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Abstract
This document begins with an analysis of the 2 × 2 game case, where we de-
scribe the implications of our assumptions, along with the analysis of the
power of our test for cooperation (violations to our testable implications of
cooperation) when the true underlying behavior is Nash equilibrium. We then
proceed with the step-by-step derivations and details pertaining to the proof
of our main econometric result, Theorem 2. Next, we include the details of our
Monte Carlo experiments and we conclude with results of our empirical illus-
tration using alternative bandwidth choices. Every section in this supplement
has the format SX.X and every equation has the format (S-X). Any section or
equation that we reference here which does not have this format refers to a
section or an equation in the main paper or its appendix.

S1 The case of a 2× 22× 22× 2 game

Here we focus on the special case of a 2×2 binary choice game. Let us begin by illustrating

conditions under which such a game would satisfy the assumptions in the paper. Suppose

the normal-form game is given by,

Y2 = 1 Y2 = 0

Y1 = 1 Γ 1
11(XG,ν) , Γ 2

11(XG,ν) Γ 1
10(XG,ν) , Γ 2

10(XG,ν)

Y1 = 0 Γ 1
01(XG,ν) , Γ 2

01(XG,ν) Γ 1
00(XG,ν) , Γ 2

00(XG,ν)

As we described in Section 2.3.1 of the paper, payoff functions with the following struc-

ture satisfy the exchangeability property in Assumption 2 under conditions we described

there,

up(Yp,Y−p,XG,ν) = φ0
p(XG,ν) +φ1

p(XG,ν) ·λ(Y−p) +φ2
p(XG,ν) ·Yp +∆p(Y−p,XG,ν) ·Yp. (S-1)
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Players’ payoff functions in the 2×2 game described above can be represented as in (S-1),

with λ(Y−p) ≡ Y−p, φ0
p(XG,ν) ≡ Γ

p
00(XG,ν), φ1

1(XG,ν) ≡ Γ 1
01(XG,ν) − Γ 1

00(XG,ν), φ2
1(XG,ν) ≡

Γ 1
10(XG,ν)−Γ 1

00(XG,ν), φ1
2(XG,ν) ≡ Γ 2

10(XG,ν)−Γ 2
00(XG,ν), φ2

2(XG,ν) ≡ Γ 2
01(XG,ν)−Γ 2

00(XG,ν),

and ∆p(Y−p,XG,ν) ≡
(
Γ
p
11(XG,ν) + Γ

p
00(XG,ν) − Γ p01(XG,ν) − Γ p10(XG,ν)

)
· Y−p. From here, the

condition in (3) and the exchangeability restriction in Assumption 2 will be satisfied if,

X1 = X2, implies: (a) Γ 1
01(XG,ν) and Γ 2

10(XG,ν) are exchangeable, and (b) Γ 1
10(XG,ν) and

Γ 2
01(XG,ν) are exchangeable. In this case, equation (5) reduces to,

Q(1,0|x) =Q(0,1|x), a.e x ∈ X (S-2)

In other words, we must have P r(1,0|X1 = X2) = P r(0,1|X1 = X2), a.s. A commonly as-

sumed parameterization of payoffs for 2 × 2 binary choice games in the literature (Bres-

nahan and Reiss (1990), Bresnahan and Reiss (1991), Tamer (2003)) is,

Y2 = 1 Y2 = 0

Y1 = 1 X ′1β1 + ε1 +∆1 , X ′2β2 + ε2 +∆2 X ′1β1 + ε1 , 0

Y1 = 0 0 , X ′2β2 + ε2 0 , 0

Define ν ≡ (β1, ε1,∆1,β2, ε2,∆2) (all allowed to be random). This is a special case of the

2× 2 payoffs described above, with Γ
p
11(XG,ν) ≡ X ′pβp +∆p + εp, Γ p00(XG,ν) ≡ 0, Γ 1

10(XG,ν) ≡
X ′1β1 + ε1, Γ 2

10(XG,ν) ≡ 0, Γ 1
01(XG,ν) ≡ 0, and Γ 2

01(XG,ν) ≡ X ′2β2 + ε2. Let us abbreviate

t1 ≡ X ′1β1 + ε1 and t2 ≡ X ′2β2 + ε2. As we described above, the exchangeability restriction

in Assumption 2 will be satisfied if, X1 = X2 implies t1 and t2 are exchangeable.

S1.1 Power of our test in the 2× 22× 22× 2 case when true behavior is noncoop-

erative

Now let us investigate the power of our test when the true underlying behavior is nonco-

operative. In a binary choice game where Yp ∈ {0,1} with two players (i.e, a 2 × 2 game),

equation (5) in the paper reduces to,

Q(1,0|x) =Q(0,1|x), a.e x ∈ X (S-3)

Let us analyze conditions under which equation (S-3) can be violated in a 2×2 game with

the parameterization described above,

Y2 = 1 Y2 = 0

Y1 = 1 X ′1β1 + ε1 +∆1 , X ′2β2 + ε2 +∆2 X ′1β1 + ε1 , 0

Y1 = 0 0 , X ′2β2 + ε2 0 , 0

2



As described in equation (S-3), cooperation in a 2×2 binary choice game under Assump-

tions 1, 2 and 3 implies the restriction,

P r(1,0|X1 = X2) = P r(0,1|X1 = X2), a.s.

We will focus on Nash equilibrium behavior, either in pure-strategies (PSNE) or mixed-

strategies (MSNE), as an alternative to cooperation and we will illustrate how equation

S-3 can be violated. Let t1 ≡ X ′1β1 + ε1 and t2 ≡ X ′2β2 + ε2. The exchangeability restriction

in Assumption 2 will be satisfied if, X1 = X2 implies t1 and t2 are exchangeable.

S1.2 Violations of (S-3) when actions are strategic substitutes

The game will be one of strategic substitutes if ∆1 ≤ 0 and ∆2 ≤ 0. We have the following

equilibrium regions involving the outcomes (1,0) and (0,1).

• (1,0) will be the unique PSNE if t1 > −∆1 and t2 < 0.

• (0,1) will be the unique PSNE if t1 < 0 and t2 > −∆2.

• If ∆1 , 0 and ∆2 , 0 and 0 ≤ tp ≤ −∆p for p = 1,2, there exist three NE. We have two

PSNE: (1,0) and (0,1), and a MSNE where player p chooses Yp = 1 with probability

πp, with (π1,π2) =
(
− t2
∆2

, − t1
∆1

)
Let M denote the underlying equilibrium selection mechanism (which is only relevant

in the region where multiple NE exist). Let M1,0 and M0,1 denote the indicator functions

for whether PSNE (1,0) or (0,1) are selected and let Mπ denote the indicator for whether

the MSNE is selected. Let

Gs ≡ 1
{

0 ≤ tp ≤ −∆p and ∆p , 0 for p = 1,2
}
.

That is, the indicator for whether the game is in the multiple NE region. Then,

P r(1,0|X1 = X2) =

P r
(
t1 > −∆1 , t2 < 0

∣∣∣ X1 = X2

)
+P r

(
Gs = 1

∣∣∣ M1,0 = 1, X1 = X2

)
· P r

(
M1,0 = 1

∣∣∣ X1 = X2

)
+E

[(
− t2
∆2

)
·
(
1 +

t1
∆1

) ∣∣∣∣∣ Gs = 1, Mπ = 1, X1 = X2

]
· P r

(
Gs = 1

∣∣∣ Mπ = 1, X1 = X2

)
· P r

(
Mπ = 1

∣∣∣ X1 = X2

)
,
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and,

P r(0,1|X1 = X2) =

P r
(
t1 < 0 , t2 > −∆2

∣∣∣ X1 = X2

)
+P r

(
Gs = 1

∣∣∣ M0,1 = 1, X1 = X2

)
· P r

(
M0,1 = 1

∣∣∣ X1 = X2

)
+E

[(
1 +

t2
∆2

)
·
(
− t1
∆1

) ∣∣∣∣∣ Gs = 1, Mπ = 1, X1 = X2

]
· P r

(
Gs = 1

∣∣∣ Mπ = 1, X1 = X2

)
· P r

(
Mπ = 1

∣∣∣ X1 = X2

)
.

We maintain that t1 and t2 are exchangeable conditional on X1 = X2. From the above ex-

pressions, can see that we can have P r(1,0|X1 = X2) , P r(0,1|X1 = X2) if P r (∆1 , ∆2|X1 = X2) >

0. That is, if the strategic effects can be different in magnitude between the two players

with nonzero probability even if X1 = X2. Suppose instead that P r(∆1 = ∆2|X1 = X2) = 1,

and let ∆1 = ∆2 ≡ ∆. Suppose P r (∆ , 0|X1 = X2) > 0. Then,

P r(1,0|X1 = X2)− P r(0,1|X1 = X2) = P r
(
Gs = 1 |M1,0 = 1, X1 = X2

)
· P r

(
M1,0 = 1 | X1 = X2

)
− P r

(
Gs = 1 |M0,1 = 1, X1 = X2

)
· P r

(
M0,1 = 1 | X1 = X2

)
.

In this case we can see that we can have P r(1,0|X1 = X2) , P r(0,1|X1 = X2) if the selection

mechanism M selects (1,0) and (0,1) with different probabilities conditional on X1 = X2.

We conclude that when actions are strategic substitutes, equation (S-3) can be violated

with Nash equilibrium behavior if, conditional on X1 = X2, either the strategic effects can

differ in magnitude across players with nonzero probability, or the selection mechanism

picks (1,0) and (0,1) in the region of multiple NE with different probabilities.

S1.3 Violations of (S-3) when actions are strategic complements

In this case we have ∆1 ≥ 0 and ∆2 ≥ 0. The equilibrium regions involving the outcomes

(1,0) and (0,1) are now the following.

• (1,0) will be the unique PSNE if t1 > 0 and t2 < −∆2.

• (0,1) will be the unique PSNE if t1 < −∆1 and t2 > 0.

• If ∆1 , 0 and ∆2 , 0 and −∆p ≤ tp ≤ 0 for p = 1,2, there exist three NE. We have two

PSNE: (0,0) and (1,1), and a MSNE where player p chooses Yp = 1 with probability

πp, with (π1,π2) =
(
− t2
∆2

, − t1
∆1

)
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As before, let Mπ denote the indicator for whether the MSNE is selected in the multiple

equilibrium region. Let

Gc ≡ 1
{

0 ≤ −∆p ≤ tp ≤ 0 and ∆p , 0 for p = 1,2
}
.

This is the indicator for whether the game is in the multiple NE region. We now have,

P r(1,0|X1 = X2) =

P r
(
t1 > 0 , t2 < −∆2

∣∣∣ X1 = X2

)
+E

[(
− t2
∆2

)
·
(
1 +

t1
∆1

) ∣∣∣∣∣ Gc = 1, Mπ = 1, X1 = X2

]
· P r

(
Gc = 1

∣∣∣ Mπ = 1, X1 = X2

)
· P r

(
Mπ = 1

∣∣∣ X1 = X2

)
,

and,

P r(1,0|X1 = X2) =

P r
(
t1 < −∆1 , t2 > 0

∣∣∣ X1 = X2

)
+E

[(
1 +

t2
∆2

)
·
(
− t1
∆1

) ∣∣∣∣∣ Gc = 1, Mπ = 1, X1 = X2

]
· P r

(
Gc = 1

∣∣∣ Mπ = 1, X1 = X2

)
· P r

(
Mπ = 1

∣∣∣ X1 = X2

)
,

Again, we see that even with exchangeability of t1 and t2 whenever X1 = X2, we can still

have P r(1,0|X1 = X2) , P r(0,1|X1 = X2) if P r(∆1 , ∆2|X1 = X2) > 0; that is, if the magni-

tude of strategic effects can be different with nonzero probability if X1 = X2. However,

unlike the strategic substitutes case, if P r(∆1 = ∆2|X1 = X2) and strategic effects are always

identical conditional on X1 = X2, we will now have P r(1,0|X1 = X2) = P r(0,1|X1 = X2). We

conclude that if payoff functions are completely symmetric conditional on X1 = X2 and

the game is one of strategic complements, then Nash equilibrium behavior will be ob-

servationally equivalent to cooperation as captured by the restriction in equation (S-3).

This condition will be violated with strategic complements if strategic effects are allowed

to have different magnitudes across both players with positive probability conditional on

X1 = X2.

S1.4 Violations of (S-3) when ∆1∆1∆1 and ∆2∆2∆2 have opposite signs

Suppose ∆1 > 0 and ∆2 < 0 (the reverse case is analogous). As we had pointed out before,

allowing for the magnitude of strategic effects to differ across players when X1 = X2 can

lead to violations of (S-3) with Nash equilibrium behavior, and we will confirm that in this

case. When ∆1 > 0 and ∆2 < 0 the game will now have a unique Nash equilibrium for any

given realization of payoff covariates. The equilibrium regions involving the outcomes

(1,0) and (0,1) are now described as follows.
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• (1,0) will be the unique PSNE if t1 > 0 and t2 < −∆2.

• (0,1) will be the unique PSNE if t1 < −∆1 and t2 > 0.

If −∆1 ≤ t1 ≤ 0 and 0 ≤ t2 ≤ −∆2, the game has a unique MSNE given by (π1,π2) =(
− t2
∆2

, − t1
∆1

)
.

Since equilibria are always unique, the equilibrium selection mechanism is irrelevant.

Let

Gm ≡ 1 {−∆1 ≤ t1 ≤ 0 and 0 ≤ t2 ≤ −∆2} .

We now have,

P r(1,0|X1 = X2) = P r
(
t1 > 0 , t2 < −∆2

∣∣∣ X1 = X2

)
+E

[(
− t2
∆2

)
·
(
1 +

t1
∆1

) ∣∣∣∣∣ Gm = 1, X1 = X2

]
· P r

(
Gm = 1

∣∣∣ X1 = X2

)
,

and,

P r(1,0|X1 = X2) = P r
(
t1 < −∆1 , t2 > 0

∣∣∣ X1 = X2

)
+E

[(
1 +

t2
∆2

)
·
(
− t1
∆1

) ∣∣∣∣∣ Gm = 1, X1 = X2

]
· P r

(
Gm = 1

∣∣∣ X1 = X2

)
,

And so, we see that having P r (∆1 , ∆2|X1 = X2) > 0 (as it is the case when ∆1 and ∆2 have

opposite signs) can lead to having P r(1,0|X1 = X2) , P r(0,1|X1 = X2), thus violating (S-3)

when the true behavior is Nash equilibrium.

S2 Details of the proof of Theorem 2

The steps of the proof were described in the appendix of the paper. Here we present

the step-by-step details and derivations. As we described in the main body of the paper

(equation (9)), the population statistic we employ to test for cooperation is given by

T ≡
∑
y∈S

∑
y′∈σ (y)

∑
xd∈X d

∫
xc∈X c

τ(y,y′ |x)2ω(x)dxc,

where

τ(y,y′ |x) ≡ (Q(y|x)−Q(y′ |x)) · fXG(eee⊗ x).

Next, recall that XGi ≡ (X1i , . . . ,XP i) denotes the collection of all players’ observable char-

acteristics, and that XcG ≡ (Xc1, . . . ,X
c
P ) and XdG ≡ (Xd1 , . . . ,X

d
P ) denote the collection of all
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players’ continuous and discrete observable characteristics, respectively. Also, recall that,

for a given x ≡ (xc,xd), we defined,

K
(
XcGi −eee⊗ x

c

hn

)
≡

P∏
p=1

r∏
`=1

κ

X
c`
pi − x

c`

hn

 , 1

{
XdGi = eee⊗ xd

}
≡

P∏
p=1

m∏
s=1

1

{
Xdspi = xds

}
,

Γ (XGi ,x,hn) ≡ 1

hLn
K

(
XcGi −eee⊗ x

c

hn

)
·1

{
XdGi = eee⊗ xd

}
,

where eee ≡ (1, . . . ,1) ∈ RP denotes the vector of all-ones in RP , and where r ≡ dim(xc) and

L ≡ P ·r, so r is the number of continuously distributed covariates in Xcpi , and L is the total

number of continuously distributed covariates in XGi . As described in Assumption E3 ,

the support of the kernel κ(·) is given by the interval [−S,S] (i.e, κ(z) = 0 for all z < [−S,S]).

As in the paper, group Ui ≡ (Yi ,XGi), let S(Yi , y,y′) ≡ 1{Yi = y} − 1{Yi = y′}, denote

S(Yi ,Yj , y,y′) ≡ S(Yi , y,y′) · S(Yj , y,y′), and

S(Yi ,Yj) ≡
∑
y∈S

∑
y′∈σ (y)

S(Yi ,Yj , y,y
′),

ϕ(XGi ,XGj ,hn) ≡
∑
xd∈X d

∫
xc∈X c

Γ (XGi ,x,hn) · Γ (XGj ,x,hn)ω(x)dxc,

Hn(Ui ,Uj) ≡ S(Yi ,Yj) ·ϕ(XGi ,XGj ,hn).

Note that Hn is symmetric, since Hn(Ui ,Uj) = Hn(Uj ,Uj). Our estimator for T can be

expressed as,

T̂ =
(
n
2

)−1∑
i<j

Hn(Ui ,Uj)

We will establish the asymptotic properties of T̂ by verifying the conditions in Theorem

1 of Hall (1986), which result in asymptotic normality of degenerate U-statistics of order

two. To verify these conditions we need to analyze various functionals, which we will

describe next. In what follows, let (i, j,k) denote three distinct observations from our iid

sample (Ui)
n
i=1. Let

H̃n(Uj ,Uk) ≡ E
[
Hn(Ui ,Uj) ·Hn(Ui ,Uk)

∣∣∣Uk ,Uk] . (S-4)
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We will begin by analyzing E[H̃n(Uj ,Uk)] and E[H̃n(Uj ,Uk)2]. For given y1, y2, let

ηa(y1, y2|XG) ≡ E[S(Y ,y1) · S(Y ,y2)|XG],

Ξa

(
XcGj ,X

c
Gk ,x

d
∣∣∣u) ≡ E [

ηa
(
Yj ,Yk |u,eee⊗ xd

) ∣∣∣XcGj ,XcGk ,XdGj = XdGk = eee⊗ xd
]

We have,

E
[
H̃n(Uj ,Uk)

]
=

1

h4L
n

∑
xd

∫
xc1

∫
xc2

∫
u1

∫
u2

∫
u3

Ξa(u2,u3,x
d |u1)K

(
u1 −eee⊗ xc1

hn

)
K

(
u1 −eee⊗ xc2

hn

)
K

(
u2 −eee⊗ xc1

hn

)

· K
(
u3 −eee⊗ xc2

hn

)
fXcG |XdG(u1|eee⊗ xd)fXcG |XdG(u2|eee⊗ xd)fXcG |XdG(u3|eee⊗ xd)ω(xc1,x

d)ω(xc2,x
d)


du3du2du1dx

c
2dx

c
1 · fXdG(eee⊗ xd)3

(S-5)

Let

ξa,n ≡
∑
xd

∫
xc

Ξa (eee⊗ xc,eee⊗ xc,xd ∣∣∣eee⊗ xc)fXG (eee⊗ x)3ω(x)2
∫
∆


∫
ψ1

K(ψ1)K(ψ1 −eee⊗∆)dψ1

∫
ψ2

K(ψ2)dψ2

·
∫
ψ3

K(ψ3 −eee⊗∆)dψ3

d∆
dxc,

The sum for xd and the integral for xc are taken over X d and X c, respectively. We have

ψj ∈ RL and ∆ ∈ Rr , and the limits of integration are [−eee ⊗ S,eee ⊗ S] for each ψj , and

[`bn(xc),ubn(xc)] for ∆, where

`bn(xc) ≡ x
c − xc

hn
∨−2S, and ubn(xc) ≡ x

c − xc

hn
∧ 2S, (S-6)

where · ∨ · denotes the element-wise maximum and · ∧ · denotes the element-wise mini-

mum, and where (as defined in Assumption E1), xc and xc denote the (element-wise) min-

imum and maximum values of xc for which ω(xc,xd) > 0 for some xd . Relabeling xc1 ≡ xc

and using the change of variables uj = eee ⊗ xc + hn ·ψj , for j = 1,2,3, and xc2 = xc + hn ·∆,

under Assumptions E1-E3, the expectation in (S-5) becomes,

E
[
H̃n(Uj ,Uk)

]
=

1

hL−rn
·
(
ξa,n + o(1)

)
=O

(
1

hL−rn

)
. (S-7)
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Next we focus on E
[
H̃n(Uj ,Uk)2

]
. Let

Ξb

(
XcGj ,X

c
Gk ,x

d
∣∣∣u1,u2

)
≡ E

[
ηa

(
Yj ,Yk

∣∣∣u1,eee⊗ xd
)
· ηa

(
Yj ,Yk

∣∣∣u2,eee⊗ xd
) ∣∣∣XcGj ,XcGk ,XdGj = XdGk = eee⊗ xd

]
.

We have,

E
[
H̃n(Uj ,Uk)

2
]

=
1

h8L
n

∑
xd

∫
xc1

∫
xc2

∫
xc3

∫
u1

∫
u2

∫
u3

∫
u4

Ξb(u3,u4,x
d |u1,u2)K

(
u1 −eee⊗ xc1

hn

)
K

(
u1 −eee⊗ xc2

hn

)

· K
(
u2 −eee⊗ xc3

hn

)
K

(
u2 −eee⊗ xc4

hn

)
K

(
u3 −eee⊗ xc1

hn

)
K

(
u3 −eee⊗ xc3

hn

)
K

(
u4 −eee⊗ xc2

hn

)
K

(
u4 −eee⊗ xc4

hn

)
· fXcG |XdG(u1|eee⊗ xd)fXcG |XdG(u2|eee⊗ xd)fXcG |XdG(u3|eee⊗ xd)fXcG |XdG(u4|eee⊗ xd)ω(xc1,x

d)ω(xc2,x
d)ω(xc3,x

d)

·ω(xc4,x
d)

du4du3du2du1dx
c
4dx

c
3dx

c
2dx

c
1 · fXdG(eee⊗ xd)4.

(S-8)

Let

ξb,n ≡
∑
xd

∫
xc

Ξb (eee⊗ xc,eee⊗ xc,xd ∣∣∣eee⊗ xc,eee⊗ xc)fXG (eee⊗ x)4ω(x)4
∫
∆2

∫
∆3

∫
∆4


∫
ψ

K(ψ1)K(ψ1 −eee⊗∆2)dψ1

∫
ψ2

K(ψ2 −eee⊗∆3)K(ψ2 −eee⊗∆4)dψ2K(ψ3)K(ψ3 −eee⊗∆3)dψ3

∫
ψ4

K(ψ4 −eee⊗∆2)K(ψ4 −eee⊗∆4)dψ4


d∆4d∆3d∆2

dxc,
where ψj ∈ RL and ∆` ∈ Rr , and the limits of integration are [−eee ⊗ S,eee ⊗ S] for each ψj ,

and [`bn(xc),ubn(xc)] (as defined in (S-6)) for each ∆`. As before, the sum for xd and the

integral for xc are taken over X d and X c, respectively. Relabeling xc1 ≡ xc and using the

change of variables uj = eee⊗ xc + hn ·ψj , for j = 1,2,3,4, and xc` = xc + hn ·∆`, for ` = 2,3,4,

under Assumptions E1-E3, the expectation in (S-8) becomes,

E
[
H̃n(Uj ,Uk)

2
]

=
1

h4L−3r
n

·
(
ξb,n + o(1)

)
=O

(
1

h4L−3r
n

)
. (S-9)

Next we focus our attention on E
[
Hn(Ui ,Uj)2

]
. Let

µ2

(
XcGi ,X

c
Gj ,x

d
)
≡ E

[
S(Yi ,Yj)

2
∣∣∣XcGi ,XcGj ,XdGi = XdGj = eee⊗ xd

]
.
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We have,

E
[
Hn(Ui ,Uj )

2
]

=
1

h4L
n

∑
xd

∫
xc1

∫
xc2

∫
u1

∫
u2

µ2(u1,u2,xd)K
(
u1 −eee⊗ xc1

hn

)
K

(
u1 −eee⊗ xc1

hn

)
K

(
u2 −eee⊗ xc1

hn

)

· K
(
u2 −eee⊗ xc1

hn

)
fXcG |XdG(u1|eee⊗ xd)fXcG |XdG(u2|eee⊗ xd)ω(xc1,x

d)ω(xc2,x
d)

du2du1dx
c
2dx

c
1 · fXdG (eee⊗ xd)2

(S-10)

Let

σ2
n ≡

∑
xd

∫
xc

µ2

(
eee⊗ xc,eee⊗ xc,xd

)
fXG(eee⊗ x)2ω(x)2

∫
∆

∫
ψ

K(ψ)K(ψ −eee⊗∆)dψ

2

d∆

dxc
(S-11)

Once again, the sum for xd and the integral for xc are taken over X d and X c, respectively,

while ψ ∈ RL is integrated over the range [−eee ⊗ S,eee ⊗ S] and ∆ ∈ Rr is integrated over

[`bn(xc),ubn(xc)], as described in (S-6). Relabeling xc1 ≡ xc and using the change of vari-

ables uj = eee ⊗ xc + hn ·ψj , for j = 1,2, and xc2 = xc + hn ·∆, under Assumptions E1-E3, the

expectation in (S-10) becomes,

E
[
Hn(Ui ,Uj)

2
]

=
1

h2L−r
n
·
(
σ2
n + o(1)

)
. (S-12)

Let
µ3

(
XcGi ,X

c
Gj ,x

d
)
≡ E

[
S(Yi ,Yj)

3
∣∣∣XcGi ,XcGj ,XdGi = XdGj = eee⊗ xd

]
,

µ4

(
XcGi ,X

c
Gj ,x

d
)
≡ E

[
S(Yi ,Yj)

4
∣∣∣XcGi ,XcGj ,XdGi = XdGj = eee⊗ xd

]
.

And,

λ3,n ≡
∑
xd

∫
xc

µ3

(
eee⊗ xc,eee⊗ xc,xd

)
fXG (eee⊗ x)2ω(x)3

∫
∆2

∫
∆3

∫
ψ

K(ψ)K(ψ −eee⊗∆2)K(ψ −eee⊗∆3)dψ

2

d∆3d∆2

dxc,
λ4,n ≡

∑
xd

∫
xc

µ4

(
eee⊗ xc,eee⊗ xc,xd

)
fXG (eee⊗ x)2ω(x)4

∫
∆2

∫
∆3

∫
∆4

∫
ψ

K(ψ)K(ψ −eee⊗∆2)K(ψ −eee⊗∆3)

· K(ψ −eee⊗∆4)dψ

2

d∆4d∆3d∆2

dxc,
As before, the sum for xd and the integral for xc are taken over X d and X c, respectively,

while each ψj ∈RL is integrated over the range [−eee⊗S,eee⊗S] and each ∆` ∈Rr is integrated
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over [`bn(xc),ubn(xc)], as described in (S-6). Using the same change of variables as in the

previous results, under Assumptions E1-E3, we obtain,

E
[
Hn(Ui ,Uj)

3
]

=
1

h4L−2r
n

·
(
λ3,n + o(1)

)
,

E
[
Hn(Ui ,Uj)

4
]

=
1

h6L−3r
n

·
(
λ4,n + o(1)

)
.

(S-13)

Equipped with the results in equations (S-7), (S-9), (S-12) and (S-13), we proceed to ana-

lyze the Hoeffding decomposition of T̂ . Recall that T̂ is given by,

T̂ =
(
n
2

)−1

Hn(Ui ,Uj),

where, as we pointed out previously, Hn(Ui ,Uj) is symmetric. Denote

mn(Ui) ≡ E
[
Hn(Ui ,Uj)|Ui

]
.

And note that E [mn(Ui)] = E
[
Hn(Ui ,Uj)

]
by iterated expectations. Let

ϕ(XGi |y,y′,hn) ≡
∑
xd

∫
xc

τ(y,y′ |x)Γ (XGi ,x,hn)ω(x)dxc.

Under the conditions of Assumptions E1-E3, there exists a finite constant B such that,

using an Mth−order approximation,

mn(Ui) =
∑
y∈S

∑
y′∈σ (y)

S(Yi , y,y
′)ϕ(XGi |y,y′,hn) +B2n(Ui),

E [mn(Ui)] = T +B1n,

(S-14)

where |B2n(Ui)| ≤ B ·hM+r−L
n , and |B1n| ≤ B ·hM+r−L

n . Note that under the null hypothesis of

cooperation, we have τ(y,y′ |x) = 0 for all y ∈ S , y′ ∈ σ (y) and all x ∈ X . Therefore, under

the null hypothesis of cooperation, we have

mn(Ui) = B2n(Ui),

E [mn(Ui)] = B1n

 where |B2n(Ui)| ≤ B · hM+r−L
n , and |B1n| ≤ B · hMn . (S-14’)
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Next, denote

bn(Ui) ≡mn(Ui)−E[mn(Ui)],

Gn(Ui ,Uj) ≡Hn(Ui ,Uj)−E
[
Hn(Ui ,Uj)

]
− bn(Ui)− bn(Uj).

(S-15)

The Hoeffding decomposition of the U-statistic
(n

2
)−1∑

i<jHn(Ui ,Uj) (see (see Serfling (1980,

pages 177-178)) is given by,

T̂ = E
[
Hn(Ui ,Uj)

]
+

2
n

n∑
i=1

bn(Ui) +
(
n
2

)−1∑
i<j

Gn(Ui ,Uj)

= T +
2
n

n∑
i=1

bn(Ui) +
(
n
2

)−1∑
i<j

Gn(Ui ,Uj) +O
(
hMn

)
,

(S-16)

where the last result follows from the result in (S-14). We begin by analyzing the asymp-

totic properties of the decomposition in (S-16) under the null hypothesis of cooperation.

In this case, using the result in (S-14’), we have T = 0 and
∣∣∣1
n

∑n
i=1 bn(Ui)

∣∣∣ ≤ B ·hM+r−L
n , and

(S-16) becomes,

T̂ =
(
n
2

)−1∑
i<j

Gn(Ui ,Uj) +Op
(
hM+r−L
n

)
(S-16’)

Thus, under the null hypothesis of cooperation, our statistic T̂ is the sum of a degen-

erate U-statistic of order two, plus a remainder that vanishes to zero and has order of

magnitude O
(
hM+r−L
n

)
. We apply the results in Hall (1986) (specifically, Theorem 1 in

that paper) to analyze the asymptotic properties of this U-statistic. As Hall (1986) shows,

degenerate U-statistics of order two can be asymptotically normal when their kernel func-

tion depends on n. This is precisely the case of Gn(Ui ,Uj), which depends on n through

the presence of the bandwidth sequence hn. Let (i, j,k) denote three distinct observations

from our iid sample (Ui)
n
i=1. Let

G̃n(Uj ,Uk) ≡ E
[
Gn(Ui ,Uj) ·Gn(Ui ,Uk)

∣∣∣Uj ,Uk] .
Let Gn(Ui ,Uj) be a symmetric function satisfying E[Gn(Ui ,Uj)|Ui] = 0 almost surely, and

E[Gn(Ui ,Uj)2] <∞ for each n. Suppose,

E
[
G̃n(Uj ,Uk)2

]
+n−1E

[
Gn(Ui ,Uj)4

]
(
E
[
Gn(Ui ,Uj)2

])2 −→ 0, (S-17)
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as n → ∞. Theorem 1 in Hall (1986) shows that, if these conditions are satisfied, then∑
i<jGn(Ui ,Uj) is asymptotically normally distributed with zero mean and variance given

by 1
2n

2 · E
[
Gn(Ui ,Uj)2

]
. Therefore,

(n
2
)−1∑

i<jGn(Ui ,Uj) will be asymptotically normally

distributed with zero mean and variance given by 2
(n−1)2 ·E

[
Gn(Ui ,Uj)2

]
. Since n/(n−1)→ 1

as n→∞, it follows that if the condition in (S-17) is satisfied, we have

n ·


(n

2
)−1∑

i<jGn(Ui ,Uj)√
2 ·E

[
Gn(Ui ,Uj)2

]
 d−→N (0,1). (S-18)

Plugging in (S-14’) into (S-15), we have that, under the null hypothesis of cooperation,

Gn(Ui ,Uj) =Hn(Ui ,Uj)−
(
B2n(Ui) +B2n(Uj)−B1n

)
, (S-19)

where
∣∣∣B2n(Ui) +B2n(Uj)

∣∣∣ ≤ 2B · hM+r−L
n , and |B1n| ≤ B · hMn , so under the null hypothesis of

cooperation, ∣∣∣B2n(Ui) +B2n(Uj)−B1n

∣∣∣ =O
(
hM+r−L
n

)
+O

(
hMn

)
=O

(
hM+r−L
n

)
,

Gn(Ui ,Uj) =Hn(Ui ,Uj) +O
(
hM+r−L
n

)
.

(S-20)

Let µ1(y,XG) ≡ E
[∣∣∣S(Y ,y)

∣∣∣ ∣∣∣XG]. We have,

E
[∣∣∣Hn(Ui ,Uj)

∣∣∣ ∣∣∣Uj] =
1

h2L
n
·
∑
xd

∫
xc

∫
u

µ1

(
Yj ,u,eee⊗ xd

)
·
∣∣∣∣∣∣K

(
u −eee⊗ xc

hn

)∣∣∣∣∣∣fXcG |XdG(u|eee⊗ xd)du

·
∣∣∣∣∣∣K

XcGj −eee⊗ xchn

∣∣∣∣∣∣ ·ω(x)

dxc · fXdG(eee⊗ xd) ·1
{
XdGj = eee⊗ xd

}
Using the change of variables u = eee ⊗ xc + hn ·ψ, with ψ ∈ RL, and xc = Xc1j + hn ·∆, with

∆ ∈Rr (note that Xc1j are the continuous payoff covariates of player 1, we could use those

of any other player in our change of variables), we have,

E
[∣∣∣Hn(Ui ,Uj)

∣∣∣ ∣∣∣Uj] =
1

hL−rn
·
∑
xd

∫
∆

∫
ψ

µ1

(
Yj ,eee⊗ (Xc1j + hn ·∆) + hn ·ψ,eee⊗ xd

)
·
∣∣∣K (ψ)

∣∣∣
· fXcG |XdG(eee⊗ (Xc1j + hn ·∆) + hn ·ψ|eee⊗ xd)dψ ·

∣∣∣∣∣∣K
XcGj −eee⊗Xc1jhn

−∆
∣∣∣∣∣∣ ·ω(Xc1j + hn ·∆,xd)

d∆
· fXdG(eee⊗ xd) ·1

{
XdGj = eee⊗ xd

}
=O

(
1

hL−rn

)
.
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The same steps show that E
[
|Hn(Ui ,Uk)|

∣∣∣Uk] = O
(

1
hL−rn

)
. Combining these results with

(S-20), we obtain,

G̃n(Uj ,Uk) ≡ E
[
Gn(Ui ,Uj ) ·Gn(Ui ,Uk)

∣∣∣Uj ,Uk]
= E

[(
Hn(Ui ,Uj )−

(
B2n(Ui) +B2n(Uj )−B1n

))
·
(
Hn(Ui ,Uk)− (B2n(Ui) +B2n(Uk)−B1n)

)∣∣∣Uj ,Uk]
= E

[
Hn(Ui ,Uj ) ·Hn(Ui ,Uk)

∣∣∣Uj ,Uk]+O
(
hM+r−L
n

)
·O

(
hr−Ln

)
+O

(
h

2·(M+r−L)
n

)
≡ H̃n(Uj ,Uk) +O

(
h
M+2·(r−L)
n

)
,

(S-21)

where H̃n(Uj ,Uk) ≡ E
[
Hn(Ui ,Uj) ·Hn(Ui ,Uk)

∣∣∣Uk ,Uk], as we defined in equation (S-4).

Combining (S-21) with the results we obtained for E
[
H̃n(Uj ,Uk)

]
and E

[
H̃n(Uj ,Uk)2

]
in

equations (S-7) and (S-9), we have

E
[
G̃n(Uj ,Uk)

2
]

= E
[
H̃n(Uj ,Uk)

2
]
+O

(
h
M+3·(r−L)
n

)
=O

(
1

h4L−3r
n

)
+O

(
hMn
h3L−3r
n

)
=

1

h4L−3r
n

·
O(1) +O

(
hM+L
n

)
︸    ︷︷    ︸

=o(1)


=O

(
1

h4L−3r
n

)
.

(S-22)

Next, combining (S-20) with the results we obtained for E
[
Hn(Ui ,Uj)2

]
, E

[
Hn(Ui ,Uj)3

]
and E

[
Hn(Ui ,Uj)4

]
in equations (S-12) and (S-13), and the result in (S-14), where we have

E
[
Hn(Ui ,Uj)

]
= E [mn(Ui)] = T +B1n =O(1), we obtain,

E
[
Gn(Ui ,Uj)

4
]

= E
[
Hn(Ui ,Uj)

4
]
+O

(
hM+3r−5L
n

)
=O

(
1

h6L−3r
n

)
+O

(
hM+3r−5L
n

)
=

1

h6L−3r
n

·
O(1) +O

(
hM+L
n

)
︸    ︷︷    ︸

=o(1)


=O

(
1

h6L−3r
n

)
,

(S-23)
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and,

E
[
Gn(Ui ,Uj)

2
]

= E
[
Hn(Ui ,Uj)

2
]
+O

(
hM+r−L
n

)
=

1

h2L−r
n
·
(
σ2
n + o(1)

)
+O

(
hM+r−L
n

)
=

1

h2L−r
n
·
(σ2

n + o(1)
)

+O
(
hM+L
n

)
︸    ︷︷    ︸

=o(1)


=

1

h2L−r
n
·
(
σ2
n + o(1)

)
,

(S-24)

where σ2
n > 0 is as described in (S-11). Plugging in the results in equations (S-22), (S-23)

and (S-24) into the Hall (1986, Theorem 1) criterion described in (S-17), we have

E
[
G̃n(Uj ,Uk)2

]
+n−1E

[
Gn(Ui ,Uj)4

]
(
E
[
Gn(Ui ,Uj)2

])2 =
O

(
1

h4L−3r
n

)
+O

(
1

n·h6L−3r
n

)
1

h4L−2r
n
·
(
σ2
n + o(1)

)2

=
O (hrn) +O

(
1

n·h2L−r
n

)
(
σ2
n + o(1)

)2 −→ 0,

(S-25)

where the last result follows since, as described in Assumption E3, we have n·h2L−r
n −→∞.

From the result in (S-25), Theorem 1 in Hall (1986) implies that n ·

(n2)
−1∑

i<jGn(Ui ,Uj )√
2·E[Gn(Ui ,Uj )2]

 d−→

N (0,1). Using the fact that E
[
Gn(Ui ,Uj)2

]
= E

[
Hn(Ui ,Uj)2

]
+ o(1), going back to the Ho-

effding decomposition in (S-16’) and using the result in (S-24), we have that under the

null hypothesis of cooperation,

n · T̂√
2 ·E

[
Hn(Ui ,Uj)2

] = n ·


(n

2
)−1∑

i<jGn(Ui ,Uj)√
2 ·E

[
Gn(Ui ,Uj)2

]
+ o(1)

+
n · h

2L−r
2

n√
2 ·

(
σ2
n + o(1)

) ·Op (hM+r−L
n

)

= n ·


(n

2
)−1∑

i<jGn(Ui ,Uj)√
2 ·E

[
Gn(Ui ,Uj)2

]
+ o(1)

+Op
(
n · hM+ r

2
n

)
︸          ︷︷          ︸

=op(1)

d−→N (0,1).
(S-26)

where the last result follows from the bandwidth convergence restriction n · hM+ r
2

n −→ 0,

described in Assumption E3.

Now let us describe the asymptotic properties o T̂ under the alternative hypothesis of
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no cooperation where (8) is violated. In this case we have T > 0. Let us go back to the

general Hoeffding decomposition result in (S-16),

T̂ = T +
2
n

n∑
i=1

bn(Ui) +
(
n
2

)−1∑
i<j

Gn(Ui ,Uj) +O
(
hMn

)
,

We proceed by characterizing V ar [bn(Ui)]. Let

Λ(XGi , y,y
′,v,v′) ≡ E

[
S(Yi , y,y

′) · S(Yi ,v,v
′)
∣∣∣XGi] .

And let

λ2,n ≡
∑
y∈S

∑
y′∈σ (y)

∑
v∈S

∑
v′∈σ (v)

∑
xd

∫
xc

Λ(eee⊗ x,y,y′ ,v,v′) · fXG (eee⊗ x) · τ(y,y′ |x) · τ(v,v′ |x) ·ω(x)2

·
∫
∆

∫
ψ

K(ψ)K(ψ −eee⊗∆)dψd∆

dxc.
The sum for xd and the integral for xc are taken over X d and X c, respectively, while ψ ∈
R
L is integrated over the range [−eee⊗S,eee⊗S] and ∆ ∈Rr is integrated over [`bn(xc),ubn(xc)],

as described in (S-6). Under the null hypothesis of cooperation, we have λ2,n = 0 (since

τ(y,y′ |x) = 0 for all y ∈ S , y′ ∈ σ (y)), but under the alternative hypothesis of no coopera-

tion where (8) is violated and T > 0, we have λ2,n , 0, and

V ar [bn(Ui)] =
1

hL−rn
·
(
λ2,n + o(1)

)
, and

2
n

n∑
i=1

bn(Ui) =Op

 1

n
1
2 · h

L−r
2
n

 . (S-27)

Next, recall that
(n

2
)−1∑

i<jGn(Ui ,Uj) is a degenerate U-statistic of order 2. Thus, using

Lemma 5.2.1.A in Serfling (1980) and the result in (S-24), we have

V ar


(
n
2

)−1∑
i<j

Gn(Ui ,Uj)

 =
2

n · (n− 1)
·E

[
Gn(Ui ,Uj)

2
]

=O

E
[
Gn(Ui ,Uj)2

]
n2

 =O
(

1

n2 · h2L−r
n

)

Therefore, (
n
2

)−1∑
i<j

Gn(Ui ,Uj) =Op

 1

n · h
2L−r

2
n

 (S-28)

Therefore, under the alternative hypothesis of no cooperation where (8) is violated and
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T > 0,

T̂ = T +Op

 1

n
1
2 · h

L−r
2
n

+Op

 1

n · h
2L−r

2
n

+O
(
hMn

)
= T +Op

 1

n
1
2 · h

L−r
2
n

+O
(
hMn

)
.

Where the last result follows since the restriction n · h2L−r
n −→ ∞ implies n · hLn −→ ∞.

Therefore, under the alternative hypothesis of no cooperation where (8) is violated and

T > 0,

n · T̂√
2 ·E

[
Hn(Ui ,Uj)2

]
=

n · h
2L−r

2
n · T√

2 ·
(
σ2
n + o(1)

) +
n · h

2L−r
2

n√
2 ·

(
σ2
n + o(1)

) ·Op
 1

n
1
2 · h

L−r
2
n

+
n · h

2L−r
2

n√
2 ·

(
σ2
n + o(1)

) ·O (
hMn

)

=
n · h

2L−r
2

n · T√
2 ·

(
σ2
n + o(1)

) +Op
(
n

1
2 · h

L
2
n

)
+O

(
n · hM+ 2L−r

2
n

)

=
n · h

2L−r
2

n · T√
2 ·

(
σ2
n + o(1)

) +n
1
2 · h

L
2
n ·

(
Op(1) +O

(
n

1
2 · hM+ L−r

2
n

)
︸            ︷︷            ︸

=o(1)

)

=
n · h

2L−r
2

n · T√
2 ·

(
σ2
n + o(1)

) +n
1
2 · h

L
2
n ·ϑn, where |ϑn| =Op(1),

(S-29)

In the above result we used the fact that n
1
2 ·hM+ L−r

2
n −→ 0 since n

1
2 ·hM+ L−r

2
n = n ·hM+ r

2
n · h

L
2−r
n

n
1
2

,

and n ·hM+ r
2

n −→ 0 by Assumption E3 , while L
2 − r = P ·r

2 − r = r ·
(
P
2 − 1

)
≥ 0, since P ≥ 2 (the

game has at least two players). Therefore, L2 − r ≥ 0 and we either have h
L
2−r
n = 1 (if P = 2),

or h
L
2−r
n −→ 0 (if P ≥ 3). Therefore, h

L
2−r
n

n
1
2
−→ 0 and thus, n

1
2 · hM+ L−r

2
n −→ 0.

Under the bandwidth convergence restrictions in Assumption E3 we have1 n
1
2 ·h

L
2
n −→

1Note that, n
1
2 · h

L
2
n =

(
n · h2L−r

n · 1
hL−rn

) 1
2

and n
1
2 · h

L−r
2
n =

(
n · h2L−r

n · 1
hLn

) 1
2
. Thus, we have n

1
2 · h

L−r
2
n −→∞ since

n · h2L−r
n −→∞ by Assumption E3. This condition and the fact that L− r = r · (P − 1) > 0 yields n

1
2 · h

L
2
n −→∞.
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∞ and n
1
2 · h

L−r
2
n −→∞. Take any sequence cn > 0 such that,

cn −→ +∞, and
cn

n
1
2 · h

L
2
n

−→ 0.

Going back to (S-29), under the alternative hypothesis of no cooperation where (8) is

violated and T > 0,

P r

 n · T̂√
2 ·E

[
Hn(Ui ,Uj)2

] > cn
 = P r

ϑn > cn

n
1
2 · h

L
2
n

− n
1
2 · h

L−r
2
n · T√

2 ·
(
σ2
n + o(1)

)
 −→ 1,

where the last result follows from the fact that ϑn =Op(1) and

cn

n
1
2 · h

L
2
n

− n
1
2 · h

L−r
2
n · T√

2 ·
(
σ2
n + o(1)

) −→ −∞.
Thus, under the alternative hypothesis of no cooperation where (8) is violated and T > 0,

n · T̂√
2 ·E

[
Hn(Ui ,Uj)2

] −→ +∞ with probability approaching one (w.p.a.1) (S-30)

The results in (S-26) and (S-30) prove Theorem 2. �

S3 Monte Carlo experiments

Section 5 in the paper included a summary of the results of our Monte Carlo experiments.

We present the full results and the details here. We applied our test to data generated for

a 2× 2 game with normal-form payoffs given as follows,

Y2 = 1 Y2 = 0

Y1 = 1 X1
1 +X2

1 +∆1 + ε1 , X1
2 +X2

2 +∆2 + ε2 X1
1 +X2

1 + ε1 , 0

Y1 = 0 0 , X1
2 +X2

2 + ε2 0 , 0

In all our experiments, (X1
p ,X

2
p , εp) are iid N (0,1), so we have Xp ≡ (X1

p ,X
2
p ), which in-

cludes two continuously distributed covariates (i.e, r = 2). The strategic interaction pa-

rameters (∆1,∆2) are constant, with ∆p ≤ 0 (strategic substitutes). We will apply our test

to data generated by cooperation (assuming three different joint objective functions that

satisfy our assumptions) and to data generated by pure-strategy Nash equilibrium (PSNE)
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noncooperative behavior. As we show in Section S1.1 of this supplement, in this setting

our test will have power when true behavior is Nash equilibrium if either ∆1 , ∆2 or if

the selection mechanism chooses both coexisting Nash equilibria –(0,1) and (1,0)– with

unequal probability in the multiple NE region.

We will use two DGPs. In the first DGP, we will set ∆1 = −2 and ∆2 = −1 and we will

assume that the NE selection mechanism chooses both coexisting Nash equilibria in the

multiple NE region with equal probability. Our goal here is to evaluate the power of our

test when the strategic effects are different across players. In the second DGP, we will set

∆1 = ∆2 = −2 but we will assume that the selection mechanism chooses the coexisting NE

with different probabilities. We will first assume that (1,0) is selected with probability

25% and then we will reduce this probability to 10%. Our goal is to evaluate the power

of our test when the strategic effects are equal but the selection mechanism does not

choose the coexisting NE with uniform probability. For both DGPs we will also generate

data assuming cooperation and looking at three joint objective functions: V (u1,u2) =

u1 + u2, V (u1,u2) = max {u1,u2} and V (u1,u2) = min {u1,u2}. These three examples satisfy

the symmetry conditions in Assumption 3 (see our examples in Section 2.4.1).

S3.1 Choice of testing range, tuning parameters

Let Z(τ) denote the τ th quantile of the r.v Z. For ` = 1,2, let x` ≡ X`1,(0.01) ∨X
`
2,(0.01) and

x` ≡ X`1,(0.99) ∧X
`
2,(0.99). Our testing range is X ≡ [x1,x1] × [x2,x2]. Our weight function

ω(·) is the uniform distribution over X . Regarding our tuning parameters, we choose a

bandwidth of the form hn = ch · σ̂ (X) · n−αh , where σ̂ (X) is the sample standard deviation

of X (we use covariate-specific bandwidths). As we discussed in the paragraph following

Assumption E3, we must have 1
M+r/2 < αh <

1
r(2P−1) , and the smallest value of M is M =

d5r2 e. Since P = 2 and r = 2, we set M = 6 and αh = 0.16. We will present results for

ch = {1,1.25,1.5,1.75}. We employed a bias-reducing kernel of order M = 6 of the form,

κ(ψ) =
(
c1 · (S2 −ψ2)2 + c2 · (S2 −ψ2)4 + c3 · (S2−ψ2)6

)
· 1{|ψ| ≤ S}. The kernel has support

[−S,S], with S = 10. The coefficients c1, c2, c3 were chosen to satisfy the conditions of a

bias-reducing kernel of order M = 6.

S3.2 Results

Rejection rates for our test are included in Tables S1 and S2. Each case shown corre-

sponds to 1,000 simulations. We found that, for all the cases of cooperation included, as

the sample size increases, the results become increasingly closer to the asymptotic size

predictions in Theorem 2. We also find that, consistent with our analysis in Section S1.1
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of this supplement, our test has power to reject cooperation when the true behavior is

noncooperative (PSNE in this case) and in our experiments we show that this power can

be derived from an asymmetry in players’ strategic-interaction effects or from the prop-

erties of the equilibrium selection mechanism. For the tuning parameters used in our

analysis, we found that values of ch around 1.25 produced the best results for size and

power, but our results are robust to a reasonably wide range of values for ch.

S4 Results for our empirical illustration with alternative

bandwidth choices

Table 5 in Section 6 of the paper presents the results of our test for our empirical ap-

plication, using the bandwidth hn = ch · σ̂ (X) · n−0.11, where σ̂ (X) is the sample standard

deviation of X (we employed covariate-specific bandwidths). Following our Monte Carlo

experiment findings, the results presented in the paper correspond to ch = 1.25. Here we

present the results for alternative values of ch, ranging from ch = 1 to ch = 1.75. As Table

S3 shows, our findings are robust, suggesting that, while cooperation in expansion/entry

decisions can be rejected in larger markets, this type of behavior cannot be rejected in

smaller markets. To be precise, we fail to reject cooperation in markets below the 70th

percentile in population size, as well as in markets that did not have any stores in 2008.

On the other hand, when we consider all markets or, for example, markets whose size are

above the 85th percentile, we reject cooperation at a significance level < 1%.
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Table S1: Monte Carlo experiment results. Rejection rates for the null hypothesis of co-
operation when ∆1 = −2, ∆2 = −1 and PSNE selection mechanism is uniform

Rejection rates for ch = 1ch = 1ch = 1
Cooperative behavior PSNE behavior

Sample
size

V (u1,u2) =
u1 +u2

V (u1,u2) =
max {u1,u2}

V (u1,u2) =
min {u1,u2}

PM(1,0) = 0.50

n = 250 8.9% 8.8% 6.6% 29.4%
n = 500 5.8% 6.1% 7.0% 45.0%
n = 1000 5.7% 5.7% 5.7% 65.2%

Rejection rates for ch = 1.25ch = 1.25ch = 1.25
Cooperative behavior PSNE behavior

Sample
size

V (u1,u2) =
u1 +u2

V (u1,u2) =
max {u1,u2}

V (u1,u2) =
min {u1,u2}

PM(1,0) = 0.50

n = 250 8.2% 8.1% 6.7% 36.8%
n = 500 6.2% 6.2% 7.3% 58.3%
n = 1000 5.6% 5.5% 4.6% 82.4%

Rejection rates for ch = 1.5ch = 1.5ch = 1.5
Cooperative behavior PSNE behavior

Sample
size

V (u1,u2) =
u1 +u2

V (u1,u2) =
max {u1,u2}

V (u1,u2) =
min {u1,u2}

PM(1,0) = 0.50

n = 250 7.6% 7.5% 7.0% 38.8%
n = 500 6.6% 6.7% 6.6% 65.3%
n = 1000 6.3% 6.2% 5.5% 89.8%

Rejection rates for ch = 1.75ch = 1.75ch = 1.75
Cooperative behavior PSNE behavior

Sample
size

V (u1,u2) =
u1 +u2

V (u1,u2) =
max {u1,u2}

V (u1,u2) =
min {u1,u2}

PM(1,0) = 0.50

n = 250 7.2% 7.2% 7.1% 40.2%
n = 500 6.9% 6.9% 7.6% 67.4%
n = 1000 6.6% 6.4% 5.3% 92.8%
• PM(y) ≡ P r (mechanismM will choose PSNE y), with PM(1,0) + PM(0,1) = 1.
• 1000 simulations in each case.
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Table S2: Monte Carlo experiment results. Rejection rates for the null hypothesis of co-
operation when ∆1 = −2, ∆2 = −2 and PSNE selection mechanism is non-uniform

Rejection rates for ch = 1ch = 1ch = 1
Cooperative behavior PSNE behavior

Sample
size

V (u1,u2) =
u1 +u2

V (u1,u2) =
max {u1,u2}

V (u1,u2) =
min {u1,u2}

PM(1,0) = 0.25 PM(1,0) = 0.10

n = 250 8.9% 8.9% 6.6% 27.6% 52.1%
n = 500 6.1% 6.1% 7.0% 40.3% 74.5%
n =
1000

5.7% 5.7% 5.7% 58.8% 93.6%

Rejection rates for ch = 1.25ch = 1.25ch = 1.25
Cooperative behavior PSNE behavior

Sample
size

V (u1,u2) =
u1 +u2

V (u1,u2) =
max {u1,u2}

V (u1,u2) =
min {u1,u2}

PM(1,0) = 0.25 PM(1,0) = 0.10

n = 250 8.1% 8.1% 6.7% 30.8% 62.3%
n = 500 6.2% 6.2% 7.3% 51.9% 87.0%
n =
1000

5.5% 5.5% 4.6% 74.4% 98.9%

Rejection rates for ch = 1.5ch = 1.5ch = 1.5
Cooperative behavior PSNE behavior

Sample
size

V (u1,u2) =
u1 +u2

V (u1,u2) =
max {u1,u2}

V (u1,u2) =
min {u1,u2}

PM(1,0) = 0.25 PM(1,0) = 0.10

n = 250 7.5% 7.5% 7.0% 32.9% 65.7%
n = 500 6.6% 6.7% 6.6% 55.8% 91.1%
n =
1000

6.2% 6.2% 5.5% 82.4% 99.6%

Rejection rates for ch = 1.75ch = 1.75ch = 1.75
Cooperative behavior PSNE behavior

Sample
size

V (u1,u2) =
u1 +u2

V (u1,u2) =
max {u1,u2}

V (u1,u2) =
min {u1,u2}

PM(1,0) = 0.25 PM(1,0) = 0.10

n = 250 7.1% 7.2% 7.1% 33.4% 66.9%
n = 500 6.9% 6.9% 7.6% 58.1% 92.8%
n =
1000

6.4% 6.4% 5.3% 86.0% 99.9%

• PM(y) ≡ P r (mechanismM will choose PSNE y), with PM(1,0) + PM(0,1) = 1.
• 1000 simulations in each case.
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Table S3: Test results for cooperation in expansion decisions.
Results for ch = 1ch = 1ch = 1

All markets
Markets be-
low the 85th85th85th

percentile
in size

Markets be-
low the 70th70th70th

percentile
in size

Markets be-
low the 50th50th50th

percentile
in size

Markets
with no
stores in
2008

21.650† 4.336† −1.016 −0.700 −0.620
(0.000) (0.000) (0.845) (0.758) (0.732)

Results for ch = 1.25ch = 1.25ch = 1.25

All markets

Markets be-
low the 85th85th85th

percentile
in size

Markets be-
low the 70th70th70th

percentile
in size

Markets be-
low the 50th50th50th

percentile
in size

Markets
with no
stores in
2008

21.642† 4.294† −0.912 −0.773 −0.543
(0.000) (0.000) (0.819) (0.780) (0.706)

Results for ch = 1.5ch = 1.5ch = 1.5

All markets

Markets be-
low the 85th85th85th

percentile
in size

Markets be-
low the 70th70th70th

percentile
in size

Markets be-
low the 50th50th50th

percentile
in size

Markets
with no
stores in
2008

21.472† 4.328† −0.845 −0.818 −0.478
(0.000) (0.000) (0.801) (0.793) (0.684)

Results for ch = 1.75ch = 1.75ch = 1.75

All markets

Markets be-
low the 85th85th85th

percentile
in size

Markets be-
low the 70th70th70th

percentile
in size

Markets be-
low the 50th50th50th

percentile
in size

Markets
with no
stores in
2008

21.348† 4.438† −0.784 −0.835 −0.449
(0.000) (0.000) (0.783) (0.798) (0.673)

• Results show the value of our test-statistic, with p-value in parenthesis.
(†) Cooperation rejected at < 1% significance level.
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