S(Yi ,Yj) ≡
∑
y∈S

∑
y′∈σ (y)

S(Yi ,Yj , y,y
′),

ϕ(XGi ,XGj ,hn) ≡
∑
xd∈X d

∫
xc∈X c

Γ (XGi ,x,hn) · Γ (XGj ,x,hn)ω(x)dxc,

Hn(Ui ,Uj) ≡ S(Yi ,Yj) ·ϕ(XGi ,XGj ,hn).

(12)
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We have

T̂ =
(
n
2

)−1∑
i<j

Hn(Ui ,Uj), (13)

so, our test-statistic is a U-statistic of order 2. From here, applying the results in Hall

(1986), we obtain the following result.

Theorem 2 Suppose Assumptions E1, E2 and E3 hold and that each Xp includes at least one
continuously distributed covariate (i.e, r ≥ 1). Then,

(i) If players cooperate under the conditions described in Section 3.1, then

n · T̂√
2 ·E

[
Hn(Ui ,Uj)2

] d−→N (0,1).

(ii) If players do not cooperate and (8) is violated (and therefore T > 0), we have

lim
n→∞

P r

 n · T̂√
2 ·E

[
Hn(Ui ,Uj)2

] > c
 = 1 ∀ c

The main steps of the proof of Theorem 2 are described in the appendix. All the step-by-

step details and derivations are included in the online supplement. The proof is based

on the conditions of Hall (1986, Theorem 1), which result in asymptotic normality for

degenerate U-statistics whose kernel functions (not to be confused with the kernel used

to construct our nonparametric estimators) change with n, as is our case –under the null

hypothesis of cooperation– due to the presence of the bandwidth sequence hn. While

limiting distributions for degenerate U-statistics of order two, whose kernel functions are

fixed, are a linear combination of independent, centered χ2
1 distributions (see Gregory

(1977), Neuhaus (1977), Serfling (1980, Section 5.5.2)), using Margingale theory, Hall

(1986, Theorem 1) shows sufficient conditions to derive a central limit theorem. This

CLT has been used to construct consistent specification tests (Zheng (1996), Fan and Li

(1996)), and it has been generalized for degenerate U-statistics of higher order by Fan

and Li (1996). The bandwidth convergence conditions in Assumption E3 are designed to

satisfy the conditions in Hall (1986, Theorem 1).

Using the result in Theorem 2, we can use the following rejection rule for testing
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cooperation. Let

t̂ ≡ n · T̂√
2 · Ê

[
Hn(Ui ,Uj)2

] , where Ê
[
Hn(Ui ,Uj)

2
]

=
(
n
2

)−1∑
i<j

Hn(Ui ,Uj)
2.

Choose a target significance level α and let z1−α denote the Standard Normal (1 − α)th

quantile. Our rejection rule is the following,

Reject the null hypothesis of cooperation if and only if t̂ > z1−α

By part (ii) of Theorem 2, our proposed test is consistent (it rejects cooperation if the

conditional moment restrictions are violated with nonzero probability), and by part (i), it

achieves the target significance level asymptotically.

5 Monte Carlo experiments

The details of our Monte Carlo experiments are included in the online supplement. We

summarize them here. Our experiments revolve around a 2× 2 game,

Y2 = 1 Y2 = 0

Y1 = 1 X1
1 +X2

1 +∆1 + ε1 , X1
2 +X2

2 +∆2 + ε2 X1
1 +X2

1 + ε1 , 0

Y1 = 0 0 , X1
2 +X2

2 + ε2 0 , 0

In all our experiments, (X1
p ,X

2
p , εp) are iid N (0,1). The strategic interaction parameters

(∆1,∆2) are constant, with ∆p < 0 (strategic substitutes). First, we generate data first

assuming non-cooperative, pure-strategy Nash-equilibrium (PSNE) behavior. We use two

DGPs. In the first DGP, we set ∆1 = −2 and ∆2 = −1 and the PSNE selection mechanism

chooses both coexisting Nash equilibria, {(1,0), (0,1)} in the multiple NE region with equal

probability. Our goal here is to evaluate the power of our test when the strategic effects

are different across players. In the second DGP, we set ∆1 = ∆2 = −2 and assume that the

selection mechanism chooses the coexisting PSNE with different probabilities. Our goal

is to evaluate the power of our test when the strategic effects are equal but the selection

mechanism does not choose the coexisting NE with uniform probability.

For both DGPs we also generate data assuming cooperation, with three alternative

joint objective functions: V (u1,u2) = u1 + u2, V (u1,u2) = max {u1,u2} and V (u1,u2) =

min {u1,u2}. In all cases where cooperation is the true model, we find that, while our re-

jection rates are above our target significance levels in small samples, as the sample size

increases (approaching n = 1000 in our experiments), the rejection rates are much closer
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to the asymptotic size predictions in Theorem 2. We also find that our test has power

to reject cooperation when the true behavior is noncooperative, and that this power can

be derived from an asymmetry in players’ strategic-interaction effects or from the prop-

erties of the equilibrium selection mechanism. The kernels and bandwidths employed

are described in the online supplement, but they have the same structure as those we

use in our empirical illustration, described in Section 6.2.1. As we describe there, we use

bandwidths of the form hn = ch · σ̂ (X) ·n−αh , where σ̂ (X) is the sample standard deviation

of X (we use covariate-specific bandwidths) and αh > 0 is our bandwidth convergence

rate, designed to satisfy the restrictions in Assumption E3. Tables 1 and 2 summarize our

Monte Carlo results when ch = 1.25, the value that showed the best balance between size

and power in our experiments. In the online supplement, we repeat our experiments for

a range of values ch ∈ [1,2] and we find that our results are robust.

Table 1: Monte Carlo experiment results. Rejection rates for the null hypothesis of coop-
eration when ∆1 = −2, ∆2 = −1 and PSNE selection mechanism is uniform

Cooperative behavior PSNE behavior
Sample
size

V (u1,u2) =
u1 +u2

V (u1,u2) =
max {u1,u2}

V (u1,u2) =
min {u1,u2}

PM(1,0) = 0.50

n = 250 8.2% 8.1% 6.7% 36.8%
n = 500 6.2% 6.2% 7.3% 58.3%
n = 1000 5.6% 5.5% 4.6% 82.4%
• PM(y) ≡ P r (mechanismM will choose PSNE y), with PM(1,0) + PM(0,1) = 1.
• 1000 simulations in each case.

Table 2: Monte Carlo experiment results. Rejection rates for the null hypothesis of coop-
eration when ∆1 = −2, ∆2 = −2 and PSNE selection mechanism is non-uniform

Cooperative behavior PSNE behavior
Sample
size

V (u1,u2) =
u1 +u2

V (u1,u2) =
max {u1,u2}

V (u1,u2) =
min {u1,u2}

PM(1,0) = 0.25 PM(1,0) = 0.10

n = 250 8.1% 8.1% 6.7% 30.8% 62.3%
n = 500 6.2% 6.2% 7.3% 51.9% 87.0%
n =
1000

5.5% 5.5% 4.6% 74.4% 98.9%

• PM(y) ≡ P r (mechanismM will choose PSNE y), with PM(1,0) + PM(0,1) = 1.
• 1000 simulations in each case.
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6 Empirical illustration

We apply our methodology to analyze expansion and entry decisions by Lowe’s and Home

Depot into geographic markets in the continental United States between 2008 and 2022.

We model expansion (entry) as a binary choice, with

Ypi = 1 { Player p expands its presence in market i between 2008 and 2022}

We model player p = 1 as Lowe’s and p = 2 as Home Depot, and we define a market

i as a core-based statistical area (CBSA) in the contiguous United States ( the lower 48

states in North America, including the District of Columbia). We say that Ypi = 1 if and

only if the number of stores of player p in market i increased between 2008 and 2022.

Note that expansion implies entry in markets where player p had no presence in 2008.

Our sample consists of n = 954 markets. Our matching covariates include three ele-

ments. X1
pi ≡Number of stores percapita of player p within 100 miles of market i in 2008.

X2
pi ≡Number of stores percapita of player p’s opponent within 100 miles of market i in 2008.

X3
pi ≡Distance between market i and the nearest regional distribution center of player p in

2008. Thus, we have Xpi ≡ (X1
pi ,X

2
pi ,X

3
pi), and we treat each one of them as continuous

random variables. Thus, we have r = 3 continuously distributed covariates.

Table 3: Some summary statistics of expansion decisions between 2008-2022

Proportion
of markets

where
at least one

firm
expanded

Proportion
of markets
where both

firms
expanded

Proportion
of markets

where
only one

firm
expanded

Proportion
of markets

where
Lowe’s

expanded

Proportion
of markets

where
Home Depot
expanded

21.9% 3.2% 18.7% 16.7% 8.5%

The summary statistics in Table 3 indicate that approximately one-fifth of all markets ob-

served an expansion by at least one of the two players, with the vast majority of these cases

corresponding to an expansion by only one firm. We also observe that the proportion of

markets where Lowe’s expanded was almost twice as large as that of Home Depot. Our

test for cooperation focuses on a comparison between the proportion of markets where

we observe Y = (1,0) and the proportion of markets where we observe Y = (0,1). As we
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will discuss next, once we analyze markets by size (population), we observe patterns that

are consistent with cooperation under the conditions of this paper.

6.1 Observed data patterns consistent with cooperation

As we pointed out in previous sections, cooperation in a 2 × 2 game under Assumptions

1, 2 and 3 implies P r(1,0|X1 = X2) = P r(0,1|X1 = X2), a.s (see equation 7). As Table 4 sug-

gests, a preliminary inspection of the data reveals patterns consistent with this condition

in smaller markets (measured by population), and in markets where there were no stores

in 2008.

Table 4: Proportion of markets where only one firm expanded between 2008-2022

All
mar-
kets

Markets
below
the 85th85th85th

per-
centile
in size

Markets
below
the 70th70th70th

per-
centile
in size

Markets
below
the 50th50th50th

per-
centile
in size

Markets
with no
stores
in 2008

Proportion of mar-
kets where only
Lowe’s expanded
(i.e, Y = (1,0))

13.4% 8.8% 5.2% 4.2% 6.5%

Proportion of mar-
kets where only
Home Depot ex-
panded (i.e, Y =
(0,1))

5.2% 4.9% 4.5% 4.2% 6.5%

•Market size refers to population in 2008.

6.2 Results of our test for cooperation

6.2.1 Choice of testing range and tuning parameters

Our choice for testing range and tuning parameters (bandwidth and kernel) are guided

by the Monte Carlo experiment findings, included in the online supplement. We describe

them next. Let Z(τ) denote the τ th quantile of the r.v Z. For ` = 1,2,3, let x` ≡ X`1,(0.01) ∨
X`2,(0.01) and x` ≡ X`1,(0.99) ∧ X

`
2,(0.99). Our testing range is X ≡ [x1,x1] × [x2,x2] × [x3,x3].

Our weight function ω(·) is the uniform distribution over X . Next, we choose a band-

width of the form hn = ch · σ̂ (X) · n−αh , where σ̂ (X) is the sample standard deviation of
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X (we use covariate-specific bandwidths). As we discussed in the paragraph following

Assumption E3, we must have 1
M+r/2 < αh <

1
r(2P−1) , and the smallest value of M is d5r2 e

. Since P = 2 and r = 3, we set M = 8 and αh = 0.11. These are also the guidelines we

used in our Monte Carlo experiments. As shown in the online supplement, we found that

ch = 1.25 provided the best finite-sample results. Consequently, we implemented our test

with hn = 1.25 · n−0.11. The online supplement repeats our test for a range of values of

ch ∈ [1,1.75]. As the results there show, the findings we present below remained qualita-

tively unchanged. Lastly, we employed a bias-reducing kernel of orderM = 8 of the form,

κ(ψ) =
(
c1 · (S2 −ψ2)2 + c2 · (S2 −ψ2)4 + c3 · (S2−ψ2)6 + c4 · (S2 −ψ2)8

)
· 1{|ψ| ≤ S}. The ker-

nel has support [−S,S], with S = 10. The coefficients c1, . . . , c4 were chosen to satisfy the

conditions of a bias-reducing kernel of order M = 8.

6.2.2 Results

The results of our test are included in Table 5. Our findings suggest that, while coopera-

tion in expansion/entry decisions can be rejected in larger markets, this type of behavior

cannot be rejected in smaller markets. To be precise, we fail to reject cooperation in mar-

kets below the 70th percentile in population size, as well as in markets that did not have

any stores in 2008. On the other hand, when we consider all markets or, for example,

markets whose size are above the 85th percentile, we reject cooperation at a significance

level < 1%. As we show in the online supplement, these findings are robust to alternative

bandwidth choices.

Table 5: Test results for cooperation in expansion decisions.

All
markets

Markets
below the
85th85th85th per-
centile in
size

Markets
below the
70th70th70th per-
centile in
size

Markets
below the
50th50th50th per-
centile in
size

Markets
with no
stores in
2008

21.642∗∗∗ 4.294∗∗∗ −0.912 −0.773 −0.543
(0.000) (0.000) (0.819) (0.780) (0.706)

• Results show the value of our test-statistic, with p-value in parenthesis.
(∗ ∗ ∗) Cooperation rejected at < 1% significance level.

7 Concluding remarks

The assumptions made about players’ behavior are fundamental for the econometric

analysis of games. Since most existing work presupposes noncooperative behavior, hav-
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ing the ability to test for evidence of cooperation is extremely important. In this paper

we proposed a nonparametric test for a fairly general class of discrete games. Our proce-

dure is based on some symmetry and exchangeability conditions that are assumed to hold

when we match observable payoff characteristics across players. Under our assumptions,

cooperation implies a class of conditional moment-equalities for certain permutations of

outcomes. We proposed an econometric test that is consistent (it rejects cooperation if

the conditional moment restrictions are violated with nonzero probability) and asymp-

totically normal under the null hypothesis of cooperation. We also presented evidence

that our test has good power properties when players’ true behavior is noncooperative.

We applied our test to analyze expansion/entry decisions of Lowe’s and Home Depot in

the contiguous U.S and our results found that, while outcomes are consistent with nonco-

operative behavior in larger markets, we failed to reject cooperation in smaller markets.
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Appendix A: Proofs of Results

A.1 Proposition 1

Take any y ≡ (y1, . . . , yP ) ∈ {0,1}P . For any permutation (k1, . . . , kP ) of (1, . . . , P ) where we

assign action ykp to player p and payoffs are, u1(yk1
, y−k1

,XG,ν) , . . . , uP (ykP , y−kP ,XG,ν),

there exists a permutation (`1, . . . , `P ) of (1, . . . , P ) where player `p plays action yp and the

resulting payoffs are, u`1
(y1, y−1,XG,ν) , . . . , u`P (yP , y−P ,XG,ν). From here we have the

following result. Take any y ≡ (y1, . . . , yP ) ∈ {0,1}P and let (k1, . . . , kP ) be any permutation

of (1, . . . , P ). Let σ (y) ≡ (yk1
, . . . , ykP ) be the resulting permutation of y. By the symmetry

properties of the joint objective function in Assumption 3, there exists a permutation

(`1, . . . , `P ) such that

X1 = · · · = XP =⇒ U (σ (y),XG,ν) = V
(
u1(yk1

, y−k1
,XG,ν), . . . ,uP (ykp , y−kp ,X,ν);XG,ν

)
= V

(
u`1

(y1, y−1,XG,ν), . . . ,u`P (yP , y−P ,X,ν);XG,ν
)
.
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Thus, if we let σ1(y), . . . ,σRy (y) be the collection of all distinct permutations of y, there

exist a corresponding collection of permutations (`1
1 , . . . , `

1
P ); (`2

1 , . . . , `
2
P ); · · · ; (`

Ry
1 , . . . , `

Ry
P ) of

(1, . . . , P ) such that, if X1 = · · · = XP , then we have,


U (σ1(y),XG,ν)

U (σ2(y),XG,ν)
...

U (σRy (y),XG,ν)


=


V
(
u`1

1
(y1, y−1,XG,ν), . . . ,u`1

P
(yP , y−P ,XG,ν);XG,ν

)
V
(
u`2

1
(y1, y−1,XG,ν), . . . ,u`2

P
(yP , y−P ,XG,ν);XG,ν

)
...

V
(
u
`
Ry
1

(y1, y−1,XG,ν), . . . ,u
`
Ry
P

(yP , y−P ;XG,ν),XG,ν
)


From here and the exchangeability condition in Assumption 2, we obtain the following

result. For any pair of permutations (m1, . . . ,mP ) and (m′1, . . . ,m
′
P ) of (1, . . . , P ),

X1 = · · · = XP =⇒


U (em1

,XG,ν)
...

U (emP ,XG,ν)

 d=


U (em′1 ,XG,ν)

...

U (em′P ,XG,ν)

 (A-1)

Let s1, . . . , sQ denote the collection of all action profiles in {0,1}P such that s` , er for any

r (note that Q = 2P − P ). From our previous result, if Assumptions 2 and 3 are satisfied,

then for any pair of permutations (m1, . . . ,mP ) and (m′1, . . . ,m
′
P ) of (1, . . . , P ),

X1 = · · · = XP =⇒



U (em1
,XG,ν)
...

U (emP ,XG,ν)

U (s1,XG,ν)
...

U (sQ,XG,ν)


d=



U (em′1 ,XG,ν)
...

U (em′P ,XG,ν)

U (s1,XG,ν)
...

U (sQ,XG,ν)


(A-2)

Thus, for every p,q, we have P r
(
U (ep,XG,ν) > U (y,XG,ν) ∀ y , ep | X1 = · · · = XP

)
= P r

(
U (eq,XG,ν) > U (y,XG,ν) ∀ y , eq | X1 = · · · = XP

)
. Using the definition in (1), we have

Q(ep|x) =Q(eq|x) ∀ p,q, , for a.e x ∈ X . This proves the result in Proposition 1. �

A.2 Theorem 1

Take any y ∈ S and let σ1(y), . . . ,σRy (y) denote the collection of all distinct permutations of

y. Using the same arguments leading to equation (A-1), we have that, if Assumptions 3
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and 4 hold, then for any pair of permutations (m1, . . . ,mRy ) and (m′1, . . . ,m
′
Ry

) of (1, . . . ,Ry),

X1 = · · · = XP =⇒


U (σm1

(y),XG,ν)
...

U (σmRy (y),XG,ν)

 d=


U (σm′1(y),XG,ν)

...

U (σm′Ry (y),XG,ν)

 (A-3)

This is a generalization of (A-1), which we obtained for the binary choice game. From

(A-3), we have that if we take any y ∈ S , and if we let s1, . . . , sQy denote all the action

profiles in YP that are not a permutation of y, if Assumptions 3 and 4 hold, then for any

pair of permutations (m1, . . . ,mRy ) and (m′1, . . . ,m
′
Ry

) of (1, . . . ,Ry),

X1 = · · · = XP =⇒



U (σm1
(y),XG,ν)
...

U (σmRy (y),XG,ν)

U (s1,XG,ν)
...

U (sQy ,XG,ν)


d=



U (σm′1(y),XG,ν)
...

U (σm′Ry (y),XG,ν)

U (s1,XG,ν)
...

U (sQy ,XG,ν)


And from here we have that, for any y ∈ S , any permutation y′ of y, and for a.e x ∈ X ,

P r (U (y,XG,ν) > U (t,XG,ν) ∀ t , y | X1 = · · · = XP = x)

=P r (U (y′,XG,ν) > U (t,XG,ν) ∀ t , y′ | X1 = · · · = XP = x) .

Using the definition in (1), it follows that for any y ∈ S and any permutation y′ of y,

Q(y|x) =Q(y′ |x) for a.e x ∈ X

This proves the result in Theorem 1. �

A.3 Theorem 2

Here we describe the main steps of the proof of Theorem 2. All the step-by-step de-

tails and derivations are included in the online supplement. In what follows, recall that

M is the integer described in Assumptions E2 and E3, r is the number of continuously

distributed observable payoff shifters for each individual player and L ≡ P · r is the to-

tal number of continuously distributed payoff shifters combined for all players in the

game. Let Hn(Ui ,Uj) be as defined in equation (12). As we showed in equation (13),
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our test-statistic T̂ can be expressed as T̂ =
(n

2
)−1∑

i<j
Hn(Ui ,Uj), a U-statistic of order 2.

Let mn(Ui) ≡ E[Hn(Ui ,Uj)|Ui], bn(Ui) ≡ mn(Ui) − E[mn(Ui)], and Gn(Ui ,Uj) ≡ Hn(Ui ,Uj) −
E[Hn(Ui ,Uj)] − bn(Ui) − bn(Uj). Under the assumptions of Theorem 2, the Hoeffding de-

composition (see Serfling (1980, pages 177-178)) of the U-statistic
(n

2
)−1∑

i<jHn(Ui ,Uj)

yields the following representation for T̂

T̂ = T +
2
n

n∑
i=1

bn(Ui) +
(
n
2

)−1∑
i<j

Gn(Ui ,Uj) +O
(
hMn

)
. (A-4)

And, under the null hypothesis of cooperation, (A-4) becomes,

T̂ =
(
n
2

)−1∑
i<j

Gn(Ui ,Uj) +Op
(
hM+r−L
n

)
. (A-4’)

By construction,
(n

2
)−1∑

i<jGn(Ui ,Uj) is a degenerate U-statistic of order 2. To determine

its asymptotic distribution, we verify the conditions in Theorem 1 of Hall (1986), which

result in asymptotic normality of degenerate U-statistics of order two. Let (i, j,k) de-

note three distinct observations from our iid sample. Let G̃n(Uj ,Uk) ≡ E[Gn(Ui ,Uj) ·
Gn(Ui ,Uk)|Uj ,Uk]. Suppose,

E[G̃n(Uj ,Uk)2] +n−1E[Gn(Ui ,Uj)4](
E[Gn(Ui ,Uj)2]

)2 −→ 0, (A-5)

as n→ ∞. Theorem 1 in Hall (1986) shows that, in this case,
∑
i<jGn(Ui ,Uj) is asymp-

totically normally distributed with zero mean and variance given by 1
2n

2 ·E[Gn(Ui ,Uj)2].

The bulk of the proof is devoted to showing that (A-5) is satisfied under our assumptions.

Let H̃n(Uj ,Uk) ≡ E[Hn(Ui ,Uj) ·Hn(Ui ,Uk)|Uk ,Uk]. Our first series of steps is to show that,

under our assumptions, we have E[H̃n(Uj ,Uk)2] = O
(

1
h4L−3r
n

)
, E[Hn(Ui ,Uj)2] = O

(
1

h2L−r
n

)
,

E[Hn(Ui ,Uj)3] = O
(

1
h4L−2r
n

)
, and E[Hn(Ui ,Uj)4] = O

(
1

h6L−3r
n

)
. In particular, we show that

E
[
Hn(Ui ,Uj)2

]
= 1

h2L−r
n
·
(
σ2
n + o(1)

)
, where σ2

n > 0 is described in the online supplement

and satisfies σ2
n → σ2 > 0. From here, the next series of steps show that E[G̃n(Uj ,Uk)2] =

E[H̃n(Uj ,Uk)2]+O
(
h
M+3·(r−L)
n

)
, E

[
Gn(Ui ,Uj)4

]
= E

[
Hn(Ui ,Uj)4

]
+O

(
hM+3r−5L
n

)
, E

[
Gn(Ui ,Uj)2

]
=
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E
[
Hn(Ui ,Uj)2

]
+O

(
hM+r−L
n

)
, and from here,

E
[
G̃n(Uj ,Uk)2

]
+n−1E

[
Gn(Ui ,Uj)4

]
(
E
[
Gn(Ui ,Uj)2

])2 =
O (hrn) +O

(
1

n·h2L−r
n

)
(
σ2
n + o(1)

)2 −→ 0,

where the last result follows from our bandwidth-convergence restrictions. Thus, (A-5) is

satisfied and, going back to (A-4’), we have that, under the null hypothesis of cooperation,

n · T̂√
2 ·E

[
Hn(Ui ,Uj)2

] = n ·


(n

2
)−1∑

i<jGn(Ui ,Uj)√
2 ·E

[
Gn(Ui ,Uj)2

]
+ o(1)

+Op
(
n · hM+ r

2
n

)
︸          ︷︷          ︸

=op(1)

d−→N (0,1).
(A-6)

To establish the asymptotic behavior of T̂ under the alternative hypothesis of no-cooperation,

where we have T > 0. We go back to (A-4), and we have,

n · T̂√
2 ·E

[
Hn(Ui ,Uj)2

] =
n · h

2L−r
2

n · T√
2 ·

(
σ2
n + o(1)

) +n
1
2 · h

L
2
n ·ϑn, where |ϑn| =Op(1),

Under the bandwidth convergence restrictions in Assumption E3 we have n
1
2 · h

L
2
n −→ ∞

and n
1
2 · h

L−r
2
n −→ ∞. Take any sequence cn > 0 such that, cn −→ +∞, and cn

n
1
2 ·h

L
2
n

−→ 0.

Going back to (A-6), under the alternative hypothesis of no cooperation,

P r

 n · T̂√
2 ·E

[
Hn(Ui ,Uj)2

] > cn
 = P r

ϑn > cn

n
1
2 · h

L
2
n

− n
1
2 · h

L−r
2
n · T√

2 ·
(
σ2
n + o(1)

)
 −→ 1,

where the last result follows from the fact that ϑn =Op(1) and cn

n
1
2 ·h

L
2
n

− n
1
2 ·h

L−r
2

n ·T√
2·(σ2

n+o(1))
−→ −∞

(since T > 0). Thus, under the alternative hypothesis of no cooperation,

n · T̂√
2 ·E

[
Hn(Ui ,Uj)2

] −→ +∞ with probability approaching one (w.p.a.1) (A-7)

The results in (A-6) and (A-7) prove Theorem 2. �
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