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Abstract 

This paper presents a consistent test of functional form of nonlinear regression models. 
The test combines the methodology of the conditional moment test and nonparametric 
estimation techniques. Using degenerate and nondegenerate U-statistic theories, the test 
statistic is shown to be asymptotically distributed standard normal under the null 
hypothesis that the parametric model is correct, while diverging to infinity at a rate 
arbitrarily close to n, the sample size, if the parametric model is misspecified. Therefore, 
the test is consistent against all deviations from the parametric model. The test is robust 
to heteroskedasticity. A version of the test can be constructed which will have asymptotic 
power equal to 1 against any local alternatives approaching the null at rates slower than 
the parametric rate 1/,/~. A simulation study reveals that the test has good finite-sample 
properties. 

K~ 3, words: Specilication test; Consistent test; Conditional moment test; Kernel estima: 
Lion; I)cgcncrate and ntmdegenen'ate U-statistics; Local alternatives 
JEL  class![ication: CI 2: C14; C21 

I. |niroduction 

Specification testing of function form is one of the most  impor tant  problems 
in econometrics.  Fol lowing the work  of  Hausman  (1978), the research on this 
area has been growing. The work includes Ruud (1984), Newey (1985a, 1985b), 
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Tauchen (1985), White (1982, 1987), Bierens (1990), and many others. Most of 
the specification tests can be put in the framework of Newey (1985a) and 
Tauchen's (1985) conditional moment test. However, most of the tests have the 
drawback of being not consistent against general alternatives or an infinite- 
dimensional alternative since they are designed to test a parametric null against 
some parametric alternatives or finite-dimensional alternative. For example, 
Hausman's (1978) test and White's (1982) information matrix test are among 
many of the tests that are not consistent against all deviations from the 
parametric model. Among the tests mentioned above, the only consistent model 
specification test is Bierens' test which is based on Newey and Tauchen's 
conditional moment test. Bierens uses a family of exponential functions to 
generate an infinite number of moment conditions required for the consistency 
of the conditional moment test. But calculation of Bierens' test statistic requires 
computing a maximum over an infinite set and this can impose a major 
computational burden in practice. To overcome the problem, he proposes 
drawing a sequence of elements from the infinite set at random, then calculating 
the maximum. Thus the implementation of his test relies on arbitrary selection 
of moment conditions. Based on different choices of these conditions, different 
researchers may reach different conclusions on whether a model should be 
accepted. 

Recent developments in nonparametric methods offer powerful tools to tackle 
the inconsistency problem of earlier specification tests. To obtain a consistent 
test, we may estimate the infinite-dimensional alternative or true model by 
nonparametric methods and compare the nonparametric model with the para- 
metric model. The work along this line includes Lee (1988), Yatchew (1992), 
Eubank and Spiegelman (1990), Wooldridge (1992k and Hfirdle and Mamnaen 
(1993). Both Lee's and Yatchew's tests are based on comparing the parametric 
sum of squared residuals with the nonparametric sum of squared residuals. 
However, Lee's procedure is not robust to heteroskedasticity. Yatchew's ap- 
proach relies on sample splitting and it also assumes homoskedasticity of the 
error term. Eubank and Spiegelman obtain their test by fitting a spline smooth- 
ing to the residuals from a linear regression. However, their test is limited by 
the normality assumption on the error term. Wooldridge's test is based on 
Davidson=MacKinnon's (1981) residual-based test and sieve estimation of the 
infinite-dimensional alternative. His test requires that the alternative models be 
nonnested. Hfirdle and Mammen's test is based on the integrated squared 
difference between th,~: parametric fit and the nonparametric fit. The power of 
the test against fixed alternatives is not investigated. 

In this paper, we propose a test that combines the idea of the conditional 
moment test and the methodology of nonparametric estimations. We use the 
kernel method to construct a moment condition which can be used to distin- 
guish the null from the alternative. The test is more powerful than Bierens' 
consistent conditional moment test and most of the nonparametric tests since 
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the rate at which our test diverges to infinity under the alternative can be 
constructed to be arbitrarily close to n, the sample size, which is faster than 
v/~ achieved by these tests. Another advantage of the test over Bierens' test is 
that the computation of the test is simpler and only one parameter, the band- 
width, needs to be chosen. The literature on bandwidth selection can shed some 
light on selection of the parameter in a finite sample. The test has another 
advantage over the tests based on measuring distance between a parametric 
model and a nonparametric model in that it does not have the drawbacks of 
those tests mentioned earlier and it imposes very few regularity conditions 
beyond those commonly imposed on nonlinear least squares and kernel func- 
tions. For example, neither higher-order kernel functions nor trimming on the 
boundary of a density function, used in many applications of nonparametric 
regressions, are needed. The bandwidth condition imposed in this paper is no 
stronger than the condition sufficient for consistency in quadratic mean of 
kernel density estimators. 

The plan of the paper is follows. Section 2 states the testing problem and 
presents the test statistic, in Section 3, using degenerate and nondegenerate 
U-statistic theories, we show that the test statistic is asymptotically standard 
normal under the null hypothesis that the parametric model is correct and tends 
to infinity in probability under the alternatives. Therefore, the test is consistent. 
In Section 4, we analyze the power of the test against local misspecifications. We 
show that the test has power 1 against local misspecifications approaching the 
null at rates slower than the parametric rate l/x/~. It can no longer distinguish 
the null from the alternatives converging to the null at rates faster than or equal 
to the parametric rate I/x/~. Section 5 contains some Monte Carlo results. 
Section 6 summarizes the paper. 

2. ]'lie hypothesis and test statistic 

We have observations {(x;, Yi)}~'= ~ where xi is a m x 1 vector and Yi is a scalar. 
If E[lyi[] < ~ ,  then there exists a Borel measurable function g such that 
E(yi l xi = x) = O(x) where x e R ' .  

In a parametric regression model, .q(x) is assumed to belong to a parametric 
family of known real functionsf(x, 0) on R " x  6) where O c R t. To justify the 
use of a parametric model, a specification test is needed. Thus, the null hypothe- 
sis to be tested is that the parametric model is correct: 

Ho: Pr[E(Y i l x i )= f ( x i ,  O o ) ] = l  forsome 0o~O,  (2.1) 

while, without a specific alternative model, the alternative to be tested will be 
that the null is false: 

H1: Pr[E(Yilxi) =.f(xi, O)] < 1 for all 0 ~ O ,  (2.2) 
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where 0o is defined as 0o = argmin0~o E[y~-f(x~, 0)] 2. Thus the alternative 
encompasses all the possible departures from the null model. A test that has 
asymptotic power equal to 1 is said to be consistent. 

The idea of our test is as follows. Denote ~ = y~ -f(x~, 0o) and let PC') be the 
density function of x~. Then under Ho, since E(eil xi) = 0, we have 

E[ei E(ei l xi)p(xi)] = O, (2.3) 

while under H1, since E(e~lxi) = td(x~)-f(xi, 0o), we have 

E[e,E(~i I xi)p(xi)] = E{[E(e,i I xa] = p(x,)} 

= E{[ytxi) - f (x i ,  0o)] 2 p(xi)} 

> 0. (2.4) 

Therefore, we may use the sample analogue of E[e,~ E (e,i I x~) p(x~)] to form a test. 
The test may be understood in light of the Newey and Tauchen's conditional 

moment test with a single weighting function 

w(xi) = E(t:i l xi)p(xi). (2.5) 

As in Powell, Stock, and Stoker (1989), the inclusion of the density function 
avoids the problem of trimming the small values of the density function com- 
monly used in applications of kernel regressions. 

The unknown functions .q and p can be estimated by various nonparametric 
methods. Here, we use analytically simpler kernel regression and density 
methods to estimate ,q (of Hiirdle. 1990) and p (cf. Silverman, 1986). A kernel 
estimator of the regression function E0:~lx;) can be written in the form 

E(,,,, x,, = n - - - - - i l L / K (  "x'-x~' ) ~  ~ ,:~/l~(.x,), ,2.6, 
j = !  

where/~ is a kernel estimator of the density function of p, 

-n--~ h"-- K (2.7) 
-- j=l Jl ' 

where K is a kernel function, h, depending on sample size , ,  is a bandwidth 
parameter. 0o can be estimated by any x/t'~-consistent method, for example the 
nonlinear least squares method. 

U nder some mild regu~a~ity conditions (cf. Jennrich, 1969; White, 1981, i 982), 
the nonlinear least squares estimator 0 is a consistent and asymptotically 
normally distributed estimator of 0o even in the presence of model 
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misspecification. Replacing ~ by ei = y~ - j ( x~ ,  ~, we have the sample analogue ~ 
of E[~i E(e, i lxi)p(xi)], 

1 ~ ~ 1 ( x , - x j )  
V , -  n ( n _  l) -~ K ~ eiej. (2.8) 

i=1  j = l  

For any n~ xn2 matrix A =(ao), let IIAII denote its Euclidean norm, i.e., 
[IAII = [tr(AA')] 1/2. The following regularity assumptions are sufficient for 
obtaining the asymptotic distributions of V,, under both the null and the 
alternative. 

Assumption 1. {Oh, Xl), (Y2, x2) . . . . .  (y,, x,.)} is a random sample from a prob- 
ability distribution F(y, x) on R × R"'. The density jimction p(x) of  x~ and its 
first-order derivatives are uniformly bounded. E(y~ l xi) is continuously d!fferenti- 
able and bounded by a measurable function b(x) such that E[b 2 (xi)] < oc. 

Assumption 2. The parameter space 0 is a compact and convex subset of  R 1. 
f ( x ,  O) is a Borei measurable.function on R" for each 0 and a twice continuously 
d!fferentiable real function on @ for each x E R m. Moreover, 

E[ sup  [f2(xi'O)l] < Eo 

El-su p Of(x,,O) O.f(x,,O) 1 
LOeO O0 " dO' < ~" 

Efsup (y,-.f(xl, 0)) 2 0f(x,,0) ~.f(x,,0) ] 
LOgO " 80 t30' < ac, 

E[ sup (y,-./ '(x,, 0)) 2, 0"f(x,, 0) ] 

Assumption 3. E[(yi - f ( x i ,  0)) 2] takes a unique minimum at Oo ~ O. Under Ho, 
Oo is an interior point of  O. 

Assumption 4. The matrix 

J 
is nonsinguhw. 

t A referee suggested the statistic E, as an alternative to a n earlier, more complicated (but asymp- 
totically equivalent} statistic. The same statistic V,, is also independently proposed in Zheng (1993). 
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Assumption 5. K (u) is a nonnegative, bounded, continuous, and symmetric func- 
tion such that ~ K(u) du = 1. 

Assumptions 1-4 are essentially the same as assumptions used by Bierens 
(1990, App. A) and standard for ensuring the consistency and asymptotic 
normality of nonlinear least squares. The kernel function in Assumption 5 is the 
most commonly used one in nonparametric literature. 

3. The limiting distributions of the test statistic 

Our statistic can be approximated by a standard one-sample "second-order' 
U-statistic. The general 'second-order' U-statistic is of the form 

1_ n .  (z,, z j) = ~ ~ n,,(z,, z~), (3.1) 
u .  - n(n 1) i=l j=t i=1 j=i+l 

j ¢ i  

where {:,}7= t is an i.i.d, random sample and H, is any function symmetric in its 
arguments, i.e., H,(z~, zj) = H,(zj, z~). For the statistic V,,, the function H, is 

1 (Xi -- Xj~ 
= ei ej. H, -~, K h / 

Define 

r.tz~) ~ E[H,,tz,, zj) lz~].  (3.2) 

(,, ~ E[r,,(zi)] = E[lt,,(zi, zj)], 0.3) 

fs. =.r-,, + 2 ~. [r.(zi) ~,,] 
H i=1 

(3.4) 

where we assume that ~. exists. U. is called the "projection' of the statistic U,, 
(cf. Hoeffding, 1948). Since U. is an average of independent random variables, 
its asymptotic distribution can be easily obtained by applying central limit 
theorems and laws of large numbers, if E [ I[ H. (zi, z~) II 2] = o(n), then by Lemma 
3.1 of Powell, Stock, and Stoker (1989), we have x,/n(U. - U.) = % tl). Since the 
projection U. is a sample average, standard calculations show that O . -  ~,, 
converges to zero in mean squares. 

Summarizing the above results, we have: 

Lemma 3.1. i fE[lIH.(zi, zj)!l 2] = o(n), then 

v/n(U. - 0.)  = %(1) and U,, = ¢,, + %(1). 
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The above lemma is useful if E[H,(z~, zj)lz~] 4:0 or the U-statistic is non- 
degenerate. A U-statistic is said to be degenerate if E [H,,(z~, zj lzJ  = 0, almost 
surely, for i #.j. For a one-dimensional degenerate U-statistic, denote 

G,(zl, z2) = E[H,(z3, zl) nn(z3, Z2) [ ZI, Z2]. (3.5) 

Applying Theorem 1 of Hall (1984), we obtain the asymptotic distribution of 
a degenerate U-statistic. 

Lemma 3.2. Assume E [H,,(zt, z2) lZl] = 0 almost surely and E[H,,(zt,2 z2)] < 
fi~r each n. I f  

z 'E[H,4(zt, z2)] E[G,, (zt, z j ]  + n-  
0 as n ~ c c ,  (3.6) {E[H, 2, (z,, z2)] }2 

then 

I. 1/2 n" U,,/{2E[H, 2, (zi, zj)], 

has a limitin# standard normal distribution. 

Applying Lemmas 3.1 and 3.2, we obtain the asymptotic distribution of 
V,, under the null hypothesis (all proofs are given in the Appendix): 

Lemma 3.3. Given Assumptions 1 5. (f h ~ 0 and nh'" --, 7v, then under the null 
hypothesis (2. !), 

d 
nh '''2 V,, ----, N(0, L'L 13.7) 

where 2," is the asymptotic variance of  nh ''/2 V,,, 

Z" = 2 j 'K2(u)du ' ~[tr 2 ix) ]  2 p2{x)dx. (3.8) 

Moreover, L" can be consistently estimated by ~,, 

2 -  n ( n -  1------) h m h '" i=t j=z 
j ¢ i  

The condition nh" places an upper bound on the rate at which the bandwidth 
h converges to 0. The bandwidth condition turns out to be the same as one used 
by Prakasa Rao (1983, Thm. 3.1.2, p. 181) for obtaining the consistency in 
quadratic mean of kernel density estimators. 
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Finally, define a standardized version of the test statistic T. as 

g - 1 nh"/2V. 
T.  - 

E E K eie~ 
i=t i=1 h 

{,=~ ~ 2K 2 ( x , -  "11/2" 
-= h xj)e~e~) 

(3.10) 

The asymptotic distribution of T, under the null then follows from 
Lemma 3.3. 

Theorem 1. Given Assumptions 1-5, (f h --, 0 and nh" --, oz,, then under the null 
hypothesis (2.1), 

d 
T,, --, N (0, 1). (3.11) 

Theorem 1 could be used to calculate the asymptotic critical value for our test. 
To know the power and consistency of the test, we next obtain the asymptotic 
distribution of the test statistic T, under a fixed alternative hypothesis. 

Applying Lemma 3.1, we obtain the asymptotic distribution of V, under the 
alternative. 

Lemma 3.4. 
alternat fl'e hypotl,esis (2.2), 

P 
V, - ,E { [g (x ; ) - l ' ( x i ,  0o)] 2 p(x;) } > 0 

(;iren A.~sumptions 15,  ([' h-+ 0 and nh"--, :~. then under tile 

and 

L ' ~  2 ~ K2(u) du"  ~ {a2(x) + [g(x) - f ( x ,  0o)]Z}2p2(x) dx > 0. 

(3.12) 

(3.13) 

The asymptotic distribution of the test statistic T,, under the alternative then 
follows, 

Theorem 2. Given Assumptions 1-5. (1" h--, 0 and n h " ~  ~,, then under the 
alternative hypothesis (2.2), 

,, E [ [.q(xa - . l ' ( x .  0o)]" p(x~) ~ T, / nh"2 -~ ........................................... j 
{2t" K:  (u)du • }" {~r:(x) + [.q(x) - f ( x ,  Oo)]2}2pqx)dx} ','2 >0. 

(3.14) 
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Thus T, ~ oc in probability and the asymptotic power of the test is 1. Since 
nh"/2/v~ = ~ --} oo, the convergence rate nh "I2 of T, going to infinity is 
faster than those obtained by Bierens (1990) and Wooldridge (1992) which are 
x/~. 2 Our convergence rate can be made arbitrarily close to n by letting 
h approach to zero slowly. The convergence rate of Eubank and Spiegelman's 
(1990) test can also be made arbitrarily close to n. The same normalized factor 
17h mj2 used by H/irdle and Mammen's (1993) suggests that their test should have 
the same convergence rate as one in this paper. Thus Eubank and Spiegelman's 
test, H~irdle and Mammen's  test, and our test should be more powerful in large 
samples than those of Lee, Yatchew, and Wooldridge. Comparing with H/irdle 
and Mammen's test, our test is easier to compute. To apply their test one needs 
to calculate the integration and estimate its asymptotic mean. In our case, the 
asymptotic mean is zero. 

Though the motivation of the test proposed here is very different from other 
tests, it turns out that there are some interesting connections among those tests. 
Lee and Yatchew's procedures are based on the sum of squared residuals from 
the parametric model SSRe = Z i = l [ - y i - f ( x i ,  (~]2/n and the sum of squared 
residuals from the nonparametric model SSRN = ~___l[yi -  g(xi)]2/n, where 
,tj(x~) is a nonparametric estimator of,q. Wooldridge's procedure is based on the 

A 

statistic W,, --- ~i= 1 [g(Xi) - - f ( x l ,  (~)] [Yl - f ( x i ,  O*)]ln. Since  

SSRp - SSRN = _1 [y, - . f(x, ,  0)]' _ _1 Z 
i l  i = 1  R i = 1  

[y~ - ,4(x~)] 2 

1 ~ [,/(x,) -f(x,, 0)] [y, - f (x~ ,  0)] 
/'/ i = 1  

(3.15) 

|1 

+ - X[g(x~) - f(x~, 0)3 [y, - :j(x~)], 

Lee and Yatchew's procedure differs from Wooldridge's test by its inclusion of 
the second term in the above equation, which converges to zero under both the 
null and the alternative. 3 if we look at the density weighted version of those 
tests, we can also see some relations between our test and Wooldridge's test, and 
thus Lee and Yatchew's tests. Denote 

1 K x i  - x~ 
.~(.x'i) = n - 1 ~ /~(.,q), (3.16) 

j =  1 

2 Thc same v;ii convergcnce rate is c×pected from lesls of Lcc (I 988) and Yatchew (I 992), though no 
proofs are given by them. 

"~ I thank a referee for pointing out the connection. 
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and the smoothed version off(x,  O) by f ( x i ,  0), 

f (x i ,  O) =- - K x i -  x~ f ( x j ,  O) l~(xi), 
n l~= 1 h 

j . i  

then our test statistic V. can be rewritten as 

v,,= ! [0Ix,)- f(x,,O)][y,-f(x,,O)]#(x,) 
Y/i=I 

(3.17) 

The first term in the above equation is the density-weighted version of 
Wooldridge's test statistic, while the second term converges in probability to 
zero under both the null and the alternative. There is also a connection between 
our test and H~irdle and Mammen's test. Their test is based on the statistic 

where n is a weighting function. 
Our test statistic and Wooldridge's test statistic are both degenerate under the 

null. The degeneracy may cause the null distribution of the test statistics to be 
ill-behaved under the usual v/~ normalization. Despite the close connections 
among various tests, our test turns out to be more powerful than Wooldridge, 
Lee, and Yatchcw's tests. This is because our test exploits the degeneracy 
property of the test statistics under the null for our advantage while others avoid 
this problem through different bias control methods. Wooldridge avoids this by 
properly controlling the number of series terms used in a sieve estimation of the 
alternative model. Yatchew avoids the degeneracy problem by splitting the 
sample into two parts, one for calculating SSRe and another for SSRN. 

4. Tests of local alternatives 

In Section 3, we have shown that our test is consistent against all fixed 
alternatives. It would be interesting to know how the test behaves under the 
local alternatives. To investigate the power of a test, classical tests usually 
consider local misspecifications converging to the null at the parametric rate 
I/v/~, the familiar Pitman (1949)drift. 

We consider a sequence of local alternatives 

Hi,,: E(yilx;) = f (x i ,  0o) + 6. • i(xi), (4.1) 
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where the known function I ( ' )  is continuously differentiable and bounded by the 
measurable function b(. ) in Assumption 1, and 6,, ~ 0 as n ~ oc. 

The following theorem gives the power of our test against local misspecifica- 
tions (4.1): 

Theorem 3. 
alternatives (4.1), i f  6n = n -  l/2h-m/4, 

d 
T. ~N(/~, 1), 

where 

!~ = E[12(xi)p(x,)]/,,/-L-, 

where E is given in Lemma 3.3. 

Given Assumptions 1-5, i f  h ~ 0 and nh" ~ or, then under the local 

(4.2) 

Tests of local misspecifications are also considered by Eubank and Spiegel- 
man (1990) and H~irdle and Mammen (1993). Eubank and Spiegelman show that 
their test has some power detecting local alternatives approaching to the null at 
rate n-  ~/2Dt/'*, where D is the dimension of the departure of the alternative from 
the null. H/irdle and Mammen obtain similar local properties as ours. 

It should be clear that the local convergence rate 6, which those tests have 
power to detect is the square root of the rate at which the test statistics converge 
to infinity under the alternative. Since Wooldridge's test statistic converges to 
infinity at rate x/~, it has only power to detect local alternatives approaching to 
the null at rates slower or equal to n- ~/'*. Thus our test is also more powerful 
than Wooldridge's test in detecting local misspecifications. 4 Note that none of 
these tests, including ours, can detect 1/x/~-Iocal alternatives. 

5. A Monte Carlo study 

To investigate how the test proposed in the paper behaves in finite samples, 
we conduct a Monte Carlo simulation of the size and power of the test. 

The data is generated as follows. Let z~i and z2i be independent number 
drawing from the standard normal distribution. Two regressors, x~ and x2, are 
defined as 

x l i  = z , i ,  x2, = (z l i  + z2i)/x/-2. (5.1) 

The error term ~:i is also drawn independently from the standard normal 
distribution, x~;, x2~, and t:~ all have the same variance 1. 

41 thank a referee for pointing this out. 
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The null hypothesis we want to test is that the linear model is correct: 

Ho: EO' i lx i )  = ~o + a q x ,  + ~2x2i for some ~ = (t~0, ~1, ~2)' ~ R3. (5.2) 

In the four models considered, the dependent variable y is generated as 
follows. To investigate the size of the test, we consider model 1, where the 
dependent variable y is generated to be 

Yl = 1 + Xli  "Jr- X2i + F, i. (5.3) 

TO see if the test has power to detect high-order terms, we consider model 2, 
where it adds the interaction term XlX2 into model 1, 

Yi = 1 + x l i  + x2i + x l i x 2 i  + ei. (5.4) 

To investigate the power of the test against a general nonlinear regression 
model, we consider a concave and a convex alternative, models 3 and 4. In 
model 3, the dependent variable y is defined as 

Yi = (1 + x l i  + x2i) 1:3 "~ F,i. (5.5) 

In model 4, the dependent variable y is 

Yi = (1 + x l i  + x2i) 5/3 + ei. (5.6) 

Obviously, Ho is true for model 1 and false for models 2, 3, and 4. The 
simulation is conducted to sample sizes 100, 200 . . . . .  700. Each experiment is 
based on 1000 replications. The kernel function K is chosen to be the bivariate 
standard normal density function 

1 u~ u~ 
K(ut. u2) = 2-nexp ............................ . {5.7) 

The bandwidth h is chosen to be c. n - 2/5 where c is a constant. The bandwidth 
satisfies nh" -* ~ where m = 2 in this case. To investigate whether the test is 
sensitive to the choice of bandwidth, we calculate the test statistic for c equal to 
0.5, 1.0, and 2.0. The critical values for the test are from the standard normal 
table: for 1% significance level the critical value is 2.576, for 5% level the critical 
value is 1.960, and for 10% level it is 1.645. 

The results of the si::e study are shown in Table 1. As can be seen, the test has 
adequate size in most cases. The sizes get closer to the asymptotic sizes when 
n gets larger. The size seems not very sensitive to the choice of bandwidth. 

The results of the power study are presented in Tables 2, 3, and 4. The powers 
of the test are very high in most cases and quickly converge to 1. The power 
increases with sample size in all cases for any chosen bandwidth. 

To know better how the test behaves in finite samples, we compare the test 
with a classical test, the t-test. To illustrate this, we test the linear model (5.2) 



iX. Zheng / Journal of Econometrics 75 (1996) 263-289 

T a b l e  I 
P r o p o r t i o n  of rejections in model I: Yi = 1 + xl~ + x2i + q 

275 

P a r a m e t e r  c S a m p l e  size 1% significance 5% significance 10% significance 

0.5 

100 0.2 3.4 8.2 
200 0.3 4.2 9.2 
300 0.5 4.7 10.3 
400 0.5 5.2 10.5 
500 0.7 4.8 9.6 
600 0.9 4.8 10.8 
700 1.0 5.4 11.9 

i.0 

100 0.6 3.9 8.9 
200 0.4 4.4 9.7 
300 0.5 4.6 10.5 
400 1.2 5.1 9.7 
500 0.9 4. I 8.4 
600 0.7 4.3 9.3 
700 1.6 5.4 10.8 

2.0 

100 0,5 2.4 7.5 
200 0.3 2.9 8.1 
300 0.4 3,7 9.5 
400 0,6 3.4 7.9 
500 0,5 3.3 8.7 
600 0,2 3.1 8.1 
700 1,1 4.2 9.4 

tqesl 

I00 5.4 8.0 I 1.2 
200 4.4 6.5 10.2 
300 2.7 4.6 7.7 
400 4.8 7.1 9.9 
50(| 2,9 5.6 7.9 
000 3.7 5.6 9.4 
700 2.6 5.0 7.2 

against  a high-order linear model,  

H1: E(yilx3 = 0t0 -I" O~lXli q- ~2X2i q- ~3XliX2i 

for some  0~ = (0~o, 0q, 0~2, 0ta)e R 4 . (5.8) 

In other words, we test if 0t3 = 0 in (5.8). Denote  the OLS estimator of 0~ by &. 
The  asymptotic  variance-covariance matrix 12 of & can be estimated by White's 
(19801 heteroskedasticity-robust covariance matrix ~2 - (to;.j), 

.0 = xi '  xi  (y; - x i~ )  2 xixi x;xi (5.9) 
i \ i =  1 \ i =  1 



276 J.X. Zheng / dournal o f  Econometrics 75 (1996) 263-289  

Table 2 
Proportion of rejections in model 2: y~ = I + x t i  + x2i + xt~x2~ + ~ 

Parameter c Sample size 1% significance 5% significance 10% significance 

0.5 

100 25.2 50.0 64.9 
200 64.2 84.8 90.3 
300 88.6 97.0 98.7 
400 96.4 99.2 99.5 
500 99.5 99.8 99.8 
600 99.8 99.9 100 
700 99.8 100 100 

1.0 

100 80.2 90.4 94.2 
200 98.8 99.8 99.9 
300 100 100 100 
400 100 100 100 
500 100 100 100 
600 100 100 100 
700 100 100 I00 

2.0 

100 97.7 99.1 99.7 
200 100 100 100 
300 100 100 100 
400 100 100 100 
500 I00  100 100 
600 100 100 100 
700 ! 00 I O0 I O0 

t-test 

I(X) 97,1 97,7 98.1 
2(X1 99, 7 99,7 99.7 
3(X) 99.8 100 100 
400 I (XI I O0 100 
5(X) 1 (X) 100 1 O0 
6(X) 100 100 100 
700 1 O0 100 100 

Hence we can use the t-statistic t = v/~z~31tb,~,,, to test if cz3 = 0. The critical 
values are the same as in our consistent test. The results of the t-test are given in 
the lower panels of Table 1 through Table 4. The sizes of the t-test at I% 
significance level are very larger than the corresponding sizes of the standard 
normal distribution. Since the t-test is directed to test model 2, it is not 
surprising that the t-test reaches its best power in model 2. in general situations, 
we can expect that our consistent test does better than the t-test. Indeed, our 
consistent test does better than the t-test in model 3, and it also does better than 
the t-test in model 4 for sample sizes over 300. 
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Table 3 
Proportion of rejections in model 3: y~ = (1 + x~ + x2~) ~'3 + ~ 

277 

Parameter c Sample size 1% significance 5% significance 10% significance 

0.5 

100 3.7 ! 3.6 22,6 
200 10.7 26.0 36.7 
300 21.3 40.1 51,0 
400 33.3 54.2 65.6 
500 42.3 65.3 76.1 
600 53.0 72.0 81.0 
700 63.0 80.6 86.7 

1.0 

100 17.8 31.0 39,0 
200 42.1 60.5 70.4 
300 65.4 80.7 87.0 
400 83.6 92.9 94.8 
500 93.7 97.8 98.7 
600 96.7 99.2 99.7 
700 98,3 99.7 99.8 

2.0 

100 36.3 48,5 57.4 
200 79.5 88.8 91.9 
300 95,2 97.9 99.1 
400 99.3 99.7 99.9 
500 100 100 100 
600 100 100 ! 00 
700 100 100 100 

t-lest 

100 45. I 55,9 61.4 
20(I 43.9 56.6 62.11 
300 41.9 54.5 611.4 
400 43.2 54.2 62.7 
5t10 44.8 56.2 61.7 
600 43,5 53,3 62,8 
7110 46,6 59,7 66.5 

6. Conclusion 

This paper has provided a consistent specification test of parametric nonlin- 
ear regression models against general alternatives. The idea of the test exploits 
the close connection between the conditional moment test and nonparametric 
tests. The test is more powerM than the Bierens' (1990) consistent test and many 
of the nonparametric tests. The test also has more power than many alternative 
tests in detecting local misspecifications. The test is shown to be consistent 
against local alternatives approaching the null at rates slower than the paramet- 
ric rate 1/,,/~. The test can no longer distinguish the local alternatives from the 
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Table 4 
Proportion of rejections in model 4: ~.,~ = (I + xl~ + x:3 ~/3 + c~ 

Parameter c Sample size 1% significance 5% significance 10% significance 

0.5 

100 69.0 87.5 92.5 
200 96.8 99.1 99.3 
300 99.9 100 100 
400 99.9 100 100 
500 100 I00 100 
600 100 I00 100 
700 100 100 100 

1.0 

100 98.5 99.3 99.6 
200 100 100 100 
300 100 100 100 
400 100 100 100 
500 100 100 100 
600 100 100 100 
700 100 100 100 

2.0 

100 99.7 100 100 
200 100 100 100 
300 100 100 100 
400 100 100 100 
500 100 100 100 
600 100 100 100 
7(10 100 I00 100 

t-test 

100 78.3 82.9 85.5 
2(1tl 76,8 81.8 84.5 
3(1tl 74,2 79,3 82.3 
4(10 75.0 80.7 83.9 
500 73.7 79.5 83.3 
6(1t) 71.5 77.6 81.1 
7(10 73.5 79.1 81.7 

null if their rate of convergence to zero is at least l/x/'~. The test is also easier to 
compute than Bierens' consistent moment test. The simulation results demon- 
strate that the test has adequate size and the size is not very sensitive to the 
choices of the bandwidth. In most cases, the power is very high and approaches 
to one quickly as sample size increases. But a further extensive study on the 
choice of bandwidth is necessary and this is left for future research. 

The test can be applied to testing the underlying distribution assumptions in 
the parametric binary choice, censored regression, truncated regression, and 
sample selection models. The testing procedure can be immediately applied to 
testing omitted variables. It may be extended to testing a semiparametric model 
against a nonparametric model, where a semiparametric estimator is available. 
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It is also possible to extend the test to heterogeneous, autocorrelation, and some 
other time series cases. 

Appendix: Proofs 

Proof of Lemma 3.3 

The proof of Lemma 3.3 is broken into proofs of Lemma 3.3a through 
Lemma 3.3e. 

The statistic V, can be decomposed into three parts: 

Vn m 
n(n -- 1)i=x S=a 

j ¢ i  

K x~ h 

{ 1 ~. ~ l ( x i - - x j )  } 
--  n(n - -  1) h-- ~ K ei ~:j i=1 j=l h 

j*=i 

{ 1 ~ ~ ' (Xi - - .x j )  
- - 2  n ( n -  1) ~ K i=1 j = l  h 

j ¢ i  

+ n(n - 11 /~ K i= t  j = t  h 
j # i  

× [.l'(x, O) - . f (x , ,  0o)] [.f(x.~, O) -.l(x~, 0o)]} 

8i [f(xi, O) - f(xj, 0o)]} 

VI,, =- 2V2,o + V3,,. (A.I) 

Under the null, we will show that nh"/2V~,, is normally distributed, 
nh'/2V2,, = op(l), and nh'/2Vs,, = %(1). 

The following lemma establishes the asymptotic distribution of V l,, under the 
null hypothesis: 

Lemma 3.3a. Given Assumptions 1-5, i['h --* 0 and nh" --+ oc, then under the null 
hypothesis (2.1), 

nh m/2 V ln a_~ N(O, Z), (A.2) 

where Z is the asymptotic variance of nh ''/2 V I,,, 

tO.2 (X,'a 2 2 Z = 2 ~ K z (u) du" ~ L )j p (x)dx. (A.3) 
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Proof of Lemma 3.3a 

V1, can be written in a U-statistic form with 

l ( x ' - x ~ ) e , ~ j .  (A.4) H ,  (zl, z j) = ~-~ K 

Under  null hypothesis, since E [ n . ( z l ,  z2) lz l ]  = (1/h")el E[K((x t  - x2)/h) x 
E(*:2 [x2)] = 0, VI, is a degenerate statistic. 

To apply Lemma 3.2, we need to verify its condition. Since 

E [GZ.(zl, zz)] 

= E {E[H.tz3. z,) H.(z3. z2) lz, .  z2]} 2 

, _ x , )  _ 

= ~ E  ~:I~:2.[K(u) K u+ ~ (.\'t +hu)plxt +hu) h"du 

' { t  [ ( = /~T,. E E ,:f ,:~ I K (u) K u + ----~i -~o- 

x a2(x I + hu) p(xt + h'O du xi,  x., 

1 (u + 

, [ (x,_.,) = / - ~ I a 2 ( x t ) a Z ( x ~ )  ~K(u) K u +  .~ 

xa2{xt + hu)plxt + hu) du p(xt)p(x2) dxtdx2 
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1 
= h2., ~ a2(x,) a2(x, - hv) [~ K(u) K(u + v) 

x er 2 (x,. + hu)p(xt + hu) du] 2 h"p(xl) p(xl - by) dxldv 

l = h-- ~ ~ [J K(u) K(u + v) du]2dv ~ [a2(x)]4p4(x)dx + o(1/h ' )  

= O (1/h"), 

where 0"4(X) = E[eglxi = x], 

E 2 [ H  n (Zl, z2) ] ~--- E{E[H2(z,, z2) l x,, Xz]} 

and 

=~-~-gK1 2[x1~- -h- XZ) a2(xi) a2(x2) p(xO p(x2) dxl dx2 

1 
= h2,, ~ K2(u) a2(x) a2(x - hu) p(x) p(x - hu) dxh"du 

1 = h.--- ~ ~ K 2 (u) du" ~ [o .2 (x)]2p2(x) dx + o(1/h") 

= O(1/hm), 

4 | K 4 ( x l - x z )  a4(xl)a4(x2)p(xl)p(x2)dx,dx2 E [ H " ( z I '  z2)] = ~ ~ h 

1 
- h4,, , .[ K 4 (u) a4(x) tr4(.x - hu) p(x) p(x - hu) dxh"du 

--= O( l /h3m) ,  

we have 
2 -1 4 E[G,,(zl, z2)] + n E[H,,(zl, z2)] 

2 }2 {E[H,,(zl, z2)] 

O(l /h  m) + n-IO(1/h3") 
= O(1/h2,,) 

= O(h") + O(l/nh"') --* 0 as 

s i n c e h ~ 0 a n d n h '  ~ o c  a s n ~ .  
Thus the condition in Lemma 3.2 is satisfied and it Ibliows that 

n.  Vl,,/{2E[n2(zi, z~)]} ~12 a ,N(O,  1). 

By (A.6), we have 

nh"/2Vl,, 'J ) N(0,2 S K2(u) du" ~ [a2(x)-[Zp2(x)dx)" Q.E.D. 

(A.5) 

(A.6) 

(A.7) 

i| ---~ OC, 

(A.8) 
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Lemma 3.3b. Given Assumptions 1-5, if h ---, 0 and nh m ~ oo, then under the null 
hypothesis (2.1), 

_ 1  ~ a ( - x ~ )  
W , -  n(n_ l) -~ K xi i=, i=, -~ %M(xj) = O/,(1/x/~), (A.9) 

whenever M is continuously differentiable and IlM(x) I1 ~< b(x) for x ~_ R ~ and 
E[b2(xl)] < oo. 

Proof of Lemma 3.3b 

The lemma can be proved by modifying the proof of Theorem 3.1 in Powell, 
Stock, and Stoker (1989). 

W. can be written in a U-statistic form with 

l ( x ' - x ; ) [ % M ( x j ) + e ,  jM(x~)]. (A.10) H, (zi, z i) = 2-~ K h 

To apply Lemma 3.1, we need to verify the condition that E[ltH,(zi, z~)l12l 
= o(n). We have 

E [ II H.(z. z i) I12 ] 

~< 2 E [ ~ K ( " q  h- xJ) r'iM(xij]2 + 2E[2~'  K ( xi -h x~) 

I,. K2 ( x  i - = J" ~i[ sr i] x t /  O'2(Xi) M 2( x i)p(xi)p( x i) dxi dxi 

1 
= ~ j" K 2 (u) o'2(x;)M2(xi -tut)p(xi)l~(Xi - hu) dxi h" du 

= O(I/h") = O[n(nh')- ' ]  = o(n) since nh" --, oo. 

For the above H.(z. zs), we have ¢,, = E[H,,(zi, z~)] = 0, 

1 ( x i - x j )  e.i~l(xj)p(xj)dx j r.(z,I = j" K 

1 
= 2h" ]" K(u)~:~ M(xi - hu)p(xi - hu) hindu 

= ½ ~;~ M (xi)p(xi) + t. {zi). 

Thus 

~:j M(xi)] 2 

(A.! !) 

(A.12) 

x/n U. ! = ~ ~ = ,  ~:i M (xi)p(xi)+ -~ i=, t. (zi). (A.13) 
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Since t,(zi) has second moment equal to o(h2), the asymptotic distribution of 
v~[]0, is the same as that of 

II 

~i M (xi)p(xi). (A.14) 
N//~ i= 1 

By the Lindeberg-Levy central limit theorem, we have 

U. d N (0, E [a2(xi)M2(xi)p2(xi)]). 

Thus W. = Op(1/x/~ ). Q.E.D. 

From the standard least squares theory (cf Jennrich, 1969; White, 1981, 1982), 
it follows that: 

Lemma 3.3c. Given Assumptions 1-4, under the null (2.1} or alternative (2.2), 

x/~ (0 - 0o) = Op(1). (A.15) 

Applying Lemmas 3.3b and 3.3c, we have the following result: 

Lemma 3.3d. Given Assumptions 1-5, (f  h --. 0 and nh" ~ ~ ,  then under the null 
hypothesis (2.1), 

nh'"/2V2,, P--.O and nh ''/2 V3,, ~ 0 .  (A.16) 

Proo.l o/'Lemma 3.3d 

V2,, can also be approximated by U-statistics. To see this, note that 

V2, = n(n !) i :  l j="'l b-~ K , h 
j e i  

O.f ( xJ, 0o) } 
~0' (0 - 0o) 

+ {(0 - Oo)' n ( n -  1) ~ g ci i=l j=1 h 
jg i  

0 2 ,f(x 3, O) ] 
~ 0 ~ 0 '  ( 0 -  0o) 

- s , .  (0 - oo) + (0 - Oo)' s 2 . ( 0  - Oo), (A.17) 

where 0, depending on xi, lies between 0o and 0. 
Applying Lemma 3.3b, we immediately have 

S~,, = Oj,( l /x /~) .  (A.18} 
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For $2,, denote  a(xl) = E( Ir, i II xi), we have 

[, ( ,-  x,) o,x,, ilO,, Oo,ll] E(IIS2.11) ~ E ~ K h 

= 0(1). 

Thus we have 

$2, = On(l). 

Since 0 - 0o = Op ( l / , / - n ) ,  we have 

v,,, = o , ( l tv~) .  O,(l lv/~)+ o,(11,,/~), o,(1). O,,(1/,,/~) 

= Ol,(l tn ). 

Thus 

#lhm'/2V2n = Op(h ml2) P O. 

(A.19) 

(A.20) 

(A.21) 

From Lemmas 3.3a to 3.3d, we have proved the first part of Lemma 3.3. To 
show that i" is a consistent est imator of Z, we apply Lemma 3.1. 

S3. = Or(l). 

Thus we have V3, = O l , ( l / x / ~ )  • O1,(1) • Op(l tx/ 'n)  = Ot,(l/n). So 

nh"i2V3. = Ov(il'"") ~ O. Q.E.D. 

(A.23) 

V3, can be written as 

I 

, j~i 

~.f(x, 0I) ~./'(Xs, 02) 
x (0 - 0o) 

00 ~0' 

= ( 0 i 00) ' S3.( 0 -- O0 ), (A.22) 

where 0t, depending on xi, lies between 0o and 0, and 32, depending on x s, also 
lies between 0o and O. Similar to the proof of $2,, = Ov(l), we can easily show 
that 
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Given Assumptions 1--5, ( f  h --* 0 and nh m ~ ~ ,  then under the null 

Proof o f  Lemma 3.3e 

Using the same method in the proof of Lemmas 3.3a-3.3d, we can show that 

( 2 1 Ka xi x~ e~ej 
2 -  n(n- 1) ~ h 

i=1  j = l  
j ¢ i  

. 2 2 1 1 K2 x i xj + op(l) 
= 2 n(n 1) i=1 j=1 h-~ h 

j~i 

- 254. + %(1). (A.25) 

$4. is a standard U-statistic with 

1 K 2  (Xi - Xj) e2 ,2 (A.26) H.(zi ,  zj) = ~ -~ ~q. 

As in the proof of Lemma 3,3k we can easily show that E [ II H.(z~, z j) II 2 ] = o(n). 
Thus the condition of Lemma 3.1 is satislied. 

For the above H,(zi, z;), by (A.6) we have 

[ !  K 2 (  x / i ~ ; ; i  : 'J) ] ,.., = E -~  ,:I,:~ 

= ~ g2(u) du ~ [62(x)]2p2(x)dx q- o(1) 

= Z/2 + o(1),  

Therefore by Lemma 3.1, 

S4. = e. + %(1)  = S/2 + %(1).  

So we have 

= 2S4,, + op(l) = X + op(l). Q.E.D. 

Summarizing our results from Lemmas 
Lemma 3.3. Q.E.D. 

(A.27) 

(A.28) 

3.3a to 3.3e, we have proved 

--, Z'. (A.24) 
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Proof  o f  Lemma 3.4 

The proof  is similar to the proof of Lemma 3.3e. 
First we can show that 

V n =  n(n -  l) ~ -~  K eiej 
i =1  j = !  h 

- n (n- -  1) ~-~ K eiej i=~ j=l  h 
j¢:i 

- $5. + %(1). (A.29) 

$5. is again a standard U-statistic with 

H. (zi, z~) = -~ K -~ ei e,j. (A.30) 

Similar to the proof of Lemma 3.3b, the condit ion of Lemma 3.1 can be shown to 
be satisfied. 

For the above H.(zi, z~), since E(~,i[x~) = g(xi) - f(x~, 0o) under  the alterna- 
tive, we have 

rs, = E {E[H.(z,, zj) lx~, xj]} 

I E - _ 

= t~,,'~i / K h- [glxi) - f lx~ ,  0,,1][01.\'~1 - . f i x  j, Oo)]plx~) pixy) dxi dx.i 

I 
= h- ~ )" K(u)  [.q(x,) - . / ' ( x , ,  0o1] [t/(x~ - hu) -l'(x, - hu, 0o1] 

x p(xi) p(xi - hu) dxi h ' du  

= )" [e(x) - f ( x ,  Oo)]2p2(x) dx + o(1) 

= E { [g(x,) - f ( x , ,  0o)] 2p(x,)} + o (1). (A.31) 

Therefore, by Lemma 3.1, 

V. = Ss. + %( i )  = f,, + op(l)  

= E { [.q(.,q) - . f (x , ,  0o)] -p(x~)j + %( 1 ). (A.32) 

So we have shown the lirst part of Lemma 3.4. The second part can be shown in 
a similar way as Lemma 3.3e. 
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Under  the alternative we can show that  

2 ~ ~. 1 2 f X i - - X j )  2 2 
2 - n(n 1) el ej- - ~ K (  h 

i = 1  j = l  
j ¢ i  

2 2 1 I K2 xi xj  ei g'9 +Op(1) 
= 2 n(n - 1) /1" h i=1 j = l  

j ~ i  

- 2S6. + op(1). (A.33) 

$6,, is a s tandard U-statistic with 

( - )  __ 2 (A.34) 1 KS xi x~ ~ , ~ .  
H,(zi, zj) = hm h 

The condit ion of Lemma 3.1 can be easily verified as in Lemma 3.3b. 
For  the above H,(zi, z j), note that under  the alternative E(e~ I x~) = a2(xl) + 

[g(xg) - f ( x i ,  00)] 2, we have 

, 
~:,, = ~-~ I K2 -h xj {a2(x, ) + [g(x,) - f ( x i ,  00)] 2} 

× {a2(xj) + [g(xj) - f ( x j ,  Oo)]2}p(xl) p(xj) dxidxj 

1 
= h"---; 5 Ka (u) {a2txi) + [.q(x,) - f ( x i ,  00)] 2 } 

x {0"2(xi - hu) + [g(xi - hu) - . f ( x i  - hu, 00)] 2 } 

× p(xi) p ( x i -  hu)dxflf"du 

= j" K 2 (u) du ]" {a: (x) + [,q(x;) - . f ( x ,  0,,)]2}2p z (x) dx + o (1). (A.35) 

Therefore by Lemma 3.1, 

= ..S,o, + op(l)  = 2~,, + op(l) 

= 2 ~ K'(u)  du ~ {a2(x) + [~.l(x,-f(.'q, Oo)]2}2p2(x)dx 

+ o(1). Q.E.D. (A.36) 

Proof of  Theorem 3 

Like the previous proofs, we can show 

V , , =  n ( n  l) i=l~_-I / ~ K  h 

- n(n - 1) ~;  K ~:ie~ 
i=1 ~=1 h 

,i~i 

- S7,, + %,(1). 

+ o p ( l )  

(A.37) 
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Let ui = ~i - 6.. l(xi). Then E(u~l xi) = 0. $7. can be decomposed as 

$7. - n(n- 1) ~-~ K 6,,-/(xl}] [uj 6. • 
i = ~ .  j=t h 

= n(n--  I) i~_-ij=1 ~ K  h 
j#:i 

+ 6 . "  n(n 1)~=lg=t ~--~K xi 
- h 

+ 62 • n(n - 1) -~ K I(xi) i(x~) 
i = l  j = l  h 

j~ i  

- Q1, + ,~." Q~. + ~ "  Q~°. 

Similar to the proof of Lemma 3.3, we can show 

nh"/2 Ql .  ~ N(0, .S). 

Like the proof of Lemma 3.3b, we can show 

Q2. L N(0, E [a 2 (x,)12 (x,) p2(x,)]). 

By mimic the proof of Lemma 3.4, we have 

Q.~. L E [12 {x,) p (.x~)] > 0. 

if 6, = I1 t/2 h m/4, then 

nh "/',~. Q2. = h "/4" v/n Q2. & O, 

Thus 

nh'/2 6. 2 Q3. = Q3. & E [12(Xi) p(xi)]. 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

nh "/2 V. L N(E[! 2 (x3 p(xi)], Z). (A.42) 

Following the proof of Lemma 3.3e, we can easily show that Z ~ ,  S. Thus 

~ - 1 nh ",'2 V. 
v.--  ;, ,/_£ l), 

where 

II = E [12(x i) P(x i ) ] / x~ .  Q.E.D. 
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